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Changes in the membrane lipid composition of a Sulfurimonas
species depend on the electron acceptor used for sulfur
oxidation
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Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using
different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is
depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate (NO�

3 ) as an electron acceptor to oxidize sulfur, including
sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas
baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese
dioxide (MnO2) rather than NO�

3 for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the
electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition,
are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the
lipidomes of three representative Sulfurimonas species grown using either NO�

3 and MnO2. We found that all Sulfurimonas spp.
produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid
composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur
oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation
is NO�

3 -dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron
acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-
stratified systems.

ISME Communications; https://doi.org/10.1038/s43705-022-00207-3

INTRODUCTION
Chemoautotrophic bacteria of the genus Sulfurimonas [class
Campylobacterota, according to the NCBI classification, [1, 2]
play an important role in sulfur oxidation in sulfidic habitats,
such as stratified marine waters, anoxic sediments, and
hydrothermal deep-sea vents, as well as in some terrestrial
environments [3]. For example, along the Namibian shelf, Lavik,
et al. [4] reported that occasionally occurring, large-scale sulfidic
water masses were detoxified by oxidation of sulfide (HS-) using
nitrate ðNO�

3 Þ by two groups of bacteria: Sulfurimonas spp. and
bacteria falling in the gammaproteobacterial sulfur oxidizer
cluster. Within and below the pelagic redoxcline of the Baltic
Sea, where a stable redoxcline separates deep anoxic sulfidic
water from oxygenated surface water [5], Sulfurimonas spp.
accounted for up to 15% of total prokaryotic abundance. Here,
Grote, et al. [6] isolated S. gotlandica GD1T, a denitrifying
chemolithotrophic sulfide oxidizer. In oxygen deficient systems,
sulfur cycling has been shown to be tightly linked to the
nitrogen cycle without affecting chemical gradients, so called
cryptic cycling [e.g., [7, 8].

In the stratified water columns of both the Baltic Sea and the
Black Sea, NO�

3 and nitrite (NO�
2 ) often disappear before the first

appearance of HS- [9, 10]. Geochemical water column profiles
suggest that extensive cycling of dissolved and particulate
manganese (Mn) may quantitatively account for the oxidation of
HS-, thereby shuttling oxidative potential of O2 and NO�

3 over
several meters distance. This mechanism, as well as a potential
biological catalyzation, was proposed earlier because chemoau-
totrophic HS- oxidation could not be linked to O2 or NO�

3
[10–12]. Recently, Henkel, et al. [13] isolated Ca. Sulfurimonas
marisnigri SoZ1 from the redoxcline of the central Black Sea. This
bacterium can couple the oxidation of reduced sulfur com-
pounds, including HS-, S0 and thiosulfate, to the reduction of
MnO2. The biologically catalyzed oxidation of HS- by Ca. S.
marisnigri SoZ1 is faster than the abiotic oxidation of HS- with
MnO2 [14] and yields SO2�

4 as the prominent end product, while
elemental sulfur (S0) accumulates in the abiotic reaction
[13, 15, 16]. Combining the cellular abundance of Sulfurimonas
spp. in the Black Sea redoxcline with rates of MnO2 dependent
HS- oxidation by Ca. S. marisnigri SoZ1 in a reaction diffusion
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model yielded adequate rates to counterbalance the HS- flux,
resulting in the measured HS- concentration profile, in contrast
to a pure abiotic reaction [14]. Hence, this process is likely to
play a prominent role in HS- oxidation at the chemocline of the
Black Sea. Likewise, Ca. Sulfurimonas baltica GD2 was isolated
from the redoxcline of the Gotland Deep in the Baltic Sea [17].
These studies revealed the important role of MnO2-dependent
Sulfurimonas spp. in biogeochemical cycling in redox-stratified
systems [14]. Changes in the electron acceptor are associated
with differences in the electron transport chain (ETC), which is
embedded in the cellular membrane. Protein complexes of the
ETC are expected to interact with and influence the lipid
composition of the membrane, which is partially responsible for
the fluidity of the membrane [18]. Nevertheless, few studies
have addressed potential changes in the membrane lipid
composition upon changes in the electron acceptor as a
response to maintain the cell homeostasis.
Structurally diverse microbial lipids play important roles as the

building blocks of membranes and play a role in energy storage,
signaling and modulation of protein activity [19]. Many
microorganisms maintain their membrane functionality, perme-
ability, and fluidity during changing environmental conditions
by membrane adaptation [20, 21] through the regulation of its
lipid composition [e.g., [22–25]. For instance, when phosphorus
is limited, phytoplankton and some bacteria can use non-
phosphorus lipids to replace phospholipids for survival
[23, 26, 27]. However, the membrane lipid composition of
Sulfurimonas spp., and potential differences when using
different electron acceptors to oxidize HS-, are unknown. Until
now, only a few studies have reported the predominant cellular
fatty acids of Sulfurimonas spp. [e.g., [28–30], but their intact
polar lipid composition, including both the fatty acid side chain
and their linked polar headgroups, remains to be studied.
Because of their relatively high abundance in redox-stratified
waters, Sulfurimonas spp. are likely to contribute substantially to
the lipidome of these environments. Recent advances in the
field of lipidomics, using non-targeted approaches combined
with computational methods, allows for comprehensive lipi-
dome profiling [31–34].
Here, we examined the lipidome of three Sulfurimonas

species, S. gotlandica GD1T and Ca. S. baltica GD2, both
isolated from water column of the Baltic Sea, and Ca. S.
marisnigri SoZ1 isolated from the water column of the Black
Sea, cultured with either NO�

3 or MnO2 as electron acceptor.
Our aim was to investigate how Sulfurimonas spp. adjust their
membrane lipid composition when using different electron
acceptors (NO�

3 and MnO2), in order to determine potential
microbial adaptations of the membrane linked to different
metabolisms.

METHODS AND MATERIALS
Cultures
Anoxic medium was prepared with a salinity of 21, 14 and 10 psu for Ca. S.
marisnigri SoZ1, Ca. S. baltica GD2 and S. gotlandica GD1T respectively as
described before [17] with minor changes. We used 2 L glass bottles closed
with butyl rubber stoppers for both MnO2 and NO�

3 conditions with Ca. S.
marisnigri SoZ1 and Ca. S. baltica GD2. S. gotlandica was cultivated in
100mL serum bottles closed with butyl rubber stoppers. We raised the
concentration of NH4Cl and Na2HPO4 from 0.02mM and 0.01 mM to
2.5 mM and 0.2 mM, respectively. These adjustments were made to
exclude deficiencies of macro nutrients during growth and should
therefore reduce differences in lipid composition of cultures. Cultures
were obtained from the internal culture collection of the IOW, which are
also available at the German Collection of Microorganisms and Cell
Cultures GmbH (DSMZ) and at the Japan Collection of Microorganisms
(JCM) with the identifiers JCM 39139 and DSM 111879 (Ca. S. marisnigri
SoZ1), JCM 39138 and DSM 111898 (Ca. S. baltica GD2) and JCM16533 and
DSM 19862 (S. gotlandica GD1T). Ca. S. marisnigri SoZ1 and Ca. S. baltica

GD2 were cultured with either 3 mM thiosulfate (S2O2�
3 ) and 5mM MnO2

(Mn-reducing conditions) or 5 mM S2O2�
3 and 10mM NO�

3 (NO�
3 reducing

conditions). S. gotlandica GD1T was amended with 15mM NO�
3 and 10 mM

S2O2�
3 . S. gotlandica GD1 grows faster and has a substantially higher

growth efficiency with nitrate than Ca. S. marisnigri SoZ1 and Ca. S. baltica
GD2. This is because S. gotlandica GD1 is a complete denitrifier (NO�

3 to
N2), while Ca. S. marisnigri SoZ1 and Ca S. baltica GD2 can only reduce NO�

3
to NO�

2 [17]. Since S. gotlandica grows faster than the other strains, the
initial NO�

3 and S2O3
2- concentrations were higher to prolong the

exponential growth phase. Concentrations of NO�
3 (and therefore also

S2O3
2-) in cultivations of Ca. S. marisnigri SoZ1 and Ca. S. baltica GD2 are

lower to exclude a putative toxification by NO�
2 . Cell numbers were

estimated after 8 days of growth and the biomass were harvested at day
12 at 10 °C in the dark. Cellular abundance of Ca. S. marisnigri SoZ1 and Ca.
S. baltica GD2 were ~5 × 106 cells mL−1 under Mn-reducing conditions and
~5 × 105 cells mL−1 under NO�

3 reducing conditions (Ca. S. baltica GD2
only). Very few cells were visible under NO�

3 reducing conditions with Ca.
S. marisnigri SoZ1. S. gotlandica GD1T reached a cellular abundance of
~4 × 107 cells mL−1 at day 8. Incubation was continued until day 10 at
which the black color of Mn-containing incubations became slightly
brownish-gray, indicating the precipitation of Ca-rich Mn-carbonates at the
end of the exponential growth phase [13, 17]. Cells were harvested in
50mL centrifugation tubes at 4060 x g for 15minutes at 10 °C, pooled and
stored at −20 °C before freeze drying and shipping to the NIOZ for
lipidome analysis.

Lipidome analysis
The cells of three representative Sulfurimonas species (Ca. S. marisnigri SoZ1,
Ca. S. baltica GD2 and S. gotlandica GD1T) were collected and freeze dried for
lipidome analysis. A detailed description of sample extraction and ultra-high
performance liquid chromatography coupled to high-resolution tandem
mass spectrometry (UHPLC-HRMS2) analysis and initial data processing is
given in Bale, et al. [35]. Briefly, freeze-dried samples were extracted using a
modified Bligh-Dyer procedure. They were extracted ultrasonically for
10min, twice in a mixture of methanol, dichloromethane and phosphate
buffer (2:1:0.8, v-v:v) and twice with a mixture of methanol, dichloromethane
and aqueous trichloroacetic acid solution (TCA) pH 3 (2:1:0.8, v-v:v). The
organic phase was separated by adding additional dichloromethane and
buffer to a final solvent ratio of 1:1:0.9 (v:v) and were re-extracted three times
with dichloromethane and dried under a stream of N2 gas. The extract was
redissolved in a mixture of MeOH:DCM (9:1, v-v) and were filtered through
0.45 µm regenerated cellulose syringe filters (4mm diameter; Grace Alltech).
The extracts were then analyzed using Agilent 1290 Infinity I UHPLC coupled
to a Q Exactive Orbitrap MS (Thermo Fisher Scientific, Waltham, MA). The
output data files generated by the UHPLC-HRMS2 analyses were further
processed using MZmine software [36]. Process steps included mass peak
detection, chromatogram building and deconvolution, isotope grouping, ion
component alignment and gap filling [34]. The relative abundance of
components was obtained after processing and the combined dataset of
MS/MS spectra were analyzed using the Feature Based Molecular Network-
ing tool [33] through the Global Natural Product Social Molecular Networking
(GNPS) platform [34] to build molecular networks of the detected
components in the dataset (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=f775f785684e4cc1b9e133d7abcc6f00). Details can be found in Ding,
et al. [37]. It should be noted that many of the lipids detected in this study
have not been described previously and hence authentic standards for
absolute quantification are not available. Therefore, the lipid compositions
were examined in terms of their peak area response. Thus, the relative peak
area does not necessarily reflect the actual relative abundance of the
different lipids, however, this method allows for some comparison between
the samples analyzed in this study. Due to the extraction and analytical
methods, and based on annotation from Ding, et al. [37], most of the ion
components from the molecular network we generated were lipids and
contaminants, thus we used the term “lipidome” for parts of the results and
discussion where the lipids are discussed.

RESULTS AND DISCUSSION
Lipidome of three representative Sulfurimonas species
Three representative Sulfurimonas species were cultured with
thiosulfate using NO�

3 or MnO2 as electron acceptors.
Thiosulfate was used instead of HS- as it is a more convenient
electron donor, being non-toxic even in higher concentrations,
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and non-reactive with the MnO2 [13]. Cells were harvested
after 12 days of growth, which corresponds to the late
exponential or early stationary phase [17]. The growth stages
of Ca. S. marisnigri SoZ1 and Ca. S. baltica GD2 were comparable
due to the reliable change in color of the growth media in the
late exponential growth phase, and the fact that the time
needed to reach final cell densities with NO�

3 does not differ
from that with MnO2 based on our experience with these strains.
Similar to the previous studies, growth yields of Ca. S. marisnigri
SoZ1 and Ca. S. baltica GD2 cultured with NO�

3 were substantially
lower compared to cultivation with MnO2 as terminal electron
acceptor [17]. The biomass yield of Ca. S. marisnigri SoZ1 grown
with NO�

3 was too low for a precise lipidomic analysis, therefore
it is excluded for the following analysis. S. gotlandica GD1T is
unable to grow with MnO2 [17]. Since only Ca. S. baltica GD2
could be cultured with both NO�

3 and MnO2 conditions, this is
the only species that could be examined in terms of its
membrane adaptation to a change in electron acceptor. The
results of Ca. S. marisnigi SoZ1 grown with MnO2 and S.
gotlandica GD1 grown with NO�

3 provide complementary
information about their lipid specificities and are thus interest-
ing for comparison.
Recently, we established a workflow that provides a substan-

tially expanded view of the molecular composition of the
microbial lipidome in environmental settings [37]. Here we used
the same workflow for our culture lipidome analysis. The
complete dataset produced by analysis with high performance
liquid chromatography coupled to high resolution tandem mass
spectrometry (HPLC–HRMS2) of the Bligh-Dyer lipid extracts of
the cultures contained 9936 unique ion components, of which
4282 ion components (43%) occurred in structure-similarity
groupings in the molecular network, while 5654 ion components
occurred as singletons (i.e., components without molecular
relatives). A search in the Global Natural Products Social
Molecular Networking (GNPS) library [34] resulted in only
167 spectral annotations (<2%). Other than ca. 20 contaminants
(e.g., plasticizers), the majority of these annotations were those
of well-known glycerol-based lipids: phosphatidylethanolamines
(PE-DAGs), phosphatidyl glycerols (PG-DAGs) and triayclglycerols
(TAGs). However, the vast majority of ion components was left
unannotated. Lipidome annotation remains a bottleneck in
marine microbiology lipidomic studies because public databases
in this field are poorly populated [35, 37].
The major lipid classes detected in the Sulfurimonas spp. were

PE/PG-DAGs, diacylglycerols (DAGs) and acyl ether glycerols
(AEGs) without a polar head group, ornithine lipids, isoprenoidal
quinones, long-chain fatty acids and some unknown lipids
(Fig. 1A). The distribution of major lipid classes, based on the
peak intensity, were similar between Ca. S. baltica GD2, grown
with NO�

3 and with MnO2 (Fig. 1B). PE/PG-DAGs were dominant
among all the lipids, accounting for >80% of total lipids. AEGs
were the second most abundant lipid class, accounting for nearly
8% of total lipids. Isoprenoid quinones and some unknown lipids
accounted for 0.5–3% of total lipids. PE/PG-DAGs were also the
most abundant group of lipids in Ca. S. marisnigi SoZ1 grown with
MnO2, comprising 62% of the total lipids, followed by 15% AEGs
and 11% unknown lipids. In contrast to Ca. S. baltica GD2 and Ca.
S. marisnigi SoZ1, PE/PG-DAGs comprised only 39% of total lipids
in S. gotlandica GD1T grown with NO�

3 . Ornithine lipids were
almost exclusively produced by S. gotlandica GD1T grown with
NO�

3 (Fig. S2), accounting for 40% of the total lipids. Ornithine
lipids are phosphorus-free amino intact polar lipids. which are
relatively common in bacteria, but are absent in eukaryotes and
archaea [38]. About 50% of sequenced bacteria are suggested to
be able to synthesize ornithine lipids under certain growth
conditions [24, 39].
The lipidome differences between Ca. S. marisnigri SoZ1 and S.

gotlandica GD1 may be attributed to membrane differences

between the species or to factors such as differences in the
growth media. Differences in the lipidome of Ca. S. baltica GD2,
depending on whether they were grown with NO�

3 or MnO2, are
not evident from the total lipid distribution, so we subsequently
examined the compositional differences within specific lipid
classes.
PE-DAGs and PG-DAGs are the major components of most

bacterial membranes [40, 41] and this also holds for the investigated
Sulfurimonas species (Fig. 2B). A subnetwork of diverse PE- and PG-
DAGs (Fig. 2A) was shown in the molecular network. The acyl
moieties (i.e., derived from the esterified fatty acids) of these
abundant PEs and PGs had 0–3 double bond equivalents (DBEs) and
contained 26–36 carbon atoms (i.e., the sum of the two acyl chains).
The majority (i.e., 50–70%) of the PE- and PG-DAGs had 30–32 total
acyl carbons with 0 to 2 DBEs. The most dominant individual PE-
and PG-associated fatty acids were C14, C15 and C16, saturated and
monounsaturated fatty acids, in agreement with a previous study
that reported that the dominant fatty acid of S. gotlandica GD1T was
C16:1 (66% of total), with smaller amounts of C18:1 and C16:0 fatty
acids [30]. Our detailed analyses revealed a minority of smaller PE-
and PG-DAGs, containing 26–29 total acyl carbons and with 0–1
DBEs. In the only Sulfurimonas species that was cultivatable under
both NO�

3 and MnO2 conditions, i.e., Ca. S. baltica GD2, the
proportion of these smaller PE- and PG-DAGs (26–29 acyl carbons,
0–1 DBEs) was 5.5% of total PE/PG-DAGs under NO�

3 conditions and
17.0% under MnO2 conditions, suggesting a phospholipid acyl
chain adaption in Ca. S. baltica GD2 depending on the electron
acceptor used.

Novel lipids found in the Sulfurimonas species
A subnetwork (>60 components; Fig. 3A, B) entirely populated
by unknown lipids (labeled “unknown1” in Fig. 1) revealed a
clear division between Ca. S. baltica GD2 grown with either NO�

3
or with MnO2 as the electron acceptor. The composition of this
unknown lipid network was also noticeably different between
Ca. S. marisnigi SoZ1 grown with MnO2 and S. gotlandica GD1
grown with NO�

3 . One of the central and relatively abundant
nodes, with a lipid structure occurring in all Sulfurimonas spp.
grown with NO�

3 or with MnO2, represents a compound with a
molecular ion at m/z 771.5657 (as per the molecular network, cf.
Fig. 3) eluting at 17.0–17.5 min (Fig. S3). This component was
assigned an elemental composition (EC) of C42H80O8N2P

+

(Δmmu = 1.00; the difference in millimass; [calculated mass –
observed mass] x 1000). Upon MS2 fragmentation (Fig. 3C) a
dominant fragment ion at m/z 225.1000 with an EC of
C7H18O4N2P

+ (Δmmu = 0.13) was formed, likely representing
the polar headgroup, and a relatively minor and complimentary
fragment at m/z 547.4704 (EC C35H63O4

+; Δmmu=−1.59)
representing the diacyl glycerol core containing the esterified
fatty acids with a combined total number of carbon atoms of 32
and 2 DBEs. A single fragment ion at m/z 237.2208 with EC of
C16H29O

+ suggests the diacyl glycerol is composed of two C16:1
fatty acids. An apparent loss of H3PO4 from the main headgroup
ion at m/z 225.1000 results in a fragment ion at m/z 127.1234,
(EC C7H15N2

+; Δmmu = 0.42) and a further loss of N2H2,
suggesting the two nitrogen are adjacent to each other in the
molecule, results in a fragment ion at m/z 97.1012 with an EC of
C7Hþ

13 (Δmmu=−0.52). We, therefore, tentatively identify this
lipid as a C16:1/C16:1 phosphatidyldiacylglycerol bound to a
diazoheptane moiety. The dominance of the fragment ion
representing the headgroup in the MS2 spectrum is very similar
to the MS2 behavior of polar headgroups with a quaternary
ammonium (i.e., phosphocholine headgroups) and we, therefore,
suggest the diazoheptane moiety is bound not via the terminal
N, but to the adjacent N resulting in a quaternary ion. The
extracted ion chromatogram of m/z 771.5667 (as per the
molecular network, cf. Fig. 3) revealed several additional peaks
at 18.2–18.5 min (Fig. S3) in the Sulfurimonas species grown with
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MnO2 with identical m/z and assigned EC. Interestingly, their
fragmentation mass spectrum showed a similar pattern as
described for the peak at 17.0–17.5 min (Fig. 3C), however the
fragment ion representing the headgroup was now observed at
m/z 197.0687 (Δmmu=−0.39) and the fragment ion related to
the carbon chain in the hydrazine moiety was observed at m/z
69 with an EC of C5Hþ

9 . The fragment ion representing the diacyl

core was now observed at m/z 575.5038 (C37H67O4
+). In addition

to a fragment indicating a C16:1 fatty acid, an additional
fragment was observed at m/z 265 representing a C18:1 fatty
acid. We therefore assigned this lipid as a phosphatidyldiazo-
pentane diacylglycerol (16:1/18:1). Further inspection of the
subnetwork revealed a series of diazoalkyl lipids varying both in
the carbon number of the alkylhydrazine headgroup moiety
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from 5 to 11 and in their acyl carbon atoms from 34 to 36,
leading to their tentative assignment as phosphatidyldiazoalkyl-
diacylglycerols (hereafter, PDA-DAGs). The structural identifica-
tion here is tentative, further structural elucidation methods
(e.g., nuclear magnetic resonance [NMR] spectroscopy) would be
required to confirm the proposed structures and elucidate the
position of the various functional groups.
The PDA-DAGs with a short C5 alkyl chain in the headgroup

were dominant in the two cultures that used MnO2 as the
electron acceptor: Ca. S. marisnigri (90% of total PDA-DAGs) and
Ca. S. baltica (74% of total PDA-DAGs) (Fig. 3B). In contrast, Ca. S.

baltica GD2, grown with NO�
3 , produced much less C5 PDA-DAGs

(27% of total PDA-DAGs), and mostly C7 PDA-DAGs, (73%)
suggesting a membrane lipid adaptation depending on electron
acceptors of this Sulfurimonas species. S. gotlandica GD1, unable
to grow with MnO2 as electron acceptor, produced predominantly
PDA-DAGs with a headgroup containing a longer alkyl chain (C7
and C11; 49% and 51% of total PDA-DAGs, respectively), while C5
PDA-DAGs were almost absent (0.1%). The PDA-DAGs composi-
tion of Ca. S. marisnigi SoZ1 grown with MnO2 and on S.
gotlandica GD1 grown with NO�

3 were potentially attributed to
their species specificities.
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A search using the Mass Spectrometry Search Tool (MASST)
of over 1000 public LC-MS datasets available in the GNPS
platform database (including lipidomes, metabolomes etc.) was
performed to see whether lipids structurally similar to the
PDA-DAGs detected in this study of Sulfurimonas cultures had

been detected in other organisms or environments [34, 37].
However, none of the databases showed matches to these
unique lipids, suggesting that either it was due to a database
bias or these novel components are potentially indicative of
this taxonomic group, because of their specific metabolism or
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the environmental adaptation to their niche (redoxcline).
Indeed, natural products containing a diazo group are rare
[42–44] and their presence in the headgroups of microbial
membrane lipids has not been reported before to the best of
our knowledge. Although their structure remains tentative, one
could speculate about their potential biosynthesis. There are
enzymes reported that convert an amine group into a diazo
functional group [42]. Primary alkyl amines can be enzymati-
cally produced from fatty acids [45] or by decarboxylation of
aliphatic amino acids [46]. The only truly enigmatic biochem-
ical reaction would be the coupling of the diazo functional
group with the phosphate moiety of the intact polar lipids.

Potential causes for membrane lipid adaptation with different
electron acceptors
Our results revealed marked changes in the composition of (i) the
short alkyl chain of the headgroup of PDA-DAG lipids and (ii) the
acyl moieties of the PE- and PG-DAGs of Ca. S. baltica GD2
depending on the available terminal electron acceptor. It is well
established from culture studies that temperature, pressure, pH,
growth rate and nutrients are key factors in regulating the fatty
acid and headgroup composition of membrane lipids of micro-
organisms [47–50]. In order to maintain membrane fluidity and
permeability at the cultured conditions where pressure is elevated
and temperature is low, microorganisms modify their fatty acid
composition by increasing the amount of unsaturation and
decreasing the chain lengths [21, 51, 52]. Such phenomena were
also observed in the natural environment such as the ocean and
global soils [53–55]. However, in studies of the eastern subtropical
South Pacific, it has been shown that the chain length and degree
of unsaturation can be an inherent biochemical property of a lipid
class, rather than a function of temperature or pressure [56]. The
sequential utilization of terminal electron acceptors is a function
of potential energy yield based on thermodynamics which results
in the mostly vertically progressive depletion of electron acceptors
from O2 to NO�

3 , Mn(IV), Fe(III) and SO2�
4 [57]. Our results suggest

that Ca. S. baltica GD2 produces shorter chain length lipids when
using MnO2 instead of NO�

3 for energy production. This may
indicate that Ca. S. baltica GD2 modify their membrane
permeability by changing their lipid composition to achieve
electron exchange under MnO2 conditions or due to the different
membrane proteins associated with lipids mediating these
reactions. To our knowledge, this is the first report of changes in
the microbial membrane lipid composition in response to
different electron acceptors. Further studies are required to screen
for the presence of PDA-DAGs in the natural environment and to
determine the biological mechanisms underlying their presence in
Sulfurimonas.

CONCLUSION
This study showed that the membrane lipid composition of a
Sulfurimonas species, Ca. S. baltica GD2, depends on the electron
acceptor used during culturing, either NO�

3 or MnO2. Differences
in the lipid composition of other two species, Ca. S. marisnigi
SoZ1 grown with MnO2 and on S. gotlandica GD1 grown with
NO�

3 were likely attributed to their species specificities. A range
of novel diazoalkyl phospholipids were tentatively identified by
using molecular network and high-resolution mass spectro-
metry. We observed that when carrying out MnO2-dependent
sulfur oxidation, Ca. S. baltica GD2 possesses shorter acyl (fatty
acid) chain lengths in its PE- and PG-DAGs and shorter alkyl
chains in its phosphatidyldiazoalkyl-diacylglycerols lipid polar
headgroups, compared to the ones produced when grown with
NO�

3 . These chain length modifications may be utilized by the
cells to maintain membrane homeostasis when using MnO2

instead of NO�
3 for energy production. Advances in untargeted

lipidomic approaches and the development of computational

tools will enable the more-efficient characterization of microbial
lipidome and the search for unknowns, leading to a better
understanding of their functions and metabolism under
different environmental conditions.
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