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Predicting the re‐distribution of antibiotic molecules caused by
inter‐species interactions in microbial communities
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Microbes associate in nature forming complex communities, but they are often studied in purified form. Here I show that
neighbouring species enforce the re‐distribution of carbon and antimicrobial molecules, predictably changing drug efficacy with
respect to standard laboratory assays. A simple mathematical model, validated experimentally using pairwise competition assays,
suggests that differences in drug sensitivity between the competing species causes the re‐distribution of drug molecules without
affecting carbon uptake. The re‐distribution of drug is even when species have similar drug sensitivity, reducing drug efficacy. But
when their sensitivities differ the re‐distribution is uneven: The most sensitive species accumulates more drug molecules, increasing
efficacy against it. Drug efficacy tests relying on samples with multiple species are considered unreliable and unpredictable, but
study demonstrates that efficacy in these cases can be qualitatively predicted. It also suggests that living in communities can be
beneficial even when all species compete for a single carbon source, as the relationship between cell density and drug required to
inhibit their growth may be more complex than previously thought.

ISME Communications; https://doi.org/10.1038/s43705-022-00186-5

INTRODUCTION
The notion of pure culture is fundamental in microbiology. The
isolation and growth of individual species is justified by the
seemingly unpredictability [1] of in vitro assays when cultures
contain multiple species. For antimicrobial sensitivity tests, this
means the same microbe can show different sensitivities to the
same drugs, depending on whether the cultures contain one or
multiple species [2–4]. But microbes live in communities in nature,
even when they are mostly competing for resources [5]. The
question is, therefore, whether co‐existing species can threaten
drug efficacy in vivo with respect to standard sensitivity tests.
Current data suggest they do [4, 6–9], notably reducing drug
efficacy, and the result is that infections containing multiple
species are more difficult to treat [10–12]—requiring alternatives
to antibiotics altogether [10, 12]—and waters more difficult to
treat [13]. This phenomenon has been associated with biofilm
formation [14, 15], stochastic phenotypic variations of isogenic
bacterial populations [14, 15], signalling molecules [14, 15] or
enzymatic degradation of antimicrobials [14, 15]. But questions
still remain about its predictability, and why, sometimes, drug
efficacy seems to increase [6].
Below I present a model that provides a passive physical

mechanism to explain and, perhaps more importantly, predict this
phenomenon. The model relies on Fick’s first diffusion law and
aims to understand how microbial growth changes the flow of
carbon and antimicrobial molecules, and, thus, influence drug
efficacy against all species exposed. Note that, when surrounded
by neighbours, species attain lower densities within a community
with respect to that in pure culture because carbon is shared

between multiple species [16]. Now, the model predicts that
carbon and antimicrobial molecules will distribute evenly among
all species exposed if they have similar sensitivity to the
antimicrobial. The result is relatively less drug molecules per cell
of each species, and therefore lower drug efficacy. If one or more
species are not sensitive to the antimicrobial, carbon molecules
still distribute evenly as it is an active process [17, 18] but drug
molecules are not: They flow back through diffusion from non‐
sensitive species into the environment, re‐exposing those that are
sensitive to the drug. Here, the model predicts relatively more
drug per cell of sensitive species resulting thus in higher drug
efficacy. These predictions were maintained across a range of
parameter values for carbon uptake rate, carbon affinity, and
biomass yield—fundamental components of the growth function
in microbes [19].
To validate these predictions, I measured the efficacy of

tetracycline against Escherichia coli Wyl in standard sensitivity
assays using pure cultures, cultures with equal proportion of
another microbe with similar drug‐sensitivity (Salmonella typhi-
murium), and cultures containing equal proportion of another
microbe now tolerant to tetracycline (Escherichia coli GB(c)).
Consistently with the theoretical predictions, inhibiting Wyl
required more tetracycline—with respect to pure cultures—in
the presence of equally sensitive neighbours and less tetracycline
in the presence of drug‐tolerant neighbours.

RESULTS
Consider n phenotypically distinct species competing for a limited
resource, C, and exposed to a drug, A, supplied at concentration Ae
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(0)= A0, cast as the following model:

_Sj ¼ Gj Cð ÞSj
zfflfflffl}|fflfflffl{

Growth

� Ij Að Þ
zffl}|ffl{

Inhibition

;
(1a)

_Aj ¼ �dAj
zffl}|ffl{

Decay

þφj Ae � Aj
� �

Sj
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

Fick0s Diffusion

;
(1b)

_Ae ¼ �dAe �
X
n

j¼1

φj Ae � Aj
� �

Sj; (1c)

_C ¼ �
X
n

j¼1

Uj Cð ÞSj
zfflfflffl}|fflfflffl{

C�Uptake

; (1d)

here _Sj and _Aj represent the density of individuals per unit volume
from species j and their content of drug A over time, respectively,
with initial conditions Sj(0)= Sj0, Aj(0)= 0, and C(0)= C0 > 0. The
uptake of resource C by individuals of species j can be modelled as
a saturating Monod function given that carbon transport is
mediated by enzymes in nature [17, 18]. This function is
proportional to the maximal uptake rate μj ,

Uj Cð Þ :¼ μj
C

Kj þ C
; (2)

where Kj is the half‐saturation parameter—the affinity of
individuals from species j for the limited resource C is therefore
given by 1/Kj. The growth rate of each species, at a given resource
concentration is denoted by Gj(C):= Uj(C) · yj, where yj is the
biomass yield per unit of resource in individuals from species j.
Note that, for simplicity, I assume that yj does not vary between
pure and mixed culture conditions. Biomass yield depends on
resource availability [19] and competition for a common carbon
source will likely change yj in all competing species, albeit these
changes can be difficult to measure [20]. Their growth inhibition
by drug A is described qualitatively by the Hill function [21].

Ij Að Þ :¼ 1

1þ Aj=κj
� �α ; where 0 � Ij Að Þ � 1 (3)

Scaling the growth function Gj(S) similarly to bacteriostatic
drugs [22]. This function is dimensionless and has two parameters.
First, α is a dimensionless Hill coefficient which characterises the
co‐operativity of the inhibition. And second, κj is the affinity of
drug A for its target. It can be derived from the drug concentration
required to halve the maximal growth rate, so that A50= 1/
κj→ κj= 1/A50 [21]. For the sake of simplicity, I assumed that drug
A diffuses from the environment into cells of species j, and vice
versa, following Fick’s first diffusion law [23] with a diffusion
coefficient φj ; and part of A being lost to chemical stability [24] at a
rate d. This is not an unreasonable assumption given that
antimicrobial molecules can indeed diffuse through cell

Fig. 1 S1 drug sensitivity profiles in pure and mixed culture growth conditions alongside species S2. A Growth of species S1, with different
parameter values (k1 μ1, and y1), after 24 h of growth in the presence of different antibiotic concentrations. I aggregated the resulting dose‐
response profiles (blue) to create a density map from low predicted cell density (white) to high predicted cell density (black). B–D IC90,
antibiotic concentration inhibiting 90% (IC90) the growth predicted without drug, resulting with different parameters values for the half‐
saturation parameter k1 (B), maximal carbon up‐take μ1 (C), or biomass yield y1 (D) in eq. 1 when species S2 is drug‐sensitive. The IC90 for
species S1 growing as pure cultures is shown in grey, and growing in mixed culture with S2 are shown in black. The parameter values for
species S2 were fixed at a value noted by a black arrow on the y‐axis, followed by a dotted black line. E–G Change in IC90, as in Fig. (B–C), when
the competing species S2 is not drug‐sensitive (resistant or tolerant). Parameter values used can be found in Table 1.

C. Reding

2

ISME Communications



membranes facilitated by membrane proteins [25]. Consequently,
drug A is released in active form following the death of target and
non‐target species.
For my first computation I set the number of species j= 2, to

facilitate later experimental validation, where I1(A)= I2(A) and
G1(C)= G2(C). Thus, individuals from both species are sensitive to
A and phenotypically identical. Given Eq. 3, the density of
individuals from either species as pure cultures, after 24 h of
incubation, declines with higher drug concentrations consistently
with standard clinical protocols [26] (Fig. 1A). To allow experi-
mental validation, I calculated the concentration of A inhibiting
the growth of the pure cultures by 90% (IC90) as commonly used
in clinic laboratories [27–29]. The drug sensitivity of each species
depends on the values for the parameters K, μ, and y of Eq. 2
(Fig. 1B–D, grey), with values that increase the density of
individuals resulting in higher IC90 (details about the parameter
values used can be found in Table 1). This is consistent with the
inoculum effect [30] (Fig. S1), whereby sensitivity tests that use
larger inocula also report higher minimum inhibitory concentra-
tions, hence the standardisation of these clinical assays.
Figure S1 shows explicitly the theoretical relationship between

IC90 and cell density of species S1 at the IC90 in pure culture, direct
and non‐linear consistently with prior data [30–32]. For para-
meters μ and y, for example, the resulting change in IC90 with

respect to the parameter values is nonmonotone, which means
certain values for these parameters can maximise susceptibility for
drug A. The neighbouring species shows similar, albeit not
identical, changes in sensitivity (Fig. S2). This non‐linearity is
caused by cultures not reaching the equilibrium, for all drug
concentrations and parameter values tested, within the standard
24 h incubation times. If, in the model, cultures are allowed to
grow for longer and reach equilibrium, the IC90–cell density profile
can change (Fig. S1B). This phenomenon is exacerbated if both
species grow in mixed culture conditions, where both become
phenotypically more tolerant to drug A (Fig. 1B–D, black). If I were
to target, say, individuals from species S1, doing so when the
species is surrounded by S2 would require more drug. This is the
case, for example, of pancreatic ductal adenocarcinoma treated
with gemcitabine when bacteria grow within the tumour’s
microenvironment [33]. More generally, genotypes analog to S1
should increase their drug tolerance when they are surrounded by
similarly sensitive species. Despite the freedom in parameter
values in the model, this prediction is robust to changes in
biomass yield (yj) or maximal carbon uptake (μj) of species S2
(Fig. S3).
To test this hypothesis, I mixed equal proportions (cell/cell) of

Escherichia coliWyl and Salmonella typhimurium SL1344 in minimal
media supplemented with different concentrations of tetracycline
(see Methods). Note that the inoculum effect is not linear with
respect to the size of inocula [31, 32] unless the difference
between inocula is tenfold or more, which is not the case here.
Tetracycline can diffuse passively into cells of both gram‐negative
species [34], who also have similar sensitivity to this antibiotic:
0.232 ± 0.003 and 0.276 ± 0.016 μg/mL of tetracycline (mean
IC90 ± 95% confidence, with n= 8 replicates, see Figs. S2 and
S4). This approximates to I1(A) ≈ I2(A), as laid out by the theory
above. The chromosome of E. coli Wyl carries yfp, gene encoding a
yellow fluorescence protein (YFP), so I tracked its density in mixed
culture conditions. Consistently with Eq. 1a–d, the bacterium was
around 23% more tolerant to tetracycline when it grew in mixed
culture with S. typhimurium (Mann–Whitney U‐test
p= 1.554 × 10−4, ranksum= 36 with n= 8 replicates, Fig. 2A).
Next, I explored in the model the case where individuals from

both species have different sensitivities to drug A (I1(A) ≠ I2(A)).
This scenario is akin to pathogens such as C. difficile growing
alongside human cells [35] where the latter are unaffected by the
drug (I2(A) ≈ 1). The model now predicts a subset of values for K, y,

Table 1. Model parameters for Eqs. 1a–d, 2 and 3.

Parameter Description Value

µj Maximal carbon uptake rate 1.25mg/OD/h

Kj Half-saturation constant 0.5 mg/mL

yj Biomass yield 0.65 OD/mg

d Drug degradation rate 10−4/h

κj Affinity of drug A for species
type j

0.1 mL/µg

φj Diffusion coefficient 10 µL/OD/h

α Hill coefficient 2 (dimensionless)

A0 Initial drug concentration 2 µg/mL

C0 Initial carbon concentration 2mg/mL

S1(0) Inoculum size for species S1 10−3 OD

S2(0) Inoculum size for species S2 10−3 OD

Fig. 2 Changes in drug efficacy against sensitive Escherichia coli Wyl are consistent with theoretical predictions. A, B Change in
normalised density of Escherichia coli Wyl as a function of tetracycline concentration, when Wyl grows in mixed culture with tetracycline-
sensitive Salmonella typhimurium (A) and tetracycline-resistant Escherichia coli GB(c) (B). The change in density of Wyl growing in mixed culture
is shown in black, with grey showing the change in density in pure culture. The IC90 in each condition is shown as dots, red for mixed culture
conditions and dark grey for pure culture, connected by a dotted line. Non-parametric, Mann–Whitney U-test between IC90s is shown in the
inset. Raw data is shown as dots, whereas the boxes represent median (centre of the box), 25th, and 75th percentile of the dataset. The
whiskers show the most extreme data points that are not outliers. C Theoretical change in S1-cell density with increasing antibiotic
concentration in pure (grey) and mixed (black) culture conditions with neighbours that have different drug sensitivity. The plot represents the
case where both species have different carbon uptake (μj), and differences in IC90 are represented as shown in (A, B) for consistency. Insets in
(A and B), and raw data for relative drug content can be found in Fig. S4.

C. Reding

3

ISME Communications



and μ that make S1 more sensitive to the drug in the presence of
individuals from species S2 (Fig. 1E–G), whether S2 is not affected
by drug A or is resistant to it for example through efflux pumps
[36] (see Supplementary Text). To test this prediction, I mixed
equal proportions (cell/cell) of two constructs of Escherichia coli
with different sensitivities to tetracycline. One construct is Wyl,
used above, who is sensitive to the antibiotic. The other construct
is GB(c), harbouring a non‐transmissible plasmid carrying the gene
tet(36) [37] and, therefore, resistant to the drug. Tetracycline binds
to the bacterial ribosome, inhibiting protein synthesis [38], and
tet(36) provides ribosomal protection against tetracycline [37]
without degrading the antibiotic. The IC90 for this construct was
6.106 ± 0.272 μg/mL of tetracycline (mean IC90 ± 95% confidence
with n= 8 replicates). Now, I1(A) « I2(A) satisfies the assumption
above. The IC90 for E. coli Wyl was 0.232 ± 0.003 μg/mL of
tetracycline as pure culture. Growing alongside drug‐resistant
GB(c), however, it was 0.112 ± 0.003 μg/mL (Fig. 2B).
It is noteworthy to highlight the two processes at play. On the

one hand, the growth of each species is limited due to
competition for the same resource—also known as competitive
suppression [16]. It could be conjectured that the observed
variations in IC90 are caused by variations in growth, with respect
to pure culture conditions, caused by competitive suppression.
Indeed, E. coli Wyl grows less, with respect to pure culture
conditions, in the presence of either competitor as Fig. S5
illustrates. Within this difference, Wyl grows more in the presence
of tetracycline‐resistant E. coli GB(c), and yet, drug efficacy against
Wyl was highest in the presence of this competitor. Now, the
relative abundance of each species during the competition
determines the flow and distribution of antimicrobial molecules
given they diffuse passively following Fick’s law. Since glucose is
actively transported into the cytoplasm, even against concentra-
tion gradients [17, 18], the model predicts virtually no effect on
the carbon uptaken by each species as Fig. S6 illustrates. In other
words, the carbon source C is depleted more rapidly when more
species use it, limiting the growth of each competing species with
respect to pure culture conditions.
On the other hand, the sensitivity to drug A determines the

fraction of carbon that gets used by each species. When
I1(A) ≈ I2(A), Eq. 1a–d suggest that individuals from both species
accumulate similar amounts of drug A (Fig. S7A–C). This means
that, analog to the carbon, drug A is depleted more rapidly,
limiting the exposure of the target species S1. When combining
both processes for carbon and drug molecules, the result is
relatively fewer drug molecules per cell in both species with
respect to that predicted in pure culture. However, when
I1(A) ≠ I2(A), by virtue of different affinities of drug A for each

species (κ1 ≠ κ2), the accumulation of drug molecules is uneven
(Fig. S7D–I). Soon after the exposure to drug A, the species S2, with
the least affinity for it, and the environment are in equilibrium. In
other words, the number of drug molecules that diffuse into S2‐
cells are the same that diffuse from these cells back to the
environment. These molecules, in turns, are accumulated by the
species with the most affinity for the drug. Here, integrating both
processes results in more molecules per cell in the species with
highest drug‐sensitivity (S1).
To verify this hypothesis, I estimated the content of tetracycline

in E. coliWyl by dividing the bacterium’s culture density, measured
in relative fluorescence units to allow tracking in mixed culture
conditions, by the concentration of tetracycline defining its IC90.
The estimates closely resemble the theoretical predictions in
Fig. 2C: E. coli Wyl contains ~20% less tetracycline growing next to
Salmonella typhimurium and 65% more tetracycline growing
alongside drug‐resistant GB(c) (Fig. 3).

DISCUSSION
Why do microbes form communities? It was recently [5] suggested
that bacteria rarely work together based on the biological
interactions between them. But fundamental physics could draw
a different picture, and help answer the question. If, as my study
suggests, two species growing together can tolerate tetracycline
better than they would otherwise do in isolation, it is not
unreasonable to hypothesise that forming such communities can
help diminish the effect of toxic molecules in nature. For example,
to grow closer to an antibiotic‐producing microorganism and
benefit from the carbon available or tolerate chemotherapies. Or,
indeed, taking over a particular niche in case of drug‐tolerant
microbes without producing specialised molecules such as
bacteriocins [39]. All as a by‐product of a physical law.
It should be stressed that my theory is not specific to Escherichia

coli and tetracycline, so I anticipate that other species and
molecules obey the same principle described here. An example
can be found in the interactions between tumours and bacteria,
and the resulting tolerance to chemotherapies [8]; or between
microbial pathogens [6]—albeit reliably predicting the outcome is
still challenging [5]. Now, there are limitations in the model some
of which are imposed by experimental conditions. For simplicity,
the Fick’s term in Eq. 1b and c has no spatial derivative as it would
be expected. However, during the experiment I shook the cultures
to homogenise the distribution of tetracycline and nutrients. Here
the aforementioned derivatives can be approximated as the
difference in drug molecules between environment and cyto-
plasm. The model also assumes reliance on a single carbon source.

Fig. 3 Relative content in drug molecules changes as predicted by model. A Difference in drug content per S1-cell at the IC90 between pure
culture and mixed culture conditions. Positive and negative values denote more drug in S1-cells in pure and mixed culture conditions,
respectively. Lack of difference is shown as a horizontal, dotted line. B Experimental estimation of the difference in relative cell content in the
bacterium Escherichia coli Wyl. Raw data for Wyl is shown as red dots. Lack of difference is shown as a horizontal, black line and the 95%
confidence of the lack of difference as a horizontal, dotted line.
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In reality, however, I used two: Glucose as the main carbon source,
and casamino acids. The latter can indeed be used as a carbon
source when glucose is scarce [40]. The concentration I used (0.1%
w/v) was low enough to enable the growth of the microorganisms
without showing diauxic growth dynamics typical from cultures
that are sustained on multiple carbon sources [41]. While
speciation might indeed occur over time to avoid competition
[42], is it really important to my conclusions?
The model that I present here is, like all models, wrong in some

ways but also useful in others. The goal of my study is to
demonstrate that growing alongside other microorganisms can
predictably change the efficacy of a drug used against one—or
against all—of them. It is, from the model standpoint, indifferent
which carbon type is used to grow so long the relative frequency
of the microbes surrounding the target is sufficiently high. Figure 1
shows the changes in IC90 are consistent regardless of the
differences in growth parameters, akin to those existing between
microorganisms using different carbon sources [43] or metabolic
efficiencies [19]. Moreover, the model and experiment use two
species mixed in the same proportion for the purpose of
pinpointing the physical mechanism. In nature, communities are
more complex and this phenomenon is likely to be more nuanced,
if not even stronger, based on the ratio between the number of
cells of the target species and its neighbours’.
My contribution with this model is to demonstrate that,

contrary to current belief, the change in drug efficacy derived
from the growth of other microorganisms is not arbitrary. There is,
at least, one simple physical mechanism behind the changes in
efficacy and, therefore, the changes can be qualitatively predicted
—a necessary step if competition is to be harnessed [5] and used
either in the clinic or treatment of pollutants in the soil.

METHODS
Media and strains
The strains of Escherichia coli GB(c) and Wyl were a gift from Remy Chait
and Roy Kishony, and non‐labelled Salmonella typhimurium SL1344 a gift
from Markus Arnoldini and Martin Ackermann. Experiments were
conducted in M9 minimal media supplemented with 0.4% glucose (Fisher
Scientific #G/0500/53) and 0.1% casamino acids (Duchefa #C1301.0250),
supplemented with tetracycline. M9 minimal media (50X) was made by
mixing equal proportions (vol/vol) of two parts, part A and part B, and
diluted accordingly to 1X. Part A (50X) contains 350 g/L of K2HPO4 (Sigma
#P3786) and 100 g/L of KH2HPO4 (Sigma #P9791); whereas part B (50X)
contains 29.4 g/L of trisodium citrate (Sigma #S1804), 50 g/L of (NH4)2SO4

(Sigma #A4418), and 10.45 g/L of MgSO4 (Fisher Scientific #M/1050/53). I
made tetracycline stock solutions from powder stock (Duchefa #0150.0025)
at 5 mg/mL in deionised water. Subsequent dilutions were made from this
stock and kept at 4 °C.

Sensitivity assay
Using a 96‐pin replicator, I inoculated a 96‐well microtitre plate, containing
150 μL of media supplemented with 0–0.5 μg/mL of tetracycline (for E. coli
Wyl and S. typhimurium) or 0–15 μg/mL (for E. coli GB(c)), with 1 μL from an
overnight culture of each strain (~ 2·108 cells) to measure drug sensitivity
in pure cultures. For sensitivity assays of Wyl in mixed culture conditions I
inoculated the microtitre plate, containing 150 μg/mL of media supple-
mented with 0–0.5 μg/mL of tetracycline, with equal number of cells from
two overnight cultures from Wyl and S. typhimurium using 8 technical
replicates for each drug concentration. For the competition between Wyl
and GB(c), however, I used 0–0.2 μg/mL to measure drug efficacy more
reliably given the increased drug efficacy observed against Wyl. Figure S8
illustrates that mixing 1 μL of each species, therefore doubling the
inoculum size with respect to pure culture conditions, or mixing 0.5 μL to
maintain the same inoculum size has no impact on the sensitivity assays
consistently with the nonlinear relationship reported between inoculum
size and drug efficacy [31, 32].
I incubated the microtitre plate at 30 °C in a commercial spectro-

photometer, shaking at 750 rpm to ensure uniform mixing, and measured
the optical density of each well at 600 nm (OD600), yellow fluorescence for
Wyl (YFP excitation at 505 nm, emission at 540 nm), and cyan fluorescence

for GB(c) (CFP at 430 nm/480 nm) every 20min for 24 h. I defined the
minimum inhibitory concentration as the tetracycline concentration able
to inhibit 90% of the growth observed in the absence of antibiotic after the
24 h incubation period.

Culture readings
Fluorescence protein genes were constitutively expressed with an
approximately constant fluorescence to optical density ratio (Fig. S9).
The number of colony forming units is positively correlated with optical
density measured at 600 nm (OD600) (Fig. S10). Thus, I normalised
fluorescence readings with respect to optical density readings, using the
ratio optical density to fluorescence that I in pure culture conditions, to
track the relative abundance of Wyl in mixed culture conditions. This
metric is referred to as ‘Estimated optical density’ or ‘eOD’ in the main text.
Time series dataset were blank corrected prior to calculating the minimum
inhibitory concentration.

DATA AVAILABILITY
Data in Figs. 2B, 2C, and 3B can be found in a supplementary spreadsheet. A non‐
parameterised, python3 implementation of Eq. 1a–d is hosted in https://github.com/
rc‐reding/papers/tree/master/MicrobCommunities_ISMECOMMS_2022 with the para-
meter values used in the paper being listed in Table 1.
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