:ISME

ARTICLE

www.nature.com/ismecomms

W) Check for updates

Characterization and genome analysis of a psychrophilic
methanotroph representing a ubiquitous Methylobacter spp.
cluster in boreal lake ecosystems
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Lakes and ponds are considered as a major natural source of CH, emissions, particularly during the ice-free period in boreal
ecosystems. Aerobic methane-oxidizing bacteria (MOB), which utilize CH4 using oxygen as an electron acceptor, are one of the
dominant microorganisms in the CHy4-rich water columns. Metagenome-assembled genomes (MAGs) have revealed the genetic
potential of MOB from boreal aquatic ecosystems for various microaerobic/anaerobic metabolic functions. However, experimental
proof of these functions, i.e., organic acid production via fermentation, by lake MOB is lacking. In addition, psychrophilic (i.e., cold-
loving) MOB and their CH,-oxidizing process have rarely been investigated. In this study, we isolated, provided a taxonomic
description, and analyzed the genome of Methylobacter sp. S3L5C, a psychrophilic MOB, from a boreal lake in Finland. Based on
phylogenomic comparisons to MAGs, Methylobacter sp. S3L5C represented a ubiquitous cluster of Methylobacter spp. in boreal
aquatic ecosystems. At optimal temperatures (3-12 °C) and pH (6.8-8.3), the specific growth rates (u) and CH, utilization rate were
in the range of 0.018-0.022 h™" and 0.66-1.52 mmol I~ ' d~", respectively. In batch cultivation, the isolate could produce organic
acids, and the concentrations were elevated after replenishing CH4 and air into the headspace. Up to 4.1 mM acetate, 0.02 mM
malate, and 0.07 mM propionate were observed at the end of the test under optimal operational conditions. The results herein
highlight the key role of Methylobacter spp. in regulating CH, emissions and their potential to provide CH4-derived organic carbon
compounds to surrounding heterotrophic microorganisms in cold ecosystems.

ISME Communications; https://doi.org/10.1038/s43705-022-00172-x

INTRODUCTION

Methane (CH,) is one of the major natural and anthropogenic
greenhouse gases, with a global warming potential of approxi-
mately thirty times higher than that of CO, over a 100-year time
horizon [1]. Lakes, one of the major natural sources of CH,
emissions, have recently gained interest as they account for
~6-7% of the total natural emissions [2, 3]. In particular, the
emissions from boreal and arctic lakes are elevated during the ice-
free period than at other times of the year [3-6].

In the lake ecosystems, CH, is generally produced by methano-
genic archaea in anoxic sediments/layers and eventually emitted
upwards toward the water-atmosphere interface. During CH,
traveling along the lake water column, various studies have reported
the function of aerobic methane-oxidizing bacteria (MOB) as the key
factor in controlling these CH, fluxes at the oxic-anoxic interfaces in
boreal and arctic lake ecosystems [7-11]. MOB require oxygen as an
electron acceptor to oxidize CH4 for biomass formation and CO,
generation. During hypoxic (i.e., oxygen-limiting) conditions, MOB
may shift the cellular metabolism toward fermentation to stabilize
their cellular redox potential, either by generating various extra-
cellular organic acids [12] or using nitrate as the terminal electron
acceptor via anaerobic respiration [13]. The metabolism of MOB is of
great ecological importance as the produced by-products (e.g.,

methanol, formaldehyde, and organic acids) can serve as growth
substrates for surrounding methylotrophic and heterotrophic
microorganisms [14, 15]. Furthermore, MOB interacting with a high
heterotroph richness in a coculture system could also enhance CH,
oxidation as the cross-feeding mechanism might help to reduce the
toxic compounds’ inhibitory effect on MOB [14]. Studies on
implementing the produced extracellular by-products as biofuel
precursors or as industrial platform chemicals also imply the
biotechnological importance of MOB [16-18].

The study of metagenome-assembled genomes (MAG) and
experimental observations have revealed that MOB in northern
lakes have the genetic potential for denitrification and fermenta-
tion, resulting in organic acid production [7, 19]. During our
previous study on genomic characteristics of boreal lake water
column MOB, an attempt to demonstrate organic acid production
by MOB in northern lakes was conducted via experimental
incubation of natural lake water samples [7]. However, it was not
successful due to the low concentrations of organic acids (results
not shown in [7]). This suggests that the study on fermentation by
lake MOB requires the cultivation of enrichment or obtaining
isolates of lake MOB. Up to now, CH,4 oxidation metabolism in cold
conditions, including psychrophilic conditions (0-20 °C), has rarely
been studied using enrichment or isolates of MOB [20, 21].
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The study on lake MOB isolates would benefit in understanding
their function, environmental distribution, and potential to
broaden the biotechnological prospects of MOB. Herein, we
focused on isolation, characterization, whole genome assembly,
and evaluation of organic acid production of a psychrophilic MOB
strain isolated from a boreal lake.

MATERIALS AND METHODS

Sampling site

Lake water samples from a small humic and O,-stratified lake, Lake
Lovojarvi in southern Finland (61° 04'N, 25° 02E), were used as the isolation
source [22]. The sampling was conducted at the hypoxic layer (5.75m
depth, temperature 5.2°C, pH 6.5, and dissolved O, concentration (DO)
<0.3mgl™") (Supplementary Fig. S1). Lake water samples were pre-filtered
through a 50 um mesh to remove larger plankton. The filtered water was
collected in 250 ml glass bottles containing 20% CH,4 and 80% air (v/v) and
stored at 5 °C prior to enrichment.

Enrichment and isolation

In this study, nitrate mineral salts (NMS) medium modified from DSMZ
medium 921 with an initial pH of ~6.80 (Supplementary Table S1) was used
as the liquid growth medium of MOB. The solid medium consisted of the
NMS liquid medium supplemented with 1.5% Noble agar (Agar-Agar
SERVA powder analytical grade, Germany). For MOB enrichment, 0.5 ml
lake water was added into a 25 ml sterile serum bottle containing a 5 ml
sterile NMS medium. The bottle was sealed with sterile butyl rubber
stoppers and aluminum crimps, and the headspace was replaced with 20%
(v/v) of CH, prior to incubating in static conditions at 5 °C for 42 days. The
enriched culture was sub-cultured thrice in the NMS medium prior to
streaking onto the NMS agar medium. Agar plates were incubated in an
air-tight chamber containing ~20% CH, and 80% air (v/v) in the headspace
and placed at 5°C for ~60 days. Colonies were picked under a stereo
microscope and re-streaked onto NMS agar medium. Heterotroph
contamination was checked by streaking colonies on nutrient-rich agar
medium (0.5% tryptone, 0.25% yeast extract, 0.1% glucose and 2% agar).
Culture purity was confirmed when one cell type was observed under a
light microscope, and growth was absent on both nutrient-rich and NMS
media without CH, supplementation. The culture purity was also
confirmed by high-throughput full-length 16S rRNA gene amplicon
sequencing using the Pacbio Sequel platform (Novogene Co. Ltd., Beijing,
China).

Biochemical characterization

The growth tests at different pH, temperatures, and nitrogen sources
were conducted in 27 ml sterile glass tubes containing 5 mI NMS medium
and an initial culture of optical density at 600 nm wavelength (ODgoonm)
of 0.02. The tubes were subsequently sealed with sterile butyl rubber
stoppers and aluminum crimps. The initial headspace gas composition of
20% CH,4 and 80% air (v/v) was established by replacing 20% (v/v) of the
air headspace with pure CH,. The pH test was performed in triplicates (pH
4.7-8.3) at 5 °C under static conditions. The growth temperature test was
conducted in duplicate using a temperature-gradient incubator (Terratec
Corporation, Hobart, Australia), set in the range of 0-26 °C (at pH 6.8). In
the different nitrogen source tests, NMS and ammonium mineral salts
(AMS) media (Supplementary Table S1) were used as nitrate and
ammonium sources, respectively, to cultivate the isolate. The test was
conducted in duplicate. In addition, the total cellular carbohydrate
content during the growth in NMS and AMS media was measured at the
end of the test. All tests were incubated at static conditions for
~19-21 days. CH, and CO, compositions in the headspace and ODggonm
were monitored daily during weekdays, while O, in the headspace and
organic acid concentrations in the liquid medium were measured at the
beginning and end of the test. The growth rates (u) were obtained from
linear regression of the plot between Log;, optical density versus
incubation time. To test nitrogen (N,) fixation, the isolate was incubated
in 25 ml serum bottles containing sterile nitrate free-NMS liquid medium.
The headspace (v/v) was supplemented with (i) 20% CH,; + 80% N, and
(i) 20% CH;+5% O,+75% N, for anaerobic and microaerobic
conditions, respectively. The bottles were sealed with sterile butyl rubber
stoppers with aluminum crimps and incubated statically at ~5 °C for over
30 days.
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DNA extraction and identification

Genomic DNA (gDNA) extraction was performed using GeneJET genomic
DNA purification kit (Thermo Fisher Scientific,c USA). The gDNA was
quantified using a Qubit 3.0 Fluorometer and a dsDNA HS Assay Kit
(Thermo Fisher Scientific, USA). PCR and amplicon sequencing (Sanger
Sequencing method) of the 16S rRNA gene were performed using the
identification service offered by Macrogen (Amsterdam, The Netherlands),
using primer pairs 27F (AGAGTTTGATCMTGGCTCAG) and 1492R (TACGGY-
TACCTTGTTACGACTT) for amplification and primer pairs 785F (GGATTA-
GATACCCTGGTA) and 907R (CCGTCAATTCMTTTRAGTTT) for sequencing. A
16S rRNA gene-based phylogenetic tree was constructed in Mega X using
the maximume-likelihood algorithm (generalized time-reversible model)
with 100 bootstraps [23]. Besides reference strains, the tree was
supplemented with 16S rRNA gene sequences of previously studied
environmental MAGs representing Methylobacter spp. of lakes and ponds
of boreal, subarctic, and temperate areas [24, 25]. For the dataset on
multiple lakes and ponds, we chose the representative MAGs of
metagenomic Operational Taxonomic Units [mOTUs, classified by Buck
et al. [24] at 95% average nucleotide identity cutoff]. The 16S rRNA genes
were extracted from MAGs using barrnap (version 0.9) [26].

Genome sequencing, assembly, and annotation

Library preparation and sequencing for long reads (PacBio Sequel SMRT
Cell TM v2) and short reads (lllumina NovaSeq 6000 platform) were done
by Novogene Co. Ltd. (Beijing, China) as previously described by Rissanen
et al. [22]. The genomes were de novo assembled using a hybrid assembly
strategy in Unicycler (version 0.4.8) with default parameters and “-mode
normal” [27]. The assembled genome was annotated using the NCBI
Prokaryotic Genome Annotation Pipeline [28-30]. Key functional genes
and metabolic pathways of the annotated genome were also predicted
and reconstructed using Kyoto Encyclopedia of Genes and Genomes
(KEGG) mapping tools [31] with KofamKOALA (https://www.genome.jp/
tools/kofamkoala/; accessed 1 February 2022) [32].

The genome-wide phylogenetic tree was built from protein alignments
generated in PhyloPhlAn (version 3.0.58; PhyloPhlAn database including
400 universal marker genes and “-diversity low” - argument) [33] using the
maximum-likelihood algorithm (PROTCATLG — model) with 100 bootstrap
replicates in RAXML (version 8.2.12) [34]. Similar to 16S rRNA gene-based
phylogenetic tree analysis as explained above, this analysis was
supplemented with environmental MAGs representing Methylobacter
spp. from lakes and ponds of boreal, subarctic, and temperate areas
[24, 25], as well as from temperate wetland [10]. The MAGs were also
functionally annotated using Prokka (version 1.13.3) [35] and KofamKOALA,
as explained above [32]. Average nucleotide identities (ANI) of the genome
with the reference genomes and MAGs were computed using fastANI
(version 1.32) [36], while average amino-acid identity (AAl) was calculated
using CompareM (version 0.1.2) (https://github.com/dparks1134/
CompareM). Digital DNA-DNA hybridization (dDDH) for genome-based
taxonomic classification was calculated using the Type Strain Genome
Server (TYGS) online service (https://tygs.dsmz.de/; accessed 28 February
2022) [37]. Furthermore, pmoA sequences coding for the beta subunit of
particulate methane monooxygenase of the MAGs, genome, and reference
genomes were subjected to phylogenetic tree analyses using the
neighbor-joining method (Jones-Taylor-Thornton model) with 500 boot-
straps in Mega X [23].

Evaluation of organic acid production by the isolate

The organic acid production potential of the isolate was evaluated in batch
experiments performed in 120 ml sterile serum bottles. Prior to sealing
with sterile butyl rubber stoppers and aluminum crimps, 15 ml of NMS
medium (pH 6.8) was added to the bottles. The initial culture inoculated
into the medium and CH, concentration in the headspace were previously
described in Section Biochemical characterization. The experiment was
conducted in six bottles and incubated at 10.0 + 1.0 °C in static conditions
for 20 days. On day 20, the experiment was divided into two sets, including
the first set (in triplicates) replenished with 20% CH,4 + 80% air (v/V) in the
headspace, whereas another set (in triplicate) was used as a control
without replenishment. The incubation was subsequently continued under
similar conditions until day 33. In this study, organic acid production,
ODgoonm: PH in the liquid medium, and the gas composition in the
headspace were periodically monitored every 2 or 3 days. However, in the
control test without the replenishment, the gas composition in the
headspace was monitored only at the beginning and end of the
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experiment. NMS medium without cells and an inoculated culture without
CH,4 and air addition were also used as controls.

Analytical methods

Cell growth was determined using an Ultrospec 500 pro spectro-
photometer (Amersham Biosciences, UK). The medium pH was measured
using a pH 330i portable meter (WTW, Germany) equipped with a
SlimTrode electrode (Hamilton, Germany). To determine the organic acid
composition, the cultures centrifuged (15 min at 2700 x g) and filtered
through a 0.2 um membrane (Chromafil® Xtra PET 20/25, Macherey-Nagel,
Germany) were analyzed using a Shimadzu high-performance liquid
chromatography equipped with Rezex RHM-Monosaccharide H™ column
(Phenomenex, USA) as described in Okonkwo et al. [38]. Gas composition
in the headspace (i.e., CH,4, CO,, and O,) was measured using a Shimadzu
gas chromatograph GC-2014 equipped with a thermal conductivity
detector and a Carboxen-1000 60/80 column (Agilent Technologies, USA)
as described in Khanongnuch et al. [16]. To obtain further insight into the
distribution of carbon in the cell biomass, the total carbohydrate content
was evaluated using the phenol-sulfuric acid method [39]. The standard
curve of the test was prepared using known glucose concentrations.

Statistical analysis

The specific growth rate, CH, utilizing rate, and organic acid concentration
from different experimental conditions were statistically compared using
one-way analysis of variance (ANOVA) (Minitab16.0, USA) with Tukey's
multiple comparison tests. The significance level was the 95% confidence
interval, where a p value < 0.05 was considered statistically significant.

RESULTS

Isolation, characterization, and classification

The isolate was obtained from a single colony forming on NMS
agar media after being incubated statically at ~5°C for over
60 days. The isolate colonies were tiny, < 0.1 mm in diameter,
cream, round and entire (Supplementary Fig. S2a). The cells were
small and non-motile cocci (1.0-1.8um in diameter) that
reproduced by binary fission (Supplementary Fig. S2b).

For 16S rRNA gene-based identification, the isolate showed
99.5% and 98.9% similarity to Methylobacter psychrophilus Z-0021
and Methylobacter tundripaludum SV96 isolated from tundra soil
[40] and arctic wetland soil [41], respectively (Fig. 1; Supplemen-
tary Table S2). The strain formed a separate cluster in the 16S rRNA
gene tree with M. psychrophilus and MAGs representing MOB from
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Methylotuvimicrobium
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9
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MAG Methylobacter sp. KS41 (GCA 002862125.1)
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lakes and permafrost thaw ponds (Fig. 1). The isolate was classified
in the class Gammaproteobacteria, order Methylococcales, the
family Methylococcaceae, and genus Methylobacter. Based on the
pmoA gene-based analysis, the isolate was closely clustered with
M. psychrophilus and MAGs representing MOB in boreal lake
ecosystems (Supplementary Fig. S3).

Table 1 shows the characteristics of Methylobacter sp. S3L5C
compared to other psychrophilic and psychrotolerant methano-
trophic species. During the cultivation, Methylobacter sp. S3L5C
grew only in the presence of CH, and O,. Growth was not
observed in the N,-fixation test or under anaerobic conditions, but
the cells were still viable in those conditions, even after over 1 year
of incubation. The strain grew well at 3-12 °C, but the cell growth
was not observed above 20°C, demonstrating its psychrophilic
nature (Fig. 2a, b). Methylobacter sp. S3L5C could grow well in the
pH range of 6.0-8.3, and cell growth was not observed at pH 4.6
(Fig. 2d). At the optimal temperatures (3-12°C) and pH (6.8-8.3),
the specific growth rates (u) and CH, utilization rate were in the
range of 0.018-0.022 h™" and 0.66-1.52 mmol I' d™ ", respectively
(Fig. 2a, b, d, e). Formate (0.04-030mM) and acetate
(0.01-0.24 mM) were identified as the major liquid metabolites
in all the tested conditions where the strain growth was present
(Fig. 2¢, f). The trend of acetate production showed that the
increased concentration corresponded with the increase in cell
growth (Fig. 2¢, f).

Methylobacter sp. S3L5C could utilize both nitrate and
ammonium as the nitrogen source. The specific growth rate in
the AMS medium (u=0.040h"") was higher than in the NMS
medium (u=0.020 h~"), whereas the CH, utilization rate was
similar in both NMS and AMS media (0.52-0.88 mmol I~ 'd™")
(Fig. 3a, b). In the case of liquid metabolites, acetate and formate
were present in the NMS medium; however, only acetate was
detected from the cultivations in the AMS medium (Fig. 3c).
Furthermore, the total carbohydrate content in biomass cultivated
in the NMS medium was 0.91 £+ 0.04 mM glucose equivalent which
was significantly higher than in the AMS medium (0.31 + 0.09 mM
glucose equivalent) (p value < 0.001) (Fig. 3d).

Genome features of Methylobacter sp. S3L5C
Methylobacter sp. S3L5C genome contained a single chromosome
of 4,815,745 bp (G + C content, 43.3%) consisting of 4176 protein-

Methylobacter cluster 2 (M. tundripaludum strains: SV96, 21/22, 31/32, OWC-DMM & OWC-G53F; Ca. M. oryzae KRF1)
Strain S3L5C Lake Lovojarvi (Lammi Finland)
Methylobacter psychrophilus Z-0021 (NR 025016.1)

Methylobacter cluster 3

MAG bin-63 Lacamas Lake (Washington USA) (IMG ID: 204589)

MAG bin-273 pond SAS2A (Kuujjuarapik-Whapmagoostui Canada) (GCA 903938485.1)

"] Methylobacter cluster 4

Methylobacter whittenburyi ACM3310 (X72773.1)

Methylomicrobium album BG8 (NR 116196.1)

— Methylohalobius crimeensis 10Ki (AJ581837.1)

100 | I Methylomarinovum caldicuralii (AB301718.2)

|

0.050

Fig. 1

A 16S rRNA gene-based phylogenetic tree of strain S3L5C. The tree shows the position of 16S rRNA gene of strain S3L5C (highlighted

in yellow) compared with other pure culture methanotrophic bacteria and metagenome-assembled genomes (MAG). GenBank accession
numbers are given in parentheses, and the bar shows a 5% sequence divergence.
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Table 1. Characteristics of different psychrophilic and psychrotolerant species of methanotrophs.

Strain Methylobacter Methylobacter
sp. S3L5C psychrophilus Z-0021
Source/habitat Lake water layer Tundra soil
Cell morphology Cocci Cocci
Cell size (um) 1.0-1.8 1.0-1.7
Motility - -
Pigmentation - -
Growth pH 6.0-8.3 59-7.0
(optimal) (6.0-7.3) 6.7)
Growth temp. 0.1-20 (8-12) 1-20 (10)

(optimal) (°C)
Specific conditions - -

Methylobacter Methylosphaera hansonii

tundripaludum SV96

Arctic wetland soil Sediments of marine-salinity
Antarctic meromictic lakes

Rods Cocci

0.8-1.3x1.9-2.5 1.5-2.0

Pale Pink NA

5.5-7.9 NA

5-30 (23) 0-21 (10-13)

- Required seawater

for growth
Nitrogen fixation + NA + +
gene (nif)
G + C content 433 45-46° 47 43-46°
(mol %)
Reference This study [40] [41] [68]
NA not available.
®G + C content was chemically determined as its genome is not available.
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Fig. 2 Characterization of strain S3L5C growth at different temperatures and pH. (a, d) Specific growth, (b, e) CH, utilization rate, and (c,
f) organic acid concentrations of strain S3L5C at the end of the tests at different temperatures (a-c) and pH (d-f). Error bars indicate the
standard deviation of duplicates and triplicates for temperature and pH tests, respectively (See Supplementary Table S7 for the dataset).

coding sequences, five copies of rRNA (5S, 16S, 23S rRNA), 50 tRNA
genes and 2 CRISPR sequences. Methylobacter sp. S3L5C genome
was clustered together with MAGs of MOB from lakes and ponds
in Finland, Sweden, the USA, Switzerland, and Canada (Fig. 4).
Compared to available genomes of other methanotrophic isolates,
the S3L5C genome formed a separate species-level branch, and it

SPRINGER NATURE

was not represented by the other isolates (Fig. 4). Regarding
similarity indexes for genomic comparison between the SL35C
and other MOB, the dDDH was < 25%, while the ANI and AAl
values were < 85% (Supplementary Table S3). To recognize the
genomic uniqueness of a novel species, same-species delineation
thresholds are recommended to be above 70% for dDDH, 95% for

ISME Communications
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Fig. 3 Characterization of strain S3L5C growth with different nitrogen sources. Profiles of (a) CH, utilization and CO, production and (b)
biomass growth during 21-day incubation in nitrate (NMS) and ammonium (AMS) mineral salt media. (c) Organic acid production and (d)
glucose (representing carbohydrate) content of biomass measured at the end of the test (day 21). Error bars indicate the standard deviation of

duplicate samples (See Supplementary Table S8 for the dataset).

ANI, 85% for AAl, and 98.7% similarity with 16S rRNA gene
sequences [42-47]. Albeit the high sequence similarity of 16S
rRNA genes between Methylobacter sp. S3L5C and M. psychrophi-
lus Z-0021 (99.5% similarity), we could not confirm whether the
strains represented identical species due to the non-existence of
genome data of M. psychrophilus Z-0021. The latter strain is neither
available in the DSMZ repository nor in the All-Russia Collection of
Microorganisms (VKM B-2103) culture collection resource (last
checked on 24 May 2022), where it was originally deposited [40, 41].

Predicted metabolic pathways
The key metabolic pathways in Methylobacter sp. S3L5C were
predicted based on the KEGG database (Fig. 5). Methylobacter sp.
S3L5C genome contains all key genes associated with CHy4
oxidation, including both particulate (pmoCAB) and soluble
(mmoXYBZDC) methane monooxygenases. For the conversion of
methanol to formaldehyde, the strain contained both calcium-
(mxaFJGIACKLD) and lanthanide-dependent (xoxF) methanol
dehydrogenases. Genes encoding tetrahydromethanopterin
(HsMPT)-mediated pathway, catalyzing the conversion of formal-
dehyde into formate, were present in the isolate. Methylobacter sp.
S3L5C contained a complete set of genes encoding major
pathways for formaldehyde assimilation into cell biomass,
including ribulose monophosphate (RuMP), Embden-Meyerhof-
Parnas (EMP), Enter-Doudoroff (EDD), and phosphoketolases (xfp)-
based pathways (Fig. 5; Supplementary Table S4). The strain
lacked the gene encoding serine-glyoxylate aminotransferase
(sga), leading to the incomplete serine pathway. Genes present in
Methylobacter sp. S3L5C also encoded the oxidative tricarboxylic
acid (TCA) cycle and C5-branched dibasic acid metabolism.
Gammaproteobacterial MOB can generally oxidize NH,* into
hydroxylamine (NH,OH) using pmoCAB [48]. Our experimental
observation suggests that the same NH," metabolism might also
occur in Methylobacter sp. S3L5C. However, the latter did not
contain putative hao genes encoding hydroxylamine oxidoreduc-
tase to convert hydroxylamine to nitrite or nitric oxide [49]. The
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genome also included nitrate/nitrite conversion genes, ie.,
assimilatory nitrate reductase (nasA) for reducing nitrate into
nitrite and nitrite reductase (nirBD and nirS) for reducing nitrite
into ammonia and nitric oxide. Genes encoding nitrogen fixation
(nifHDK) were found, although the CH, oxidation and growth were
not observed in the culture-dependent experiments of nitrogen
fixation under anaerobic and microaerobic (5% O,) conditions.
Genes encoding the key enzymes involved in fermentative
metabolisms were observed in the genome, including acetyl-CoA
synthetase (acdAB) catalyzing the conversion of acetyl/propionyl-
CoA into acetate/propionate and acetate kinase (ackA) for
propionate generation from propionyl phosphate. However, some
key genes involving acetate synthesis pathways, such as
phosphate acetyltransferase (pta) and pyruvate dehydrogenase
(poxB), were not present in the genome. The genome also
included malate dehydrogenase (mdh) encoding the reversible
conversion of oxaloacetate, succinate dehydrogenase (sdhCDAB)
coupling with succinate production, and NAD"-reducing hydro-
genase (hoxFGYH) encoding H, production. Based on further
analyses of environmental MAGs, the similar genetic potential for
fermentation and organic acid production is widely dispersed in
closely related Methylobacter spp. of lakes, ponds, and wetlands of
temperate and boreal areas (Supplementary Table S5).

Organic acid production potential

Batch cultivations were performed to evaluate the strain’s potential
to produce organic acids by replenishing CH, and air during
incubation (on day 20, Fig. 6a). In the CH, + air replenishment test,
the average utilized oxygen-to-methane (0,/CH,) molar ratio was
1.0+ 0.5 mol mol™" during cultivation from days 4 to 33 (Supple-
mentary Fig. S4). At the end of the test (day 33), the culture with
the replenished headspace had utilized CH, and O, concentrations
at ~1.5-2 times higher than those of the control cultivations
without the replenishment, corresponding with the higher CH, and
O, concentrations fed into the system (Supplementary Fig. S5a).
On day 33, the CH, + air replenishment also increased the biomass
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Fig. 4 Genome-wide phylogenomic tree of strain S3L5C. The tree was constructed using PhyloPhlAn2 showing the position of strain S3L5C
(highlighted in yellow) compared to other cultured methanotrophs and metagenome-assembled genomes (MAGs) of uncultured
Methylobacter and Methylococcales from environmental samples. Methylobacter clusters 1 and 2 contain the so far cultured members of

Methylobacter spp.
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growth (up to ODgponm 5.0 + 0.2), while an ODggonm Of 3.2 £ 0.4 was
obtained in the control cultivations without CH, + air replenish-
ment (Supplementary Fig. S5b).

Acetate, formate, and malate were observed as soluble
metabolites from Methylobacter sp. S3L5C cultivations with and
without the replenishment, while propionate was only present in
the test with CH,+ air replenishment (Fig. 6b). Organic acid
concentrations gradually accumulated during the cultivation
period, except for formate, which was mostly depleted in both
experimental conditions (Fig. 6b, ¢). In the tests with CH,4 + air
replenishment, the accumulated concentrations of acetate
(4.1 mM), malate (0.02mM) and propionate (0.07 mM) were
significantly higher than those in the control (p value < 0.05)
(Fig. 6b, c). In this study, Methylobacter sp. S3L5C is hypothesized
to convert carbon from CH, (C-CHy4) into organic acids, CO,, and
biomass. The carbon conversion into total accumulated organic
acids in the test with CH, -+ air replenishment (2.5% of the
consumed C-CH,) was significantly higher than those in the
control test (1.2% of the consumed C-CH,;) (p value =0.037)
(Supplementary Table S6). In both experimental conditions, the
carbon yields of C-CO, and C-biomass derived from C-CH,; were
similar in the range of 42.2-46.3% and 51.1-56.4%, respectively (p
value = 0.124) (Supplementary Table S6).

DISCUSSION
Strain S3L5C, isolated and classified in this study as Methylobacter
sp., has been previously reported to be a dominant genus in the
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oxic-anoxic transition zone in boreal and subarctic lakes, ponds,
and wetlands [7, 8, 10, 11, 50-52]. Our phylogenetic and
phylogenomic tree analyses showed that the isolate represents
a ubiquitous cluster of Methylobacter spp. in lake and pond
ecosystems. The Methylobacter sp. S3L5C genome contained
genes encoding key enzymes involved in aerobic CH, oxidation
and organic acid production (fermentative metabolism). Accord-
ing to previous studies and MAG analyses of this study, the
genetic potential of Methylobacter spp. for organic acid production
is widely dispersed in CHg4-rich aquatic systems (Supplementary
Table S5) [7, 10, 25]. Whether or not Methylobacter sp. S3L5C is a
new species of Methylobacter, or a type strain of the previously
described Methylobacter psychrophilus Z-0021 could not be
validated as the strain Z-0021, and its genome is not available.
Nevertheless, Methylobacter sp. S3L5C represents psychrophilic
methanotrophs that rarely exist as isolates.

Organic acid production in MOB is an energy conservation
mechanism where pyruvate is oxidized to fermentative by-
products instead of biomass formation during substrate-limiting
conditions (e.g., CH, and O;) [12, 53]. In our study, the average O,/
CH, uptake ratio during incubation from days 4 to 33 (O,/CH,4
uptake ratio of 1.0 +0.5; Supplementary Fig. S4) was lower than
the stoichiometric ratio in aerobic CH, oxidation (Eq. 1).

CH4 + 20, — CO;, + 2H,0 — 818kJ/reaction (M

These conditions probably induced CH, oxidation with O,
limited amount in the system and initiated the accumulation of
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Fig. 6 Potential for organic acid production of Methylobacter sp.
S3L5C. The profiles of (a) gas composition in the headspace of the
test with 20% CH,; and 80% air replenishment on day 20 and
concentrations of organic acids in the liquid medium during 33-day
cultivation (b) with and (c) without the replenishment. Error bars
indicate the standard deviation of triplicate samples (See Supple-
mentary Table S9 for the dataset).

acetate, propionate, and malate. The O,/CH, uptake behavior was
similar to the previous studies conducted using Methylomicrobium
buryatense 5GB1C cultivated under O, and CH, limitation
conditions (O,/CH, uptake ratio of 1.1-1.6) [54, 55].

When Methylobacter sp. S3L5C grew in batch cultivation, acetate
was observed as the dominant metabolite, and its concentration
was remarkably elevated under the conditions with CH, + air
replenishment in the headspace. Methylobacter sp. S3L5C genome
lacks the genes encoding phosphate acetyltransferase (pta) and
pyruvate dehydrogenase (poxB). Nevertheless, experimental vali-
dation on the metabolite production suggests that the acetate
synthesis route might be catalyzed by acetyl-CoA synthetase and
ligase from acetyl-CoA found in the genome (acs and acdAB; Fig. 5
and Supplementary Table S4) [56]. To the best of our knowledge,
this is the first study to report the capacity of a MOB isolate to
produce propionate, a liquid metabolite commonly produced by
archaea and facultative anaerobic bacteria under anaerobic/
microaerobic conditions [57-59]. Genes encoding propionate
production (acdAB, acs, and ackA) were found in the annotated
genome of Methylobacter sp. S3L5C. Thus, based on the in silico
data (Fig. 5; Supplementary Table S4), we hypothesize that the
propionate production from Methylobacter sp. S3L5C may occur
via succinate and citramalate pathways similar to other
propionate-producing microorganisms [58]. Formate accumula-
tion in the liquid culture has been observed during unbalanced
growth conditions (e.g., under O, limitation and cultivated in
methanol as a carbon source) [12, 54, 60]. However, in our study,
formate was observed as an intermediate metabolite which was
eventually depleted during the cultivation period (Fig. 6b, c).
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Although the genes encoding succinate dehydrogenase were
annotated in the genome, succinate was not detected in any
studied conditions.

While some MOB are capable of nitrogen fixation, ammonium
and nitrate are widely used as nitrogen sources for MOB biomass
assimilation [18, 61]. Our results revealed the effect of different
nitrogen sources (i.e., nitrate and ammonium) on Methylobacter sp.
S3L5C growth. The strain favored ammonium for biomass
assimilation, resulting in a significantly higher growth rate than
the nitrate medium (Fig. 3b). The efficient growth in the
ammonium medium can be attributed to the original lake
environment (high ammonium content, DO <03 mg ™", Supple-
mentary Fig. S1) from which Methylobacter sp. S3L5C was isolated.
In the previous study on the bacterial community in anoxic
brackish groundwater enrichments, Methylobacter sp. was
observed as a predominant methanotroph in the CH,; and
ammonium-rich medium, but it was absent in the nitrate-
supplemented medium [62]. However, studies on different
gamma- and alphaproteobacterial MOB have reported varying
responses to the use of nitrate or ammonium as the optimum
nitrogen source [13, 60]. For instance, Tays et al. [60] reported that
a medium containing ammonium was optimal for the growth of
Methylocystis sp. Rockwell, albeit with lower lipid content (fatty
acid methyl ester, FAME) compared to the growth in nitrate
medium [60]. In some circumstances, nitrate favored the growth
of Methylomonas denitrificans FJG1 under O,-limited conditions
[13]. In our study, the strain’s biomass collected from the
ammonium medium had significantly less carbohydrate (sugar)
content than the cells growing on the nitrate medium (Fig. 3d).
This result suggests that the use of different nitrogen sources can
be adopted as a strategy to target the major biomass composition
(protein, lipid, and carbohydrate contents) during Methylobacter
sp. S3L5C cultivation. In methanotrophic biomass, carbohydrate
commonly represents a carbon sink which might not be
preferable for biotechnological applications (e.g., single cell
protein and microbial lipid-derived fuels) [55, 63, 64].

In conclusion, our results on Methylobacter sp. S3L5C and
comparative MAG analyses suggest that Methylobacter spp. play a
key role in mitigating atmospheric CH, emissions and synthesizing
organic acids in boreal and subarctic aquatic ecosystems. The
findings suggest that the organic acids produced by Methylobacter
spp. could serve as a carbon source for surrounding heterotrophic
microorganisms to sustain a functioning ecosystem [14, 65].
Furthermore, Methylobacter sp. S3L5C may provide an alternative
source of CH,-derived metabolites for biotechnological applica-
tions, especially in cold systems. For example, organic acid-rich
spent media can be used to cultivate recombinant heterotrophs to
generate value-added compounds [16, 66, 67]. However, further
studies on the effect of alternative electron acceptors (e.g.,
nitrogen oxides) on metabolism and organic acid production of
Methylobacter sp. S3L5C and process optimizations are required to
enhance the production of CH,-derived products.

DATA AVAILABILITY

The 16S rRNA gene sequence of Methylobacter sp. S3L5C is deposited at GenBank
under accession number OM479427. The draft genome assembly of Methylobacter sp.
S3L5C is available at GenBank under accession number CP076024. The raw reads of
the genome sequence are deposited in Sequence Read Archive (SRA) data under
accession SRR14663858 for short reads and SRR14663859 for long reads. All data
generated and analyzed during this study are included in this published paper and its
supplementary information files.
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