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Higher pathogen load in children from Mozambique vs. USA
revealed by comparative fecal microbiome profiling
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The infant gut microbiome has lifelong implications on health and immunity but there is still limited understanding of the
microbiome differences and similarities between children in low- and middle-income countries (LMICs) vs. high-income countries
(HICs). Here, we describe and compare the microbiome profile of children aged under 48 months in two urban areas: Maputo,
Mozambique and Atlanta, USA using shotgun metagenomics. The gut microbiome of American children showed distinct
development, characterized by higher alpha diversity after infancy, compared to the same age group of African children, and the
microbiomes clustered separately based on geographic location or age. The abundances of antibiotic resistance genes (ARGs) and
virulence factors (VFs) were significantly higher in Maputo children, driven primarily by several primary and opportunistic
pathogens. Most notably, about 50% of Maputo children under the age of two were positive for enterotoxigenic (ETEC) and typical
enteropathogenic (EPEC) Escherichia coli diagnostic genes while none of the Atlanta age-matched children showed such a positive
signal. In contrast, commensal species such as Phocaeicola vulgatus and Bacteroides caccae were more abundant in Atlanta,
potentially reflecting diets rich in animal protein and susceptibility to inflammatory diseases. Overall, our results suggest that the
different environments characterizing the two cities have significant, distinctive signatures on the microbiota of children and its
development over time. Lack of safe water, sanitation, and hygiene (WASH) conditions and/or unsafe food sources may explain the
higher enteric pathogen load among children in Maputo.

ISME Communications; https://doi.org/10.1038/s43705-022-00154-z

INTRODUCTION
Over the past two decades, numerous studies investigated the
role of the human microbiome, especially with respect to how
dysbiosis of microbiota is related not only to infectious diseases
but also to non-infectious diseases such as diabetes, asthma,
obesity, and cardiovascular disease. To date, most microbiome
research has focused on humans residing in high-income
countries (HICs). There have been comparatively far fewer studies
focused on low- and middle-income countries (LMICs), with most
of the latter studies focused on East Asia [1]. Research on the
microbiome of human populations living in other regions of the
world such as South America, Africa, and South Asia (e.g., India)
has been rarely conducted despite the unique cultural, lifestyle,
and dietary diversity found in these regions [2–5] and the
relatively high prevalence of gut infections that may have short-
and/or long-term effects on health and development of children
[1, 6, 7]. A few recent large-scale metagenomics surveys have
revealed significant differences in taxa between human popula-
tions in HICs vs. LMICs [8, 9], but these studies were not based on

age-matched cohorts, and thus the effects of factors such as age
on the differences observed remain speculative. Although the
effect of age on the development and inter-person variability of
the gut microbiome has been well-recognized by now [5], a
quantitative view of the diversity of the human microbiome
around the world remains incomplete, especially for children in
Africa [1].
Among the understudied regions, Africa has recently under-

gone rapid industrialization together with economic expansion
resulting in profound changes in disease epidemiology, urban
settlement, and population demographics [10]. In rapidly urbaniz-
ing, low-income settings of sub-Saharan Africa, food insecurity
and poor hygiene, and lack of proper sanitation facilities increase
the risk of infectious diseases, including diarrheal diseases caused
by enteric pathogens [11]. Notably, several recent studies in this
region have reported no significant associations between
improved water, sanitation, and hygiene (WASH) conditions and
enteric infections [12, 13]. On the other hand, the effects of WASH
conditions on enteric infections can be complex and not easy to
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quantify due, for instance, to the lack of precision in WASH
outcome measures, including self-reported (as opposed to
objectively measured) diarrhea or asymptomatic carriage of
enteric pathogens [14]. Further, comparison of data from different
areas without easy ways to account for the differences such as
rural vs. urban settings could be problematic [15].
Diarrheal diseases are the fifth leading cause of death among

children under the age of 5 in LMICs, primarily due to unsafe
water and sanitation [16], and can also affect the development of
the gut microbiome. The gut microbiome is shaped in the first
few years of life and is affected by several known factors such as
the method of delivery, exposure to antibiotics, breastfeeding
status, sanitation, and diet [17]. The interplay between these
factors and diarrheal infections during development remains
essentially poorly understood, especially in LMICs. A few recent
studies investigated the effect of various factors on the gut
microbiome in the early stage of life and compared between
African and Western gut microbiomes. For example, Malawian
infants showed higher abundances of Bifidobacterium, Clostridium
histolyticum, and the Bacteroides-Prevotella group than did Finnish
infants at 6 months of age [18]. Collectively, these previous
studies have indicated that there might be significant differences
in the gut microbiome of LMICs vs. HICs children that could be
related to host phenotypes and development later in life [1].
However, the data and number of samples available for African
populations are still limited for robust conclusions to emerge,
particularly in terms of the temporal changes in the microbiome
during the first 3–4 years of life (development), and the effect of
geographic location which is often accompanied by different
lifestyles, sanitation infrastructures, and diet. Furthermore, the
majority of previous microbiome studies have focused on the
comparison of pathogen burden between healthy and unhealthy
children in LMICs [8, 19] and have not provided a comparative
view, and possibly new insights, relative to age-matched children
in HICs.
To provide new insights into these issues, we characterized the

fecal microbiota of 153 children aged under 48 months living in
urban settings of Maputo, Mozambique [UN human development
index (HDI) of 0.456 classified as low human development [20]] as
part of the Maputo Sanitation (MapSan) trial [21, 22] and
compared these with the gut microbiota of 60 age-matched
children living in Atlanta, USA [HDI of 0.9262 classified as very high
human development], as part of the Emory University African
American maternal stress and infant gut microbiome cohort study
[23]. Our comparisons revealed significant differences in the
intestinal microbial community structures between children from
the two cities, some of which are most likely related to increased
health risks for the Maputo children.

MATERIALS AND METHODS
Cohort description
The MapSan trial was a controlled before-and-after trial designed to
evaluate the impact of an onsite sanitation intervention on child health
after 12 and 24 months of follow-up [21]. Briefly, the intervention consisted
of pour-flush toilets to septic tanks with soakaway pits to discharge the
liquid portion of the waste. Control compounds did not receive the
intervention and continued use of existing low-quality sanitation for the
duration of the study. Participants included in this report (n= 177) are a
subset of MapSan trial participants and we received written informed
consent from a parent or guardian, and the head of the compound
provided verbal assent for the compound to be included in the study
[22].The difference in microbiome composition due to intervention were
observed to be rather minor, and will be presented elsewhere as we
focused here on the direct comparison between Maputo and Atlanta
samples. The MapSan study protocol was approved by the Comité
Nacional de Bioética para a Saúde (CNBS), Ministério da Saúde (333/CNBS/
14), the Research Ethics Committee of the London School of Hygiene &
Tropical Medicine (reference # 8345), and the Institutional Review Board of

the Georgia Institute of Technology (protocol #H15160). Clinical trial
registration ClinicalTrials.gov, number NCT02362932 [22].
For the Atlanta samples, we included a subset (N= 60) of the Emory

University African American Maternal Stress and Infant Gut Microbiome
Cohort Study [24]. In this study, pregnant women of African-American
decent are enrolled during their first trimester of pregnancy and followed
through delivery, completing an assembly of stress and behavioral
measures at enrollment and again during the third trimester of pregnancy.
At the third trimester data collection, the women are asked if they are
interested in continuing as part of a postnatal mother-infant dyad cohort:
those who agree are consented at that time and contact is continued
through email and text messaging, until the infant is born. Upon birth of
their infant, mothers again provide informed consent for inclusion of their
infant in the postnatal study. The study was approved by the Emory
University Internal Review Board (IRB), study ID is IRB00080193, and the
appropriate review councils for each hospital where prenatal recruitment
occurs [23].

Stool collection and DNA sequencing
Stool samples from Atlanta children were obtained by the mother using
Catch-All swabs. A small amount of stool (1–2 g) was collected and then
placed into a pre-labeled hard plastic case for storage in the home freezer
until collection by the study team within 72 h. Research staff then
transferred the samples into labeled MoBio tubes and stored the tube in a
−80 °C freezer. At the time of DNA extraction, samples were defrosted. The
collection methods for Maputo stool samples were described previously
[22]. The only difference in the stool sample collection methods and
processing for DNA sequencing between Atlanta and Maputo was storage
conditions until the sample was stored at −80 °C. Specifically, Atlanta
samples were stored in a home freezer and transferred to −80 °C within
72 h while Maputo samples were kept in cold conditions and transferred to
−80 °C within 6 h. This difference is unlikely to affect our results on
diversity metrics and pathogen prevalence because no sample was stored
in the freezer beyond three days prior to the storage at −80 °C [25].
Furthermore, the same DNA extraction methods (i.e., MoBio DNA isolation
kit) and DNA sequencing were used for both Atlanta and Maputo samples.
Specifically, for the Maputo samples, ~0.1 g of each fecal sample was used
for DNA extraction and processed using Section 7.9 of the standard Manual
of Procedures as suggested by the Human Microbiome Project (HMP-
http://hmpdacc.org/resources/tools_protocols.php). No rectal swabs for
Maputo were used in this study.
For the both Atlanta and Maputo samples, DNA was extracted from a

similar volume of stool sample, which was stored in the MoBio tubes, using
the MoBio isolation Kit according to the manufacturer’s protocol. DNA
quantification was achieved using Qubit dsDNA HS Assay Kit (Thermo
Fisher Scientific). DNA libraries were prepared using the Nextera XT DNA
library prep kit (Illumina, San Diego, CA) and sequenced on an Illumina
HiSEQ 2500 instrument (High Throughput Sequencing Core, Georgia
Institute of Technology) for 300 cycles (2 × 150 bp paired end run) for
Maputo samples and an Illumina NovaSeq 6000 instrument (High
Throughput Sequencing Core, Georgia Institute of Technology)
(2 × 150 bp paired end run) for Atlanta samples. Adapter trimming and
demultiplexing of the sequenced samples were carried out by the
instrument.

Sequence quality checking, trimming and assembly
The sequenced shotgun metagenome reads were trimmed and quality
checked using SolexaQA with cut-off of phred score 20 [26]. Trimmed reads
were then filtered by BMTagger to identify and remove human reads [27].
Non-human reads, when longer than 50 bps after trimming, were used in the
subsequent analyses. Assembly of the short reads for each metagenome (no
co-assembly was attempted) was performed using IDBA-UD [28] and only
resulting contigs longer than 1000 bp were used for genome binning.
Resulting contigs from the assembly using MaxBin, and their completeness
and contamination were assessed with CheckM [29, 30].

Assembly and population genome binning
Metagenomic reads were quality-trimmed, assembled into contigs and
contigs were binned into metagenome-assembled genomes (MAGs) as
previously described [31] and further documented in the Supplementary
Material. Quality of the MAGs was calculated as “Quality = Completeness –
5 × Contamination”, and MAGs with a quality score above 50 were used for
further analysis (high quality MAGs). The Microbial Genome Atlas (MiGA)
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webserver was used to determine the most likely taxonomic classification
and degree of novelty (e.g., whether the MAG represented a new species,
genus, or family, etc.) of the high quality MAGs against the classified
species in NCBI’s prokaryotic genome and TypeMat databases [32]. MAGs
were named with unique identifiers (e.g., ANIsp_numbers) followed by the
closest relative of the MAG and the lowest taxonomic rank the two share
according to the MiGA results (i.e., p: for phylum, c: class, o- order, f: family,
g: genus, and s: species). For instance, ANIsp_015_f:Coriobacteriales was
used for a MAG that represented a novel genus of the Coriobacteriales
family based on the lowest rank (family in this case) with significant
assignment (p value < 0.1) shared with its best match against MiGA’s
database. GTDBtk was also used to further confirm the assignments by
MiGA as well as identify (taxonomically) unclassified closely related MAGs
available in GTDB [33].
To de-replicate the collection of MAGs obtained from our metagenomes,

we applied a genome-aggregate average nucleotide identity (or ANI)
cutoff of 95% and selected one MAG with the highest quality score as the
representative of each resulting 95% ANI-based genomospecies. The
relative abundances of MAGs and individual genes in all metagenomes
were calculated by competitive read mapping and normalized as genome
equivalents (GEs), i.e., what fraction of the cells in the sample carries the
gene of interest, by normalizing the relative abundance by the
metagenomic dataset size and the community average genome size of
the microbial community using MicrobeCensus [34]. Additionally, for a
more conservative estimate, we calculated the 80% truncated coverage
(TAD80) for MAG or gene abundance using the BedGraph.tad.rb script of
the Enveomics collection [35], which removes outlier genomic regions in
terms of coverage such as the rRNA and other multi-copy or recently
horizontally transferred genes. Differently abundant MAGs/genes from
different groups of samples were identified by the Kruskal–Wallis test
followed by Dunn’s post-hoc test with p-value adjustment for each MAG/
gene with all combinations of comparisons for the three different age
groups (Padj < 0.05) based on the Benjamini–Hochberg method as
implemented in the FSA package [36] in R v4.0.2.
Supplementary Material includes further details on how sequencing

coverage, α- and β-diversity indexes of each metagenomic dataset were
calculated and compared as well as how the E. coli genome phylogeny was
reconstructed.

RESULTS
Description of the samples and metagenomes
A total of 177 Maputo stool samples were used for sequencing,
assembly, and population genome binning. Out of these
177 samples, we used 153 for the comparisons due to the
unknown age information for the remaining 24 samples. Fifty-
eight of the latter samples were 0–11 month group, 61 were
12–23 month group, and 34 were 24–48 month group (Table 1
and Table S1). For Maputo stool samples, we attempted to select
randomly but equal numbers of samples across two strata – age
group and study arm (i.e., control vs. sanitation intervention)—at
each study phase. Details on the study design for the MapSan trial
can be found in the Materials and Methods section and in
previous publications [21, 22] (Fig. 1A). Sixty Atlanta stool samples
were sequenced to age-match the Maputo samples as follows: 22
were 0–11 month group, 17 were 12–23 month group, and 21

were 24–48 month group; the age of the participant for each
sample can be found in Table S1 [23] (Fig. 1A).
The estimated abundance-weighted average coverage calcu-

lated by Nonpareil, an algorithm that examines the extent of
overlapping reads within a dataset to determine the coverage and
diversity, ranged between 70 and 98% (Fig. S1), suggesting
adequate coverage for genome binning and comparisons [37].
Nonpareil’s diversity metric (Nd) represents the combined effect of
richness and evenness (i.e., it represents total diversity) and
coverage of 98% essentially means that there is 2% or less chance
that the next sequenced read will represent a new sequence (i.e.,
be non-redundant with existing sequences). Assembly and
genome binning efforts produced 1607 high-quality (complete-
ness – 5*contamination ≥ 50) MAGs, 1333 from the Maputo
datasets, and 274 from the Atlanta datasets. These MAGs
represented 189 distinct genomospecies based on a 95% ANI
threshold. Taxonomic classification through MiGA [32] suggested
that 100/189 genomospecies showed less than 95% ANI to any
reference genome of a previously described (known) species,
indicating that these MAGs represent novel species or higher
taxonomic ranks (Table S2). Specifically, 27 were predicted to be
novel species of a previously described genus, 15 were novel
species of a previously described family, and the remaining 58
represented novel families or higher taxonomic ranks of
previously described phyla (Table S2).
Notably, out of these 100 novel genomospecies, 72 were

recovered only from the Maputo samples, versus 28 from the
Atlanta samples. However, it should be noted that taxonomic
classification through GTDBtk [33] suggested that only 30
genomospecies were completely novel species that are not
currently represented by available genomes, while the remaining
matched previously recovered (largely unclassified at the species
level) MAGs (Table S2).

Lower diversity of Maputo children gut microbiome
Nonpareil sequence diversity (Nd) values showed that the gut
microbiome of Atlanta children was more diverse than that of the
Maputo children in the 12–23 month group (Nd median values of
17.25 vs. 16.70, respectively; adjusted P value [Padj] of <0.05,
Dunn’s post-hoc test; note that Nd is in loge scale, so a difference
of 1 unit corresponds to 2.7 fold difference) and 24–48 month
group (Nd median values of 17.86 vs. 17.02, respectively;
Padj < 0.01, Dunn’s post-hoc test), while similar diversity was
observed in the 0–11 month group (Nd median values of 16.77 vs.
16.68, respectively; Padj ~ 0.85, Dunn’s post-hoc test) (Fig. 1B). Even
though the Shannon diversity index based on 16S rRNA gene
fragments recovered in the metagenomes was not significantly
different between the two regions for the 0–11 and 12–23 month
groups, Atlanta children in 24–48 month group showed higher
microbiome diversity than Maputo children in the same age group
as indicated by Nd (Fig. S2) and Shannon index (median values of
7.79 vs. 7.43, respectively; Padj ~ 0.01, Benjamini and Hochberg

Table 1. The number of samples and average/median age for each group.

# of samples A: 0–11 months (Interventiona/
Control)

B: 12–23 months (Intervention/
Control)

C: 24–48 months (Intervention/
Control)

Maputo, Mozambique 58 (32/26) 61 (27/34) 34 (15/19)

Atlanta, USA 22 17 21

Average/Medianb A: 0–11 months (Average/Median) B: 12–23 months (Average/Median) C: 24–48 months (Average/Median)

Maputo, Mozambique 9.33/9 16.75/16 29.32/29.5

Atlanta, USA 5.64/5.25 14.18/13 32.4/31
aIntervention indicates the samples from the sanitation intervention group and control indicates the samples from the control group in the Maputo Sanitation
(MapSan) trial.
bDetailed information is in Table S1.

M. Kim et al.

3

ISME Communications



correction applied). Note that Nonpareil diversity has been shown
to be a more unbiased and sensitive method compared to
traditional methods that use the taxa observed in a dataset as
references such as Shannon diversity index because it is based on
all reads of a dataset and is reference free [38]. Consistent
separation of microbial communities among the three different
age groups and two different regions was also obtained with
Mash, a tool that uses kmer composition for β-diversity calcula-
tions (R2 value of 0.1274 for age and 0.1266 for region, and P value
of <0.001, PERMANOVA) (Fig. 1C).

Taxa responsible for lower diversity of Maputo microbiomes
To identify the prevalent taxa in our samples, the relative
abundance (or just abundance hereon for simplicity) of the
genomospecies was estimated using read recruitment plots and
the TAD80 metric (Fig. S3). Notably, all 1607 MAGs together
recruited an average of 54.5 ± 0.08% of the total reads in each
metagenome (Fig. 3 and Fig. S4), revealing that the MAGs
represent the majority of the microbial communities sampled and
consistent with relatively high coverage values obtained by
Nonpareil. In Atlanta samples, while several species such as
Escherichia coli and Bifidobacterium spp. (e.g., B. longum, B. bifidum,
and B. breve) were abundant in the 0–11 month group and
became less abundant in 24–48 month group, other species such
as Bacteroides spp. (e.g., B. ovatus, Bacteriodes sp. A1C1, and B.
caccae), Phocaeicola. vulgatus (formerly known as Bacteroides
vulgatus), Faecalibacterium prausnitzii, Eubacterium rectale, Anae-
rostipes hadrus, Gemmiger formicilis, and uncharacterized species
of the Ruminococcaceae and Lachnospiraceae families, among
others, became abundant or were exclusively found in the
24–48 month group (Padj < 0.01, Dunn’s post-hoc test) (Fig. S3).
These results are consistent with previous studies showing that E.
coli and Bifidobacterium species are early colonizers of infant
intestines and their abundance gradually drops in the adult

gastrointestinal tract [17], while the relative abundance of
Bacteroidetes and Ruminococcaceae increases as infants get older,
e.g., around 3 years old [17].
Similarly, E. coli and Bifidobacterium spp. (e.g., B. longum and B.

breve) were abundant in the 0–11 month group and became less
abundant in the 24–48 month group in Maputo samples (Fig. S4)
(Padj < 0.01, Dunn’s post-hoc test). Interestingly, Prevotella copri
(ANIsp_001_s:Prevotella_copri) became abundant, and even
dominated the microbial community in the 24–48 month Maputo
children by a median relative abundance of 7.8% of the total,
while its relative abundance was only 0.6% in the 0–11 month
children samples (Padj < 0.01, Dunn’s post-hoc test) (Figs. 1 and S4).
In addition to this highly abundant P. copri genomospecies, a
closely related Prevotella genomospecies (ANIsp_002_g:Prevo-
tella), showing 81% genome-aggregate average amino acid
identity (AAI) to the dominant ANIsp_001, also accounted for a
substantial part of the difference in beta-diversity, e.g., this
genomospecies made up 4.6% of the total microbial community
in the 24–48 month Maputo group (Padj < 0.01, Dunn’s post-hoc
test) (Fig. 2). Additional taxonomic classification via GTDBtk [33]
suggested that these two (i.e., ANIsp_001 and ANIsp_002) are
closely related to Prevotella copri (GCF_000157935.1; ANI of
95.33%) and P. copri A (GCF_002224675.1; ANI of 95.82%),which
is different genomospecies from P. copri (e.g., <95% ANI),
respectively. Therefore, Prevotella spp. accounted for a large part
of the main difference observed in the diversity of the microbiome
in Maputo vs. Atlanta samples of the two older age groups.
The differentially abundant taxa included 38 genomospecies

that were not present in any of the Atlanta samples and 6
genomospecies that were not present in any of the Mozambique
samples across all age groups (Fig. S5). Interestingly, these 38
genomospecies that were only observed in Maputo samples
consisted largely of novel genomospecies as well as (previously)
known commensal species including Ligilactobacillus ruminis and

Fig. 1 A flow-chart of the study design and microbial community diversity patterns between Atlanta and Maputo gut microbiomes. A A
flow chart summarizing the samples analyzed from the MapSan trial and the African American Maternal Stress and Infant Gut Microbiome
Cohort studies B Nonpareil diversity (Nd) of the samples used in this study (n= 213) (*Significantly different at Padj < 0.05, **Padj < 0.01, Dunn’s
post-hoc test). C A non-metric multidimensional scaling (NMDS) plot of microbial community similarity based on MASH distances of whole
metagenomes, colored-code by city (Atlanta vs Maputo) and age (see key). Names starting with A denote the 0–11 month child group, B the
12–23 month group, and C the 24–48 month group (e.g., A_ATL indicates Atlanta children samples 0–11 months old in age).
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Limosilactobacillus mucosae (formerly known as Lactobacillus
ruminis and Lactobacillus mucosae), and (opportunistic) human
pathogens such as Streptococcus pasteurianus and Brachyspira
pilosicoli that cause meningitis/bacteremia in newborns and
human intestinal spirochetosis, respectively. The six species that
were not present in any of the Maputo samples consisted mostly
of novel species and a common human gut commensal species,
i.e., Acidaminococcus intestini. The most notable difference
however was the higher relative abundance of pathogenic and
opportunistic pathogenic genomospecies in the Maputo samples
that were virtually absent in Atlanta samples, which we explore
further below. See also Supplementary Results for additional taxa
detected as differentially abundant between the two sites and
their potential functional roles.

Prevalence of E. coli pathotypes in Maputo vs. Atlanta
A total of 116 (104 from Maputo and 12 from Atlanta) of our
recovered MAGs were identified as E. coli (>95% ANI to known E.
coli genomes). The relative abundance of E. coli was higher in
12–23 month Maputo children compared to the Atlanta children
(the median relative abundance of 0.83% vs. 0.00%, respectively;
Padj < 0.01, Dunn’s post-hoc test) (Fig. 2). At least four E. coli
pathotypes, including enteroaggregative E. coli (EAEC), enterotoxi-
genic E. coli (ETEC), diffusely adherent E. coli (DAEC), and typical
enteropathogenic E. coli (EPEC), were identified among these
MAGs by searching their encoded genes against diagnostic
pathotype-specific genes and their phylogenetic placement into
a core gene alignment of known E. coli genomes that includes
ETEC, EPEC, EAEC, uropathogenic E. coli (UPEC), DAEC, enterohae-
morrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), neonatal
meningitis-causing E. coli (NMEC), commensal, and environmental
E. coli (Fig. 3). While not all these MAGs possessed the pathotype
diagnostic genes, 11 did, and for the great majority of the
remaining MAGs, the genes were detected in the metagenome
(Supplementary Results) but apparently not binned into the MAG
due to the genes being located in plasmids and other mobile
elements [39]. Notably, we observed higher prevalence of ETEC
diagnostic genes (i.e., eltB; enterotoxin subunit B and astA; heat-
stable enterotoxin 1) in the 0–11 month (30 positive samples out
of 58 samples for at least one ETEC diagnostic gene; or 52%) and
12–23 month (27 positive samples out of 61 samples; or 44%)
groups in the Maputo samples relative to age-matched Atlanta
samples (i.e., not present in any Atlanta sample). Not only
prevalence, but their relative abundance was also higher in
Maputo samples (Padj < 0.05, Dunn’s post-hoc test; see Fig. 3C).
Similarly, bfpA (bundlin pilin protein), which is a diagnostic gene
typical of EPEC, was absent in the 0–11 and 12–23 month Atlanta
groups, while it was prevalent in the corresponding Maputo
groups (34/58 and 29/61 positives, respectively). Also bfpA’s
relative abundance was higher in Maputo samples (Padj < 0.01,
Dunn’s post-hoc test) (Fig. 3C). These results suggested that the

pathogenic E. coli load was substantially higher, especially in
0–23 month Maputo children compared to their age-matched
Atlanta children.

Higher abundance of antibiotic resistance genes (ARGs) in
Maputo
Notably, both 12–23 and 24–48 month Maputo children showed
significantly higher antibiotic resistance gene (ARG) abundances,
measured as GEs, compared to their Atlanta counterparts by 2-fold
and 1.6-fold, respectively (Padj < 0.001, Dunn’s post-hoc test)
(Fig. 4A). Taxonomic identification of the genomes carrying the
ARG genes based on best match analysis of ARG-carrying reads
against all MAGs recovered showed that E. coli carried the highest
proportion of total ARGs in the 0–11 and 12–23 month groups
(median of 16%, 29%, 7.5%, and 26% in 0–11 month of Atlanta,
0–11 month of Maputo, 12–23 month of Atlanta and 12–23 month
of Maputo, respectively), followed by the Prevotella genomospe-
cies mentioned above (Fig. 4B and Table S7). Therefore, it appears
that most ARGs are carried by abundant microbiome members in
Maputo. Several of the ARGs that were found to be more
abundant in Maputo confer resistance specifically to the
antibiotics recommended for use in children by the Mozambique
Ministry of Health (e.g., ampicillin and gentamicin; see also Sup-
plementary Results) (Figs. 4C and S7). Furthermore, we examined
the potential for the mobilization of the clinically relevant ARGs,
especially in E. coli MAGs, by assessing the co-occurrence of ARGs
and mobile genes on the same contig. Based on a total of 116 E.
coli MAGs (12 MAGs from Atlanta and 104 MAGs from Maputo
samples), the number of ARGs per genome was significantly
higher in the Maputo compared to the Atlanta MAGs (median
value of 8 vs. 4 copies per genome, p value < 0.001, Kruskal-Wallis
tests) (Fig. 4D). While the majority of the Atlanta E. coli MAGs only
encoded beta-lactam and multi-drug resistance genes (e.g., only
one Atlanta E. coli MAGs carried streptomycin, gentamycin, and
trimethoprim resistance genes), many of the Maputo E. coli MAGs
carried ARGs to several third-generation antibiotics such as
streptomycin, chloramphenicol, trimethoprim, fosfomycin, macro-
lide, sulfonamide, and tetracycline resistance genes (Fig. 4D).
Notably, many of these ARGs were co-occurring with mobile
elements on the same contig. For example, 61 Maputo E. coli
MAGs carried two streptomycin resistance genes (i.e., aminoglyco-
side O-phosphotransferase APH(3″)-Ib and aminoglycoside
O-phosphotransferase APH(6)-Id) and 40 of these co-occurred
with mobile elements on the same contig (Fig. 4D). Among the
Maputo E. coli MAGs, 11 carried type A-1 chloramphenicol O-
acetyltransferase, 14 MAGs carried sulfonamide-resistant dihy-
dropteroate synthase sul1, and 20 MAGs carried sul2 together with
mobile elements, while none of the Atlanta E. coli MAGs encoded
these genes. This result together with the virulent factors and E.
coli pathotypes results described in the previous section further
underscored the increased health risk for Maputo children.

Fig. 2 The relative abundance of Escherichia coli and two Prevotella species in Atlanta vs Maputo gut microbiomes. Labels on x-axis of
each boxplot denote the age and region of the samples (sample names are as in Fig. 1). (Significantly different at **Padj < 0.01, *Padj < 0.05,
Dunn’s post-hoc test). Results for all 52 genomospecies are available in Fig. S6 and Table S3.
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Finally, among the additional species (e.g., other than E. coli),
pathogens in the global priority list of antibiotic-resistant
pathogens by the WHO (Fig. S8A and in ref. [40]) that included
Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter spp.,
Serratia spp., Proteus spp., Providencia spp., Morganella morganii,

Enterococcus faecium, Staphylococcus aureus, Campylobacter spp.,
Salmonella enterica, Streptococcus pneumoniae, and Haemophilus
influenzae were all detected in at least one metagenome but
typically at relative low relative abundances. Most were detected
in fewer than 5% of the total samples with the exception of K.
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pneumoniae, the Enterobacter cloacae complex, M. morganii, and E.
faecium, which were detected in 119 (55.9%), 72 (33.8%), 16
(7.5%), and 27 (12.7%) metagenomes, respectively (Fig. S8B and
Table S8; see also Supplementary Results). Even though we
obtained positive signal for the presence of listed antibiotic-
resistant pathogens, we were not able to determine if these
genomes of actually carried specific antibiotic resistance determi-
nants due to their low abundance which limited assembly and
binning (unlike the E. coli populations mentioned above).

Functional profile of the gut microbiome in Maputo vs.
Atlanta
To compare the functional gene profiles of the gut microbiome
between the two regions, we mapped metagenomic reads against
the MetaCyc pathway database with Humann3. We detected a total
of 481 pathways across all metagenomes. Out of 481 pathways, 150
pathways showed significant differences in abundance in at least
one age group comparison between the two locations (Padj < 0.01,
Dunn’s post-hoc test) (Table S9). While the abundance of only 13
pathways was significantly different in 0–11 months, the abun-
dance of 103 and 43 pathways showed significant differences in the
12–23 month and 24–48 month comparisons, respectively. This
pattern was similar to that of ARGs gene abundances (Fig. 4A), and
was overall in agreement with the Nd results (Fig. 1B) suggesting
important differences in the development of infant gut microbiome
between the two regions. Interestingly, out of 103 pathways that
were differentially abundant in the 12–23 month comparisons, 97
pathways were enriched in Maputo samples, and the majority of
these pathways were differentially abundant only in the
12–23 month comparisons and not the other age groups (Fig. S9
and Table S9). These enriched pathways included several distinct
lipopolysaccharides synthesis (including polymyxin resistance),
vitamin synthesis such as menaquinone (vitamin K2), tetrahydro-
folate (vitamin B9) biosynthesis, etc.), and several amino acids and
fatty acids biosynthesis pathways among others (Fig. S9 and
Table S9). Additionally, adenosylcobalamin salvage from cobina-
mide I pathway and methanogenesis from acetate were enriched in
all age groups of Atlanta samples compared to their counterparts.
While the functional significance of these gene content differences
remains to be elucidated more fully in the future, the findings are
consistent with the taxon compositional differences revealed
above, and suggest that the compositional differences are
accompanied by significant functional gene content differentiation
that is likely involved in the development of the microbiome and/or
dietary differences. However, dietary records were not available for
either cohort in our study to evaluate the effects of diet in more
detail.

DISCUSSION
This study revealed several unique aspects of the gut microbiome
of children aged under 48 months living in Maputo, Mozambique

in comparisons with that of age-matched children living in
Atlanta, USA. The β-diversity analysis suggested a clear separation
of microbial communities among the three different age groups
and two different regions and the reconstruction of MAGs showed
about 70% of novel genomospecies were recovered from Maputo
metagenomes. These results corroborate the findings of the
recent studies that reported distinct and less-studied gut
microbiota in African human populations compared to HICs
populations [9, 18]. Furthermore, we observed the increase in α-
diversity (i.e., Nd) with age is much more pronounced in Atlanta vs.
Maputo children microbiomes (Padj < 0.0001, Dunn’s post-hoc
test). Growth faltering in sub-Saharan Africa might be one of the
major causes of poor development of gut microbiota in children
aged 0–4 years old [41]. Interestingly, this finding contrasts to that
of previous studies, which reported higher diversity in Malawian
children older than three years of age relative to age-matched US
children, and no significant difference in diversity between
younger ones [5]. This difference could be due to the methods
used (e.g., the previous study was based on error-prone 16S rRNA
gene-amplicon data) or the different cohorts analyzed.
Prevotella copri was one of the major causes that differentiate

the gut microbiome between the two regions studied by
dominating the microbial community in the 24–48 month Maputo
samples. Higher abundance of Prevotella is thought to be
associated with the consumption of a fiber-rich diet (e.g., fruit
and vegetables), while higher abundance of Bacteroides is usually
linked to fat- and protein-rich diets [42, 43]; therefore, our findings
likely reflect, at least in part, an effect of diet. Nonetheless our
findings (Fig. 1B) contrast, at least partly, with previous findings
reporting that higher fiber diet (in Africa) is related to higher alpha
diversity, in addition to higher abundance of Prevotella spp. [2, 44],
but the discrepancy may be due to the lack of comparisons
among age-matched cohorts. Further, strain-level P. copri diversity
(see also below) has been shown to be affected by diet (e.g., fiber-
rich diets were linked to enhanced carbohydrate catabolism, while
omnivore diet had a higher prevalence of genes -and strains-
involved in branched-chain amino acid biosynthesis) [45]. There-
fore, it appears that the functional consequences of the
microdiversity of Prevotella spp. and related species could vary
between healthy and non-healthy outcomes but overall remain
poorly understood.
Our own results showed that ANIsp_001 (Prevotella copri)

consists of MAGs recovered from both Maputo and Atlanta
datasets, while ANIsp_002 (Prevotella copri A) only consists of
MAGs recovered from Maputo datasets, which might suggest the
presence of the geographically specific Prevotella sp. (Fig. 2 and
Table S2). Due to the low number of P. copri MAGs recovered from
the Atlanta samples (i.e., 5 MAGs) relative to Maputo (i.e., 88
MAGs), we were not able to perform a robust comparison of gene
content differences between Atlanta and Maputo Prevotella
population. For instance, it is likely that the P. copri populations
represented by the Maputo MAGs may be present in Atlanta

Fig. 3 E. coli MAG pathotypes recovered in Maputo and Atlanta datasets. A A heatmap showing the presence (in purple) and absence
(white) of diagnostic genes in the recovered E. coli MAGs. B Core genome phylogenetic tree of E. coli MAGs and selected reference genomes
from the public databases. Red marked MAGs contain at least one of the E. coli diagnostic genes. Reference E. coli genomes include
commensal strains (HS commensal, CP000802.1 strain HS; O150H5SE15 commensal, AP009378.1 strain SE15; O152H28SE11 commensal,
AP009240.1 strains SE11; O81ED1a commensal, CU928162.2 strain ED1a), pathogenic strains (0127H6E234869 EPEC, FM180568.1 strain
0127:H6 E2348/69; 4608 EIEC, gi|735003713|gb|JTCO01000001.1| strain 4608-58 4608-58_c1; 55989 EAEC, gi|218350208|emb|CU928145.2|
strain 55989; M4163 EIEC, gi|735003727|gb|JTCN01000001.1| strain M4163 M4163_c1; O103H2 EHEC, AP010958.1 strain O103:H2 str. 12009;
O139H28E24377A ETEC, CP000800.1 strain E24377A; O157H7EDL933 EHEC, gi|749302083|ref|NZ_CP008957.1| strain O157:H7 str. EDL933;
O18K1H7UTI89 UPEC, CP000243.1 strain UTI89; O26H1111368 EHEC, AP010953.1 strain O26:H11 str. 11368; O44H18042 EAEC, gi|284919779|
emb|FN554766.1| strain 042; O55H7CB9615 EPEC, CP001846.1 strain O55:H7 CB9615; O55H7RM12579 EPEC, CP003109.1 strain O55:H7
RM12579; O6K2H1CFT073 UPEC, AE014075.1 strain CFT073; O78H11K80H10407 ETEC, FN649414.1 strain ETEC H10407; RS218 NMEC,
CP007149.1 strain RS218; SK1144 DAEC, NZ_AP018784.1 strain SK1144), and environmental strains (SMS35, gi|170517292|gb|CP000970.1|
strain SMS-3-5; TW15838, gi|329753645|gb|AEJX01000001.1|E. sp. TW15838). C E. coli diagnostic gene relative abundance (Significantly
different at **Padj < 0.01, *Padj < 0.05, Dunn’s post-hoc test). Sample names are as in Fig. 1.
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samples but below the limit of detection or sequencing depth
required for robust assembly due -at least partly- to the higher
diversity and/or lower number of Atlanta samples. Therefore, it
would be interesting to study functional differentiation among the
P. copri populations in the future, based on a larger Atlanta sample
dataset. Despite this limitation, our preliminary results with the
available MAGs suggested that there are tens of genes (29 for
Atlanta P. copri MAGs and 12 for Maputo P. copri MAGs) that are
specific to each group of P. copri MAG and those genes mostly
encode for uncharacterized proteins, indicating that novel
functions may be carried by these Prevotella populations.
In addition to the difference in commensal bacteria, we also

observed the higher prevalence of pathogenic genomospecies in
the Maputo samples. For example, we observed a higher
prevalence of ETEC and typical EPEC in 0–23 month old Maputo
children, while these E. coli pathotypes were absent in the age-
matched Atlanta children. Our results offer quantitative insights
into the pathogen load of children in a sub-Saharan African
metropolitan area vs. a HIC city, and are consistent with previous
findings from the Global Enteric Multicenter Study, which

identified enterotoxigenic (ETEC) and typical enteropathogenic
(EPEC) E. coli to be associated with increased risk of death in
infants aged 0–11 months and show higher prevalence in sub-
Saharan Africa and South Asia [6]. Functional gene analysis of the
recovered E. coli MAGs revealed not only the higher frequency of
ARGs in the Maputo MAGs but also the high potential for the
horizontal transfer of such genes in Maputo (Fig. 4D).
It should be noted that 16S rRNA gene copy number of randomly

selected subsamples for Maputo and Atlanta children (i.e., three for
0–11 months and 12–23 months, and four for 24–48 months for
each region), as assessed by qPCR analysis, did not show significant
difference between the selected Atlanta and Maputo samples
(Kruskal-Wallis tests, P value > 0.1) (Fig. S10). This finding suggested
that our results based on the relative abundance are robust and
directly reflect absolute abundances. It should also be mentioned
that there were 49 Maputo samples in our collection with positive
detection of helminths, primarily Ascaris and Trichuris [22]. However,
helminth infection did not seem to have a major impact on
microbiome composition based on these samples (R2 value of
0.00911 with P value of >0.01, PERMANOVA) and thus, conclusions

Fig. 4 Antibiotic resistance gene (ARG) abundance and prevalence in children microbiomes. A total ARG abundance in Atlanta vs. Maputo
datasets (figure key). B MAGs carrying most of the ARGs. Each raw represents a different genomospecies (taxonomic identity is provided on
the right) and shows what fraction (figure key) of total ARGs in each sample (columns) is carried by the genomospecies. C Relative abundances
(measured as Genome Equivalents or GEs; y-axis) of antibiotic resistance classes in each age group (x-axis) that showed significant differences
in at least one age group comparison between the two locations. Padj 0.05* 0.01** 0.001***, based on Dunn’s test. Sample names are as in
Fig. 1. D Prevalence of ARGs in E. coli MAGs and their co-occurrence with mobile elements (integrons and transposons). For the complete
description of each ARG protein shown, see Table S10.
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(assuming also no helminth infection for all Atlanta samples;
helminth presence in Atlanta samples was not directly assessed by
our study). Finally, the age distribution in the 0–11 month group
was not even between Maputo and Atlanta cohorts. While 14 out of
the total 22 Atlanta 0–11 month samples were in 0–6 month age
range, contrasting with only 2 out of the 58 Maputo samples in the
same age range (i.e., 8 Atlanta samples and 56 Maputo samples
were in the 7–11 month age range). Therefore, we also compared
the two regions using only subjects between 7 and 11 months old.
We found that Nd values were still not significantly different
between the two regions for 7–11 month (median values of 17.02
for Atlanta and 16.68 for Maputo; P value of 0.1384, Kruskal-Wallis
tests). Thus, overall diversity does not appear to be substantially
different between the two regions at the younger age, although
more samples would be required for more robust conclusions in
the future.
Collectively, our results revealed that pathogen load and

asymptomatic infections in Maputo are highly prevalent and
require action toward developing a healthier gut microbiome,
which may support long-term health and well-being. Further, gut
pathogens in this cohort are accompanied by a high abundance of
ARGs, possibly related to the misuse or overuse of antibiotics in
both humans and animals in this setting [46]. Lack of proper
sanitation might be further promoting the spreading of ARGs and
pathogens [47]. Future studies focusing on the relationship
between environmental variables including WASH conditions,
and exposure to antibiotics should be expected to provide further
insights into effects of this relationship on the development of the
gut microbiota of children.

LIMITATIONS
Our study has limitations. Most notably, the sample size, while
adequate for statistically significant comparisons, it is still probably
limited in capturing the total diversity of the gut microbiome in
both regions. It would be interesting to see if the patterns
reported here apply to larger cohorts of children. Further, the
most of the collected metadata other than age and region (e.g.,
breastfeeding, occurrence of helminth, protists, and enteropatho-
gen based on sequence-independent means) were only available
in one of cohorts (not the other) and/or where not reported
systematically (e.g., antibiotic usage). This limited our assessment
of the importance of these factors for the differences observed
between the two regions.

DATA AVAILABILITY
The biosamples used in this study are available in NCBI, under BioProject number
PRJNA747761 (BioSample numbers SAMN20292687 to SAMN20292746 for Atlanta
metagenomes and SAMN20292760 to SAMN20292936 for Maputo metagenomes).
The MAG sequences recovered in this study are available under GenBank accession
numbers JAIHOP000000000 – JAIJYJ000000000, as well as through http://enve-
omics.ce.gatech.edu/data/atl_map_mags.
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