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Microbial communities in landfills transform waste and generate methane in an environment unique from other built and natural
environments. Landfill microbial diversity has predominantly been observed at the phylum level, without examining the extent of
shared organismal diversity across space or time. We used 16S rRNA gene amplicon and shotgun metagenomic sequencing to
examine the taxonomic and functional diversity of the microbial communities inhabiting a Southern Ontario landfill. The microbial
capacity for volatile organic compound degradation in leachate and groundwater samples was correlated with geochemical
conditions. Across the landfill, 25 bacterial and archaeal phyla were present at >1% relative abundance within at least one landfill
sample, with Patescibacteria, Bacteroidota, Firmicutes, and Proteobacteria dominating. Methanogens were neither numerous nor
particularly abundant, and were predominantly constrained to either acetoclastic or methylotrophic methanogenesis. The landfill
microbial community was highly heterogeneous, with 90.7% of organisms present at only one or two sites within this
interconnected system. Based on diversity measures, the landfill is a microbial system undergoing a constant state of disturbance
and change, driving the extreme heterogeneity observed. Significant differences in geochemistry occurred across the leachate and
groundwater wells sampled, with calcium, iron, magnesium, boron, meta and para xylenes, ortho xylenes, and ethylbenzene
concentrations contributing most strongly to observed site differences. Predicted microbial degradation capacities indicated a
heterogeneous community response to contaminants, including identification of novel proteins implicated in anaerobic
degradation of key volatile organic compounds.
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INTRODUCTION
The environmental impact and monetary cost of municipal solid
waste (MSW) storage and management are growing concerns for
municipalities and countries around the world. MSW generation
has increased exponentially with rising populations, increased
development, and urbanization [1, 2]. By 2025, the global annual
production of waste will reach an estimated 2.2 billion tons, and is
not predicted to hit a maximum in this century, reaching 4 billion
tons annually in 2100 [1, 3]. This is an unsustainable rate of
increase.
Landfills are the most common end point for MSW in many

countries, including Canada, the United States, and China. Landfills
are the third largest contributor to anthropogenic methane
emissions, contributing 11% of annual global methane emissions
and making them a focus area for mitigating climate change [3–5].
Waste degradation in landfills is controlled by the microbial
communities within the landfill and the built characteristics of the
landfill, such as leachate collection systems and cover soils [4, 6].
The first three steps of the general waste decomposition process are
reliant on bacteria: hydrolysis; acidogenesis, including both
fermentation and beta oxidation; and acetogenesis [6]. The last
step, methanogenesis, is dependent on methanogenic archaea [6].
Landfill deposits are diverse, both chemically and physically, which

can inhibit or prevent these microbial degradation processes [7].
Volatile organic compounds (VOCs) like chlorinated ethenes and
hydrocarbons commonly contaminate landfill waste, due to
improper dumping or as legacy waste deposited prior to regulations
on disposal. Microbially mediated volatile organic compound (VOC)
degradation in landfills impacts landfill emissions as well as
contaminant fate when VOCs are leaked into the surrounding
groundwater and terrestrial environment. Understanding the
ecology and diversity of the bacterial and archaeal community
structure in landfills will strengthen our understanding of the MSW
decomposition process, allowing for better control of methane
production and more efficient waste management and contami-
nant mitigation strategies.
Despite recent interest in landfill microbial diversity [7–12], much

is still unknown about landfill-associated microbial communities
and their distributed functions. Most early research focused on
specific aspects of waste degradation in landfills and the microbes
responsible, with particular interest in methane cycling [13, 14] and
cellulose degradation [15, 16] (See [17] and references within for a
review of direct landfill surveys and bioreactor-based examinations).
With the advent of high-throughput sequencing techniques like 16S
rRNA gene amplicon sequencing, overall landfill microbial diversity
and community composition have also been examined [7, 11]. The
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most abundant phyla consistently identified from landfills include
the Firmicutes, Bacteroidota, Campylobacterota (formerly Epsilonpro-
teobacteria [18]) and Proteobacteria [6, 7, 10, 11]. Methanogenic
archaea in landfills are typically predominantly hydrogenotrophs,
with Methanobacteriales and Methanomicrobiales frequently at high
abundance earlier in the landfill lifecycle [19]. Methanogens with
the capacity for acetoclastic, hydrogenotrophic, or multiple
methanogenic pathways are also common in landfills [19–21]. A
number of rare and/or unclassified microorganisms have also been
found in recent landfill studies, with some at high abundance [6, 7].
These studies allow for functions to be inferred for microorganisms
with well-characterized relatives, but the 16S rRNA gene cannot be
used to infer functions for unclassified microorganisms that are
uncultivated or newly described [6, 11]. There is a recognized need
for metagenome-level community profiling from landfills [20].
Several environmental or geochemical factors that influence

microbial community composition and heterogeneity have been
identified. The age of landfilled waste has been correlated with
microbial community composition characteristics [6, 7, 11, 22, 23].
Community composition was also correlated with moisture
[10, 11] and ammonium concentration [6, 10]. Other chemicals
that showed a link to microbial community composition included
barium, chloride, sulfate, and copper [7, 10]. Other chemical
factors seem to affect microbial communities in a site-specific
manner, and their effects will depend on the types of waste

deposited and other geochemical conditions at each site of
interest [7, 22, 24, 25].
The study site for this research was a municipal waste landfill in

southern Ontario, Canada that opened in 1972. This landfill is a
conventional sanitary landfill with onsite waste sorting, compacting,
and daily soil covers. The landfill is well-instrumented, with over 100
leachate wells (LW) across the site as well as three composite leachate
cisterns (CLC). The leachate wells are routinely sampled by regional
waste management staff to determine the chemical composition of
the leachate. There are also groundwater wells (GW) bordering the
landfill for monitoring the conditions of the adjacent aquifer and any
leachate leaks (e.g., there is on-going leachate infiltration from the
area near LW3 into the aquifer near GW1, Fig. 1). In order to
understand waste degradation processes, methane emission profiles,
and the transformation and movement of contaminants within the
site, it is important to understand microbial community hetero-
geneity as well as biodegradation capacity for contaminants of
concern across the landfill. Here, we combine metagenomic and 16S
rRNA gene amplicon sequencing techniques to characterize the
distribution, heterogeneity, and diversity of the microbial commu-
nities in a Southern Ontario municipal landfill. We additionally
investigate how the predicted microbial degradative capacities
connect with geochemical conditions across the site.

MATERIALS AND METHODS
Sample collection
In the initial sampling event on July 14, 2016, a sample was collected from
the composite leachate cistern by filtering the leachate through a 0.2 μm
poly-ethersulfone filter followed by a 0.1 μm poly-ethersulfone filter in
series (CLC_T1_0.2 and CLC_T1_0.1, respectively). Both filters were kept for
DNA extractions. On July 20, 2016, a larger-scale sampling was conducted,
sampling the composite leachate cistern (CLC_T2), three leachate wells
(LW1, LW2, LW3), and two groundwater wells (GW1, GW2). Leachate and
groundwater samples were collected by pumping liquid through a filter
apparatus with a 3 μm glass fiber pre-filter in series with a 0.1 μm poly-
ethersulfone filter until filters clogged. The pre-filter was discarded while
the 0.1 μm filters with microbial biomass were kept. All filters were frozen
on dry ice in the field and transferred to a −80 °C freezer until processed.
DNA was extracted from the biomass using the Powersoil DNA extraction
kit (MoBio) following the manufacturer’s instructions with one modifica-
tion: filters were sliced into pieces and added to the bead tube in place of a
soil sample.
Relevant measurements for volatile and non-volatile compound

concentrations at the leachate and groundwater wells are conducted
each year in October and April by a contracted consulting company. For
2016, the average values for these two sampling points were used to
estimate compound concentrations in July, the time of microbial biomass
sampling (Supplementary Table 1). The impacted groundwater well, GW1,
did not have current non-volatile concentration measurements available.
For this well, measurements from 2011 were included for comparison
purposes only (Supplementary Table 1). No geochemical measurements
were available for the composite leachate cistern.

Sequencing
All eight samples were sent to the US Department of Energy’s Joint
Genome Institute (JGI) for 16S rRNA gene amplicon sequencing: LW1, LW2,
LW3, CLC_T1 0.1 μm and 0.2 μm filters, CLC_T2, GW1, and GW2. The JGI
amplified the V4 region of the 16S rRNA gene using the forward primer
515 F (Parada) (5’-GTGYCAGCMGCCGCGGTAA-3’) and the reverse primer
806 R (Apprill) (5’- GGACTACNVGGGTWTCTAA -3’) using in-house protocols
(as described here, but with the above listed primers: https://jgi.doe.gov/
wp-content/uploads/2016/06/DOE-JGI-iTagger-methods.pdf). Amplicons
were sequenced on the MiSeq platform (Illumina) with extraction negative
controls, amplification negative controls, and positive controls, and reads
were quality control checked using the iTagger pipeline [26].
Six DNA samples were sent to the JGI for metagenomic sequencing,

assembly, and annotation: LW1, LW2, LW3, CLC_T1 (0.2 μm filter), CLC_T2,
and GW1. The CLC_T1 and GW2 0.1 μm filters resulted in insufficient DNA
and were not shot-gun sequenced. Metagenomes were sequenced as
paired-end 150 bp reads using the HiSeq platform (Illumina) and annotated
using the DOE-JGI Metagenome Annotation Pipeline (MAP v.4) [27].

Fig. 1 Map of landfill sampling locations at the Southern Ontario
landfill. Two groundwater wells accessing the adjacent aquifer were
sampled. The three samples from the leachate collecting cistern
were all sampled from the same cistern at two time points. Two filter
sizes were used for collecting microbial biomass on July 14, 2016
(CLC_T1_0.1 µm filter and CLC_T1_0.2 µm filter) and one filter size
was used on July 20, 2016 (CLC_T2_0.1 µm filter). The three leachate
wells are located within the active landfill, and leachate from these
wells is pumped to the leachate collecting cistern. The catchment
area for LW3 has an active leak infiltrating into the groundwater near
GW1. GW1, the impacted groundwater well, shows geochemical
evidence of leachate infiltration into the aquifer, where GW2 is
upstream and shows no leachate chemical signature in the
groundwater. The topographic map was modified from maps
provided by the Ontario Ministry of Natural Resources and Forestry.
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Phylogenetic trees
All assembled and annotated 16S rRNA genes in the landfill metagenomes
were downloaded from the JGI Integrated Microbial Genomics (IMG) server
(IMG Genome IDs: CLC_T1: 3300014203, CLC_T2: 3300014206, LW1:
3300014204, LW2: 3300015214, LW3: 3300014205, GW1: 3300014208).
Genes were sorted by length in Geneious 11.0.5 (https://
www.geneious.com) and curated to a minimum length of 600 bp. The
landfill metagenome-derived 16S rRNA genes as well as a reference set of
16S rRNA genes from known organisms were aligned with the SILVA SINA
algorithm [28]. Unaligned bases at the ends of the genes were removed
and sequences below 70% identity to a reference sequence were
automatically removed from the dataset by SINA. To curate the SINA
alignment, columns containing 97% or more gaps were removed, a region
of poor alignment was manually trimmed from the 3’ end, and sequences
falling below 600 bp post-trimming were removed. A phylogenetic tree
was inferred using FastTree in Geneious to check for poorly aligned or
divergent sequences. In this processing, 195 sequences were removed that
did not meet quality standards. The final 16S rRNA gene alignment
included 1903 reference sequences and 2306 sequences from the
metagenome samples, and had 1521 positions. A high-quality phyloge-
netic tree was inferred from the curated final alignment using RAxML-HPC2
8.2.12 [29] on CIPRES [30] under model GTRCAT, with 100 alternative
bootstrap iterations run from 100 starting trees. The full tree topology is
presented in Supplementary File 1.
All amino acid sequences for 16 syntenic, universally-present, single

copy ribosomal protein genes (RpL2, L3, L4, L5, L6, L14, L15, L16, L18, L22,
L24 and RpS3, S8, S10, S17, S19) for the landfill metagenomes were
downloaded from the JGI IMG server using annotation keyword-based
identification [31]. Ribosomal protein datasets were screened for the
Archaeal/Eukaryotic type, which were removed, as were short (<45 aa)
sequences. Each individual protein set was aligned with a reference set of
genes [32] using MAFFT 7.402 [33] on CIPRES. Alignment columns
containing ≥95% gaps were removed using Geneious. IMG-derived
sequence names were trimmed to 8 digits after the metagenome code
(e.g., Ga0172377_100004578 → Ga0172377_10000457) to remove gene-
specific identifiers and allow for concatenation by scaffold name. The
protein gene alignments were concatenated in numeric order (L2 → L24,
followed by S3 → S19). Concatenated sequences that contained less than
50% of the total expected number of aligned amino acids were removed.
The final alignment was 3452 columns long and contained 2914 reference
organisms and 1265 scaffolds from the metagenome samples. A
phylogenetic tree was inferred using RAxML-HPC Blackbox on CIPRES
using the following parameters: sequence type - protein; protein
substitution matrix – LG; and estimate proportion of invariable sites
(GTRGAMMA+ I) – yes [29, 30]. The full tree topology is presented in
Supplementary File 1.

16S rRNA amplicon sequence analyses
The demultiplexed and barcode-trimmed 16S rRNA gene amplicons from
the JGI were analyzed using QIIME2 [34]. Forward and reverse reads were
separated using khmer [35]. Primers were trimmed from the forward and
reverse reads using cutadapt in QIIME2 [36]. The forward reads were
truncated at 231 base pairs and the reverse reads at 230 base pairs based
on the quality score visualization produced by QIIME2 in the demux
summary step. Reads were denoised using paired denoising in DADA2
within the QIIME2 platform which also merges the reads [37]. Sequence
variants were determined using DADA2 and summarized using feature-
table summarize in QIIME2. Taxonomic assignment of the 16S rRNA gene
amplicons was based on a phylogenetic tree produced by QIIME2 in which
the taxonomy classifier was trained with the SILVA 99% taxonomy
classification for the 16S rRNA gene from the April 2018 SILVA 132 release
[38]. Phylum names were updated as per the GTDB database taxonomy
changes by Parks et al. (2018) for diversity comparisons.

Metagenomic binning
All scaffolds >2500 bp were included in the binning process. The binning
algorithm CONCOCT [39] was used in Anvi’o [40] to automatically cluster
each metagenome’s scaffolds using a combination of scaffold tetranucleo-
tide frequencies and read-mapped coverage data from all six metagen-
omes. Gene annotations were imported from the JGI annotations,
overriding the automated annotation pipeline in Anvi’o. The bins were
manually refined for the six metagenomes using Anvi’o, focusing on
completion and quality metrics to guide bin refinements. High quality bins
were considered those with greater than 70% completion and less than

10% redundancy. Read mapping was used to calculate coverage for McrA
and VOC-degradation gene-encoding scaffolds, restricted to scaffolds
2.5 kb or longer.

Diversity analyses
Diversity analyses on the 16S rRNA gene amplicon sequence variants
(ASVs) identified by QIIME2 [34] included the alpha diversity metrics Faith’s
phylogenetic diversity [41] and Pielou’s evenness [42], calculated based on
four sample types: impacted groundwater well, unimpacted groundwater
well, leachate well, and composite leachate cistern. A Shannon diversity
index analysis with rarified sequence depth of 53,518 was conducted using
QIIME2 and visualized using phyloseq [43] in R. A Chao1 statistic was not
calculated, as data processing with QIIME2 and DADA2 removes all
singleton ASVs, which the Chao1 statistic requires. For beta diversity
measures, full ASV and taxonomy tables were input to unweighted and
weighted UniFrac distances principle coordinate analyses, calculated using
phyloseq and visualized in R for all samples. The prevalence across samples
of ASVs with a count of 2 or more and belonging to phyla with relative
abundance greater than 1% or present in multiple sites was determined
using phyloseq and visualized in R. The phyla with ASVs present in five or
more sites was visualized using ggplot2 in R.
A principal component analysis (PCA) was conducted using vegan [44] in

R for all 16S rRNA gene amplicon ASVs and the16S rRNA gene amplicon
ASVs present at five or more sites. The ASV count data was Hellinger
transformed to reduce the weight of ASVs with low counts and zeros. The
leachate wells and the two groundwater well samples were included in the
PCA to allow for comparison with environmental parameters, which
are available for those sites. Environmental data was not available for the
composite leachate cistern site and so CLC samples were included in the
analysis only for comparison with the other samples.
Metagenome-derived sequences were classified at the phylum level

based on their placement within reference clades on the 16S rRNA and
concatenated ribosomal protein phylogenetic trees. Metagenome
sequences placing outside of or between phyla were assigned to either
“Unclassified Archaea” or “Unclassified Bacteria” as appropriate. Phylum
names were updated from the NCBI taxonomy to conform to the GTDB
database taxonomy by Parks et al. (2018). Bins were identified at the
phylum level using the scaffold assignments from the 16S rRNA gene and
concatenated ribosomal protein phylogenetic trees. Bin abundances
were determined using the average fold coverage data for all scaffolds
in the bin. Phylum abundance per sample was calculated by summing the
average fold coverage data for each scaffold on the tree assigned to the
phylum, where the scaffold acts as a proxy for the underlying microbial
population. Microbial diversity comparisons were visualized using stacked
bar plots produced using ggplot2 in R [45].

Chemical data analyses
Chemical measurements provided by the Southern Ontario landfill 2016
annual report were used to determine variance of non-volatile and volatile
compounds over time for the three leachate wells and the unimpacted
groundwater well. GW1 only has non-volatile compound measurements
for one time point in 2011 and so variance could not be calculated. Non-
detects, where a compound, if present, is below the detection limit, were
treated as zeros. The measurements were log transformed and visualized
in a heatmap using heatmap3 [46] in R. Metal and volatile compounds
detected in a majority of samples were used for further analysis. The
measurements from April and October of 2016 were averaged to estimate
the concentrations at the time of microbial biomass sampling.
PCA for the metals and volatile compounds were conducted using

vegan [44] in R. The metal and volatile compound concentrations were
square root transformed to reduce the range of the values as different
compounds differed in concentration by orders of magnitude (Supple-
mentary Table 2). Data for leachate wells and the two groundwater well
samples were included for the volatile analysis, but GW1 was excluded
from the non-volatile compound analysis as no data were available for that
site in 2016. A PCA was also conducted using vegan in R for the other
geochemical parameters measured at the sites that are not characterized
as non-volatile or volatile compounds (e.g., total dissolved solids (TDS)).

Methanogenesis and VOC degradation capacity
KEGG KO numbers for mcrA and key anaerobic degradation enzymes for
the dominant VOCs detected at the Southern Ontario landfill were
searched from the annotations for all six metagenomes. Reductive
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dehalogenases’ catalytic subunits (RdhA), responsible for chlorinated
ethene, ethane, and benzene degradation, were annotated by pfam13486
instead of a KO. AbcA, the carboxylase associated with anaerobic benzene
degradation [47] does not belong to a KO, and instead was searched using
manual BLASTp [48] using three characterized enzymes as queries
(ADJ94002.1, WP_011237597, GI10697123) with an initial threshold
of e < 1e−30.
Annotated proteins were screened through a combination of phyloge-

netic placement and/or in-depth annotation using BlastKoala [49] and
NCBI’s conserved domains feature [50]. All hits were required to have a
minimum length of 250 amino acids or a length at least 50% that of the
reference sequences if that minimum was below 250 aa (i.e., >200 aa for
RdhA, >204 aa for AbcA). Outgroup proteins were derived from literature
for each protein of interest (see Table 1 for outgroup protein names and
references).
Proteins were aligned to reference and outgroup sequences using

Muscle SRC v. 3.8.1551, columns containing >97% gaps were trimmed
using Geneious Prime v. 2021.2.2, and phylogenetic trees inferred using
FastTree2 [51]. Metagenome-derived protein sequences that passed the
length threshold, affiliated with the correct clade in phylogenetic trees,
and had consistent annotations to the functions of interest from BlastKoala
or the Conserved Domains Database were kept (Table 1). Connection to
high quality MAGs was determined based on scaffold IDs. MAG taxonomy
was based on GTDB-tk [52]. Relative distribution compared to VOC
concentration at each sampling site was assessed (Table 1).
RdhA and AbcA were selected for deeper examination. Using the CIPRES

phylogenomics webserver [30], alignments were tested for the best model
of evolution under ModelTest-NG v.0.1.5 [53] and inference of maximum
likelihood trees conducted using RAxML-HPC v. 8.2.12 [54] under the best-
fit model (LG+G+ I for AbcA; VT+G+ I for RdhA), and with automatic
bootstopping to identify the appropriate number of bootstrap resam-
plings. For reductive dehalogenases, a reference set from [55] was used to
confirm reductive dehalogenase protein annotations, phylogenetic affilia-
tion, and potential substrate specificities. For AbcA, the three proteins
associated with tigrfam TIGR02723 were included as positive controls, with
reference sequences for UbiD carboxylase (pfam01977) included as an
outgroup [56].

RESULTS
Phylum level diversity
Solid waste sampling of the landfill was not possible, as disruption
to the landfill cover was not permitted. Instead, we sampled
leachate from monitoring wells to gain insight to the planktonic
microbial community circulating within the landfill. Samples were
collected from three leachate wells (LW1, LW2, and LW3), two
samples from a composite leachate cistern at time points
separated by one week (CLC_T1 and CLC_T2), and samples from
two groundwater wells (GW1 and GW2) adjacent to the landfill
(Fig. 1). 16S rRNA amplicons and shotgun metagenomes were
generated and processed as discussed in the methods.
The 16S rRNA amplicon sequences were taxonomically classi-

fied and relative abundances were determined using QIIME2 [34].
From the 16S rRNA gene analysis, 8030 amplicon sequence
variants (ASVs) were identified across the sampled sites with an
average of 1147 ASVs per site. In tandem, metagenomic scaffolds
were identified to the phylum level via placement on phylogenetic
trees inferred based on the 16S rRNA gene and a suite of sixteen
concatenated ribosomal proteins. Phylogenetic trees included
1265 and 2306 metagenome-derived sequences for the ribosomal
protein and 16S rRNA gene trees, respectively. The total number of
medium or higher quality metagenome assembled genomes
(MAGs, >70% completeness, <10% contamination) resolved from
the six metagenomes was 503. Taxonomy information was
combined with scaffold coverage data to determine the relative
abundances of phyla present in the landfill metagenomes.
Twenty-five phyla were present at greater than 1% relative
abundance in at least one landfill sample (Fig. 2). Phylum level
profiles were relatively consistent between the 16S rRNA gene
amplicon and metagenomic sequencing data (Fig. 2). A notable
exception was the Patescibacteria (Candidate Phylum Radiation),
which make up a comparatively reduced proportion of the 16S

rRNA gene amplicon results (max relative abundance of 30.78%, in
GW1) but exhibit the highest relative abundances in the
metagenomic data (mean relative abundance of 34% and max
relative abundance of 79%, in GW1, based on the coverage of the
ribosomal protein-encoding scaffolds). The Bacteroidota (mean:
16%, max: 31.89% in CLC_T1), Firmicutes (mean: 10.19%, max:
28.74% in CLC_T1), and Proteobacteria (mean: 10%, max: 28% in
LW2) were also highly abundant across the landfill sites.

Alpha and beta diversity metrics
Alpha and beta diversity metrics were calculated based on the 16S
rRNA gene amplicon sequences using QIIME2 and the phyloseq
package in R [43]. All of the landfill samples had a Shannon index
above 5.0 for the 16S rRNA gene amplicon data (Fig. 3). There was
no significant difference between the sample types (groundwater,
leachate wells, leachate cisterns) when considering Faith’s
phylogenetic diversity (Supplementary Fig. 1A). The eight samples
also exhibited high Pielou’s evenness (J’ > 0.74) with no significant
differences between sample types (Supplementary Fig. 1B).
Principle coordinates analysis (PCoA) plots using weighted and

unweighted UniFrac distances based on 16S rRNA gene amplicon
ASVs showed separation of the samples by type (Supplementary
Fig. 2). The inclusion of abundance data in the weighted UniFrac
analysis increased the explained variation on axes 1 and 2 by a
combined 24.1%, suggesting that presence/absence and phylo-
genetic distance data implemented in the unweighted UniFrac are
not sufficient to resolve the differences in beta diversity between
sites in two dimensions. The inclusion of differences in abundance
and overlap of ASVs between sites increased separation of the
samples by type.

Diversity of ASVs
The prevalence of 16S rRNA ASVs was determined using phyloseq
and visualized in ggplot2 [45] in R (Fig. 4). The abundance of ASVs
present at 5 or more sites was summarized by phylum (Supplemen-
tary Fig. 3). Although phylum level diversity was relatively consistent
across the composite leachate cistern, leachate wells, and
GW1 sample, the diversity at the ASV level is nearly entirely non-
overlapping. The majority of ASVs identified from the top 25 phyla
are present in only a single sample (Fig. 4) with only 121 of 8030
ASVs present across five or more samples (Fig. 4 and Supplementary
Fig. 3). In addition to the top 25 phyla, ASVs belonging to LCP-89,
Micrarchaeota, and an unclassified group of Deltaproteobacteria were
also present in five or more sites. The abundance of phyla with
populations across 5 or more phyla ranges by several orders of
magnitude from 134 total ASV counts for Elusimicrobiota to 83,545
total ASV counts for Bacteroidota (Supplementary Fig. 3). Of the 8030
ASVs, 73.82% were found in only one sample and the number of
ASVs shared between any two sites is at maximum 1165 ASVs (Fig. 4
and Supplementary Table 1). Principle component analysis (PCA) for
all ASVs showed separation of composite leachate cisterns, leachate
wells, and groundwater wells is driven by highly abundant ASVs
(Supplementary Fig. 4A). When considering only ASVs present at five
or more sites, LW2 is separated from LW1 and LW3 along PC2 and
GW1 is separated from all other sites along PC1 (Supplementary
Fig. 4B).

Microbial diversity at groundwater wells
There are marked differences in the groundwater microbial
communities from GW1 and GW2, the leachate-impacted and
unimpacted wells, respectively. GW1 has a high abundance of
Patescibacteria while also sharing a more similar phylum-level
profile to the leachate wells than to GW2 (Fig. 2). The sample from
GW2 had insufficient microbial biomass for metagenomic
sequencing, but 16S rRNA gene amplicon sequencing showed
that GW2 has a distinct microbial community compared to
all other sites, including a higher relative abundance of
Nanoarchaeaota (20.7%) and Omnitrophota (14.1%) (Fig. 2). The
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difference in microbial community composition between GW1
and GW2 is also reflected in their alpha diversity metrics. GW1 has
the lowest Shannon index of the eight samples (Fig. 3) as well as
the lowest Faith’s phylogenetic diversity (Supplementary Fig. 1A).
A lower richness and evenness are expected in GW1, as the mixing
of leachate and groundwater creates a suboptimal environment
for microorganisms adapted to either environment [57].

Analysis of geochemical parameters
Geochemical parameters, including concentrations of volatile and
non-volatile compounds, are measured quarterly by a contracted
monitoring company. The statistical power available for analysis of
geochemical parameters in the landfill was limited by the availability
of data. Non-volatile compound measurements were only available
for four sites and volatile compound measurements for five sites
(Supplementary Table 2). Non-volatile and volatile compound
concentrations varied significantly between sites when compared
using an ANOVA (p < 9.14e−14 and p< 2e−16, respectively), with a
large range between sites for several non-volatile and volatile
compounds (Fig. 5). The date of measurement was not significant for
either volatiles or non-volatiles when compared using an ANOVA
(p= 0.56 and p= 0.73, respectively). The April and October 2016
measurements for the PCA analysis were averaged to estimate
conditions during the July sampling for microbial biomass. Sodium
and potassium were removed as outliers because their excessively
high concentrations in LW2 (Supplementary Table 2) caused their
variance to mask any differences in other compounds in the
analyses. From the PCA, calcium, iron, magnesium, and to a lesser
degree, boron contributed to the differences between the leachate
wells and GW2 (Fig. 5C). For the volatile compounds, nearly all of the
observed variation is explained by PC1 (97.4%), largely due to the
punctuated presence of m- & p- xylenes in LW1 and LW3, and of o.
xylenes and ethylbenzene in LW1 (Fig. 5B, D).

Methanogen populations
The potential for methanogenesis was determined using annota-
tions for the alpha subunit of methyl-coenzyme M reductase

(McrA; K00399). A total of 94 McrA protein-coding sequences were
identified from the six metagenomes, ranging from 1 (GW1) to 25
(CLC_T2) per metagenome (Table 1). Of these, 31 were encoded
on scaffolds >2.5 kb, and 17 were binned into high quality MAGs
(Table 2). The taxonomic affiliations of the mcrA-encoding MAGs
include nine methylotrophic members of the Methanomethylphi-
laceae as well as seven acetoclastic MAGs from the Methanor-
egulaceae (3), Methanotrichaceae (3), and Methanocullaceae (1)
(Table 2). The final mcrA-encoding MAG is classified as a
Methanofastidiosaceae, predicted to use methylated thiols as
input to the methanogenesis pathway. McrA-encoding scaffolds
and MAGs were moderately abundant, with an average scaffold
coverage of 17.72 (dataset average: 13.5, median= 7.4), and MAG
average coverages from 6.36–42.32 (Table 2, average coverage of
all MAGs: 14.95–31.02 across the six metagenomes).

VOC degradation capacity
An annotation-based screen was conducted to assess
the potential capacity for volatile organic compound degrada-
tion, focusing on anaerobic degradation of chlorinated
solvents (ethenes, ethanes, benzenes), BTEX compounds,
1,4-dichlorobenzene and chlorobenzene, and 1,4-dioxane as
the predominant VOCs impacting the site. Following curation of
annotated proteins for phylogenetic consistency and homology
to characterized VOC degrading proteins, 111 protein-coding
genes with VOC-degradation relevance were identified (Table 1),
12 of which were associated with high quality MAGs (Table 2).
For the reductive dehalogenases, 76 genes were detected, but

only 22 passed the length threshold for phylogenetic placement
and substrate specificity examination. All reductive dehalogenase
genes, including ones too short for placement, were identified
from the landfill metagenome samples. The metagenome for GW1
did not contain any reductive dehalogenase genes, despite this
being the only site where chlorinated solvents were detected in
the geochemical analyses (68 µg/L total concentration, Supple-
mentary Data 2). Reductive dehalogenases have been identified
from a diverse suite of organisms with organohalide respiration

Table 1. Detection of anaerobic volatile organic compound degradation proteins.

Count of curated gene at landfill site 
Protein Annotation VOC target KEGG/Pfam LW1 LW2 LW3 GW1 CLC_T1 CLC_T2 Total Outgroup Reference 

RdhA Reductive 
dehalogenase 

Chlorinated 
ethenes, ethanes, 
benzenes

pfam13486 2 12 6 0 0 2 22 Non-Chloroflexi 
RdhAs 

[55] 

AbcA Anaerobic 
benzene 
carboxylase 

Benzene N/A, 
BLASTp 

0 1 6 0 0 0 7 UbiD [47, 56] 

BssA Benzylsuccinate 
synthase 

Xylene, toluene K07540 10 3 26 1 0 0 40 Glycerol 
dehydratase; PFL

[86] 

EbdA Ethylbenzene 
dehydrogenase 

Ethylbenzene K10700 0 19 19 0 0 2 40 Dimethylsulfoxide 
family 
representatives

[63] 

TcbB Chlorobenzene 
dihydrodiol 
dehydrogenase 

1,4- 
dichlorobenzene, 
chlorobenzene

K16269 0 1 0 0 0 0 1 N/A 

DxmA Dioxane 
monooxygenase 

Dioxane K18223 0 1 0 0 0 0 1 Mycobacterium 
rhodesiae strain 
JS60 (AY243034)

[87] 

PrmA Propane 
monooxygenase 

Dioxane K16157 0 0 0 0 0 0 0 Propane 
monooxygenases

[66] 

McrA Methyl-coenzyme 
M reductase 
alpha subunit 

Methane 
(production) 

K00399 18 21 11 1 18 25 94 N/A 

Cells for LW1,2, and 3 and GW1 are shaded based on concentration of the relevant VOC at that site, with absence in white and gradation of grey
(light= 1–10 µg/L, medium= 10–50 µg/L, dark= >50 µg/L). Geochemical information was not available for the CLC site. Dioxane degradation proteins are
both obligately aerobic – no anaerobic degradation pathway has been identified to date. Supplementary Data File 2 includes aerobic degradation options as
well as accessions for all curated proteins in this table. PFL pyruvate formate lyase.
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capacity [55]. All RdhA genes detected at the southern Ontario
landfill are most closely related to those from the Chloroflexota
organisms Dehalococcoides and Dehalogenimonas (Fig. 6). One
partial protein gene from LW3 has high homology to TceA, the
Dehalococcoides-encoded RdhA involved in degradation of
trichloroethene (TCE) to dichloroethene (DCE) [58]. In our screen,
there were no homologs to VcrA and BvcA, the two known
proteins that can dechlorinate vinyl chloride (VC) to non-toxic
ethene [59, 60], indicating VC degradation may be limited or
absent. No other landfill-derived sequences were associated with
reference sequences with known substrate specificities (Fig. 6).
For anaerobic benzene degradation, 183 AbcA hits were identified

via BLASTp, with 177 passing the length requirement. Based on the
phylogeny containing AbcA and UbiD representative proteins, 7 of
these sequences place within or next to the AbcA clade, and were
scored as potential AbcA in the landfill metagenomes (Table 1, Fig. 6).
AbcA genes were identified from LW2 and LW3, while benzene was
detected at LW1, LW3, and GW1. One AbcA gene was associated with
a MAG from the gammaproteobacterial genus Sterolibacterium
(LW3_68). Current characterized Benzene degraders with AbcA are
from the genera Thauera and Aromatoleum, making this an expansion
of the taxonomic as well as sequence diversity of this recently
described remediation-relevant protein family.
Anaerobic xylene and toluene degradation was screened based on

presence of benzylsuccinate synthase (BssA) [61, 62]. An initial 147
annotated proteins were curated to 26 based on length requirements
and phylogenetic affiliations, with BlastKoala confirming annotation
for 22 of these as well as an additional 14 proteins (Supplementary
Data 2). The 40 proteins passing tree-based curation and/or
BlastKoala annotation are reported in Table 1. Unlike for chlorinated

solvents, xylene and toluene degradative capacity tracks with
contaminant concentrations: LW1 and LW3 have both the highest
concentration of xylene and toluene, as well as the highest count of
predicted benzylsuccinate synthases (LW1: 1307 µg/L, 10 BssA; LW3:
211.2 µg/L, 26 BssA). LW2 and GW1 have lower concentrations of
xylene and toluene, and fewer detected BssA (LW2: 43.3 µg/L, 3 BssA;
GW1: 0.1 µg/L, 1 BssA). No bssA genes were detected in the CLC
metagenomes.
Ethylbenzene degradation capacity was examined through

ethylbenzene dehydrogenase (EbdA), a member of the dimethyl-
sulfoxide (DMSO) reductase family [63]. An initial 112 sequences
were cut to 41 following length filtration, with 40 placing as
putative EbdAs on a tree rooted with nitrate reductases,
dimethylsulfoxide dehydrogenases, selenate reductases, perchlo-
rate reductases, and chlorate reductases, following the tree in [64].
Of these, ten were associated with two MAGs, one member of the
Rhodocyclaceae encoded seven EbdA proteins (LW3_42), and one
member of the Sterolibacterium encoded 3 (LW3_67; not the same
MAG as encoded the AbcA). Ethylbenzene was detected at all four
sites with geochemical data. LW1 had the highest concentration
(275 µg/L), with no detected EbdA from the corresponding
metagenome. LW2 and LW3 had moderate levels of ethylbenzene,
and strong EbdA counts (LW2: 8.25 µg/L, 19 EbdA; LW3: 17.5 µg/L,
19 EbdA). The remaining two EbdA were identified from CLC_T2,
while GW1, which had trace ethylbenzene (0.1 µg/L) and CLC_T1
had no EbdA detected.
Anaerobic degradation of chlorobenzene and 1,4-dichlorobenzene

is catalyzed by chlorobenzene dihydrodiol dehydrogenase (TcbB).
Only 4 hits were identified based on KO annotations, all from LW2. Of
these, only 1 had >75% ID at the amino acid level to chlorobenzene
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Fig. 2 Relative abundances for phyla present at greater than 1% abundance in at least one sample. A) 16 S rRNA gene amplicons; B) 16 S
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metagenomes, with scaffold coverage as a proxy for abundance; and D) high quality bins (containing the 16 concatenated ribosomal proteins,
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reported here.
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dihydrodiol dehydrogenase as its closest database homolog. The
other three were more closely related to cis-2,3-dihydrobiphenyl-2,3-
diol dehydrogenases. None were assigned to the correct annotation
using BlastKoala. The one putative TcbB is reported here. LW1 and
LW3 have detectable chlorobenzenes in the leachate (6.0 and
15.3 µg/L net chlorobenzenes, respectively), while LW2, the sample
with a putative TcbB, did not have any detectable chlorobenzenes.
1,4-dioxane degradation was included in this screen as a

contaminant of interest for the site engineers. There are currently
no known anaerobic 1,4-dioxane degradation pathways. To examine
the latent potential for aerobic dioxane degradation, we focused on
DxmA and PrmA, the two enzymes capable of 1,4-dioxane
degradation without requiring induction from a co-contaminant
(e.g., toluene, propane) [65–69]. From an initial set of 20 putative
DxmA and 33 PrmA, only one DxmA, from LW2, passed length
requirements and phylogenetic tree-based curation. Clustering with
the DxmA from Pseudonocardia dioxanivorans, this protein is
annotated with an aromatic and alkene monooxygenase hydroxylase
domain by NCBI’s conserved domain database, and was encoded on
a high quality MAG (LW2_26). Notably, LW2_26, from an unclassified
genus within the family Solirubrobacteraceae, is the 14th most
abundant MAG across all metagenomes (average coverage= 118.64;
Table 2). 1,4-Dioxane was only detected at GW1 (26 µg/L), whose
paired metagenome contained no identified dioxane degradative
capacity.

The curated VOC degradation proteins were moderately
abundant, with average scaffold coverages for genes on scaffolds
over 2.5 kb ranging from 10.2–26.94 (BssA= 10.2; RdhA= 11.6;
TcbB (one gene)= 17.4; DxmA (one gene)= 19.4; EbdA= 24.6;
AbcA= 26.9; all scaffolds’ average coverage= 13.5, median= 7.4).

DISCUSSION
Phylum level diversity
The phylum level diversity in this landfill is generally consistent
with other studies, where Bacteroidota, Firmicutes, and Proteobac-
teria are frequently detected as the most abundant bacterial phyla
in landfills [7, 10, 11]. Interestingly, our study uncovered a high
abundance of Patescibacteria in the landfill that had not been
found in previous studies [7, 11]. Previous landfill microbial
diversity studies have relied on 16S rRNA gene amplicon
sequencing, which may have systematically underestimated the
abundance of Patescibacteria due to primer mismatches and long
insertions in the rRNA genes [70]. Patescibacteria can be more
robustly identified using metagenomic techniques [71].

Alpha diversity
Shannon Indices above 5 for each site indicates that the landfill
sites each have relatively high levels of microbial richness and
evenness. This is greater than seen in some soil microbial
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communities, such as those in the Canadian prairies (1 < H < 4.5),
and similar to others, such as in forest and agricultural land in
Burgundy, France (4.5 < H < 6.1) [72, 73]. Soil microbial commu-
nities show variation in richness and evenness with latitude and
temperature as well as nutrient inputs into the system [74]. In
comparison, there were no significant differences among our
samples, however, GW1 showed lower richness and overall
phylogenetic distance than the other samples, but similar
evenness with GW2. The alpha diversity of these groundwater
wells is greater than has been reported for other groundwater
aquifers, with Shannon Index values typically reported as below 4
and as low as 0.47 for some [75, 76]. The landfill leachate well and
composite leachate cistern sample diversities are consistent with
the findings of Stamps et al. (2016), who showed high richness
and evenness across the 19 U.S. landfills in their study. Similarly,
the leachate richness and evenness is consistent with municipal
wastewater values in Belgium (4.71 < H < 5.26 for bacteria) and
China (5.80 < H < 6.23) [77, 78]. The implication of these high alpha
diversity values is that the landfill microbial communities consist
of phylogenetically diverse microorganisms that have relatively
equal abundances at the species level regardless of the presence
of dominant phyla.

Diversity of amplicon sequence variants
Although leachate does not provide a complete representation of
the microbial community present within the landfill [79], we were
specifically interested in shared microbial populations. The
circulating leachate would thus potentially over-estimate pre-
valence of microbial populations across the site. This makes the
observation that the majority (73.82%) of the ASVs are limited to
one sample, even more striking. Of the 2102 ASVs shared between
at least 2 sites, 1135 are shared between CLC_T1 and CLC_T2,
suggesting that there is some proportion of the community in the

composite leachate cistern that is maintained over at least a one-
week interval or otherwise continually entering the cistern from
the leachate wells. LW1 and LW2 consistently share more ASVs
with CLC_T1 and CLC_T2 than LW3, suggesting LW1 and LW2
contribute greater amounts of leachate to the composite leachate
cistern (Supplementary Table 1). Interestingly, GW2, the unim-
pacted well, shares more ASVs in common with the leachate wells
and the composite leachate cistern than GW1, the impacted well,
with 399 shared ASVs to 186 ASVs, respectively (Supplementary
Table 1). This is in contrast to the phylum-level differences seen for
GW2 compared to landfill samples, and suggests there is some
interconnectivity even between the unimpacted groundwater and
the leachate—most likely caused by groundwater infiltrating the
landfill. Leachate near the LW3 location is known to impact
groundwater near GW1 and this is supported by the higher
number of shared ASVs between GW1 and LW3 than any of the
other sites (Supplementary Table 1). The high number of ASVs
present at only one site indicate rare operational taxonomic units,
as described by Köchling et al. (2015) and Cardinali-Rezende et al.
(2016), may play an oversized role in landfill microbial commu-
nities. Rare or non-prevalent organisms are hypothesized to act as
seeder or starter communities during environmental changes or
disturbances. Under this hypothesis, the landfill is undergoing a
constant state of disturbance and change, driving the extreme
heterogeneity observed.

Microbial diversity of groundwater wells
The two groundwater wells allow a comparison between a natural
groundwater environment and a leachate contaminated environ-
ment. GW1 is situated closer to the active landfill, and leachate
from the region around LW3 is leaking into the groundwater near
GW1 (Fig. 1). GW2 is further from the active landfill and is
embedded in a region of the aquifer that shows no evidence of
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contamination from the landfill leachate (Fig. 1, top left corner).
Landfill leachate solubilizes a number of potentially harmful
chemicals [7], and can be enriched with carbon and nitrogen [57].
Leachate leakage is reflected in the geochemistry data, with a
number of metals and volatile compounds detected at GW1 but

not GW2 (Fig. 5). The higher concentration of 1,4-dioxane, vinyl
chloride, and chloroethane compounds in GW1 in comparison to
the leachate wells (Fig. 5) may be due to loss of the landfill
microorganisms capable of degrading those compounds in the
aquifer near GW1. Lu et al. (2012) showed that when landfill

A

E

D

B

C

Fig. 5 Environmental variation between landfill and aquifer sites for non-volatile (mg/L) and volatile (µg/L) compounds. A Heat map of
non-volatile compound concentrations and other site parameters (log10 transformed) across four dates for the three leachate wells and the
unimpacted groundwater well. Only one date (April 2011) was available for the impacted groundwater well (GW1). Stars indicate low levels of
cadmium and mercury not visible on the heatmap that may be biologically relevant. B Heat map of volatile compound concentrations (log10
transformed) across four dates for the leachate and groundwater wells. C Principal component analysis of metal concentrations at the three
leachate wells and the unimpacted groundwater well. Metal concentration data was square root transformed. PC1 explains 79.6% of variation
and PC2 explains 18.4% of variation. D Principal component analysis of volatile compound concentrations at the three leachate wells and the
unimpacted groundwater well. Volatile compound concentration data were square root transformed. PC1 explains 97.4% of variation and PC2
explains 2.4% of variation. E Principal component analysis for non-metal, non-volatile compounds, derived from measurements at the three
leachate wells and the unimpacted groundwater well. Concentration data was square root transformed. PC1 explains 99% of the variation.

A.H. Sauk and L.A. Hug

9

ISME Communications



Ta
bl
e
2.

G
en

o
m
e
in
fo
rm

at
io
n
fo
r
M
A
G
s
ca
rr
yi
n
g
V
O
C
d
eg

ra
d
at
io
n
g
en

es
o
r
M
cr
A
as

a
m
ar
ke
r
fo
r
m
et
h
an

o
g
en

es
is
.

M
A
G

JG
I
g
en

e
ac
ce
ss
io
n

M
A
G

co
v.

M
A
G

co
m
p
.

M
A
G

co
n
t.

R
el
ev

an
t
p
ro
te
in

M
A
G

Ph
yl
um

Lo
w
es
t
n
am

ed
ta
xo

n
om

ic
cl
as
si
fi
ca
ti
on

V
O
C
d
eg

ra
d
at
io
n

LW
3_

42
G
a0

17
23

80
_1

00
00

03
81

17
.0
9

96
.8
9

1.
45

Eb
d
A

G
am

m
ap

ro
te
ob

ac
te
ria

F:
Rh

od
oc
yc
la
ce
ae

G
a0

17
23

80
_1

00
00

18
11

29

G
a0

17
23

80
_1

00
00

70
81

4

G
a0

17
23

80
_1

00
00

72
71

0

G
a0

17
23

80
_1

00
02

59
54

G
a0

17
23

80
_1

00
04

20
83

G
a0

17
23

80
_1

00
07

31
27

LW
3_

67
G
a0

17
23

80
_1

00
00

40
66

5
50

.6
2

95
.1
6

6.
85

Eb
d
A

G
am

m
ap

ro
te
ob

ac
te
ria

G
:S
te
ro
lib
ac
te
riu

m

G
a0

17
23

80
_1

00
00

40
66

8

G
a0

17
23

80
_1

00
00

80
82

LW
3_

68
G
a0

17
23

80
_1

00
00

64
92

16
.8
3

90
.1

6.
08

A
b
cA

G
am

m
ap

ro
te
ob

ac
te
ria

G
:S
te
ro
lib
ac
te
riu

m

LW
2_

26
G
a0

17
23

82
_1

00
08

00
76

11
8.
64

97
.0
1

0
D
xm

A
A
ct
in
ob

ac
te
rio

ta
F:

So
lir
ub

ro
ba

ct
er
ac
ea
e

M
et
h
an

o
g
en

es
is

C
LC

_T
1_

10
G
a0

17
23

78
_1

00
00

28
7

16
.3
9

98
.4
3

1.
15

M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
1_

33
G
a0

17
23

78
_1

00
05

62
2

8.
03

89
.1
1

0.
81

M
cr
A

Th
er
m
op

la
sm

at
ot
a

G
:M

et
ha

no
m
et
hy
lo
ph

ilu
s

C
LC

_T
1_

68
G
a0

17
23

78
_1

00
09

83
2

39
.9
4

86
.0
2

0.
81

M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
1_

8
G
a0

17
23

78
_1

00
05

09
8

14
.8
1

92
.3
4

0
M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
2_

10
0

G
a0

17
23

77
_1

00
02

18
4

8.
72

92
.0
8

0.
81

M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
2_

32
G
a0

17
23

77
_1

00
00

07
4

9.
59

87
.9

0.
81

M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
2_

5
G
a0

17
23

77
_1

00
38

92
0

14
.0
3

73
.3
9

5.
24

M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

C
LC

_T
2_

58
G
a0

17
23

77
_1

00
04

41
3

11
.2
8

85
.9
6

5.
88

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
cu
lle
us

C
LC

_T
2_

72
G
a0

17
23

77
_1

00
09

82
7

6.
36

74
.0
6

0.
31

M
cr
A

Th
er
m
op

la
sm

at
ot
a

G
:M

et
ha

no
m
et
hy
lo
ph

ilu
s

LW
1_

13
G
a0

17
23

81
_1

00
06

70
7

15
.6
9

95
.1

1.
96

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
th
rix

LW
1_

26
G
a0

17
23

81
_1

00
00

05
6

42
.3
2

96
.9
3

1.
31

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
re
gu

la

LW
1_

61
G
a0

17
23

81
_1

00
28

86
9

18
.1
6

72
.6
9

3.
59

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
re
gu

la

LW
2_

10
9

G
a0

17
23

82
_1

00
01

11
7

10
.4
4

94
.3
7

3.
47

M
cr
A

Eu
ry
ar
ch
ae
ot
a

G
:M

et
ha

no
fa
st
id
io
su
m

LW
2_

65
G
a0

17
23

82
_1

00
03

74
0

6.
99

77
.2
4

0
M
cr
A

Th
er
m
op

la
sm

at
ot
a

F:
M
et
ha

no
m
et
hy
lo
ph

ila
ce
ae

LW
2_

73
G
a0

17
23

82
_1

00
06

11
6

14
.3
8

99
.3
4

0
M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
th
rix

LW
3_

11
G
a0

17
23

80
_1

00
22

90
8

10
.6
6

71
.1
4

2.
66

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
th
rix

LW
3_

55
G
a0

17
23

80
_1

00
15

88
0

7.
69

70
.5
7

1.
99

M
cr
A

H
al
ob

ac
te
ro
ta

G
:M

et
ha

no
re
gu

la

M
A
G
co
v.
av
er
ag

e
co

ve
ra
g
e
o
f
sc
af
fo
ld
s
w
it
h
in

th
e
M
A
G
b
as
ed

o
n
re
ad

m
ap

p
in
g
,M

A
G
co
m
p.

M
A
G
co

m
p
le
ti
o
n
as

ca
la
cu

la
te
d
b
y
C
h
ec
kM

,M
A
G
co
nt
.M

A
G
co

n
ta
m
in
at
io
n
as

ca
lc
u
la
te
d
b
y
C
h
ec
kM

.T
ax
o
n
o
m
y
is

b
as
ed

o
n
G
TD

B
-T
k
ta
xo

n
o
m
ic

as
si
g
n
m
en

t.

A.H. Sauk and L.A. Hug

10

ISME Communications



leachate contaminates groundwater, the landfill microbes are
unable to survive in the more dilute groundwater, and the
addition of chemicals from the leachate negatively impacts the
native groundwater microorganism diversity. Some natural
attenuation of contaminants can occur in aquifers with leachate
plumes, but more information regarding the functional abilities of
these microbial communities is needed to understand the
dynamics of these polluted systems [57, 80].

Methanogen populations
The methanogen populations identified spanned three phyla and
six families, but no sample contained more than five methanogen
MAGs, and none were particularly abundant. No Methanobacter-
iales were identified, and only four Methanomicrobiales MAGs were
identified, with a larger proportion from the Methanomethylophi-
laceae, a group less frequently associated with landfills. Only two
MAGs were markedly more abundant than the average in the
datasets—a Methanomethylophilaceae from CLC_T1 (average
coverage= 39.9) and a Methanoregula from LW1 (average cover-
age= 42.3) (Table 2). No mcrA-containing MAGs associated with
the anaerobic methane oxidizing ANME lineages were identified,
in contrast to a survey of solid waste along a depth/age transect in
a Chinese landfill [81].
All identified methanogens were predicted to be exclusively

acetoclastic or methylotrophic methanogens, with the exception
of one Methanofastidiosaceae predicted to use methylated thiols.
The observed distribution of methanogenesis pathways suggests
the landfill has a restricted availability of substrates to support
methanogenesis, a hallmark of older waste. No cosmopolitan
methanogens, capable of using multiple substrates for methane
production, were identified. Methanogens were a small fraction of
the total microbial community (~1.6% of total assembled and
binned reads), which also suggests the landfill has moved past the
rapid methanogenesis phase and into the decelerating methano-
genesis phase, or phase IV of the landfill life cycle [82].

VOC degradation capacity
Examination of the VOC degradation capacity of the landfill sites
identified a diverse suite of microbial mechanisms for contaminant
degradation. We expected to see either (i) an inverse trend wherein
sites with degradation capacity had lower contaminant levels due
to active degradation or (ii) a positive correlation, where sites with
higher contaminant levels supported higher abundances of
degraders who were then represented in the metagenomes. What
was observed was a mix of these two scenarios. RdhA, BssA, and
EbdA were present at high enough counts to consider trends across
sites. For RdhA, catalyzing dehalogenation of chlorinated solvents,
scenario (i) was observed, where GW1 is the only site with detected
contaminants and is also the only site with no relevant degradation
genes in its metagenome. For BssA, the opposite was observed,
fitting scenario (ii), with the highest counts of BssA associated with
sites where concentrations of benzene were significantly higher.
EbdA, catalyzing initial ethylbenzene degradation, showed a mixed
trend. The site with highest ethylbenzene concentrations, LW1, had
no detected EbdA, and other sites with moderate concentrations of
ethylbenzene hosted high numbers of EbdA (LW2, LW3). The site
with only trace ethylbenzene had no detected EbdA (GW1). From
this, it is clear different processes are controlling contaminant
concentrations at the site. Detection of novel VOC degradation
genes expands these gene families, and provides new targets for
characterization. This is particularly important for AbcA, a relatively
recently identified protein [47, 56], where the seven new sequences
represent an important addition to this gene family (Fig. 6),
including a new taxonomic affiliation for this activity with one AbcA
encoded on a unclassified Solirubrobacteraceae genome (Phylum
Actinobacteriota). Also of note is the identification of a DxmA
protein encoded on a highly abundant Sterolibacterium MAG,
suggesting this activity may be selected for within the landfill. 1,4-
dioxane degradation activity is highly sequence-specific [69], and
this predicted DxmA requires confirmation via enrichment or
biochemical assays.

Fig. 6 Maximum likelihood trees placing landfill-derived reductive dehalogenases (RdhA) and anaerobic benzene decarboxylases (AbcA)
within their respective gene families. A RdhA ML tree, with outer ring indicating phylum of origin for the RdhA and inner ring denoting the
characterized RdhA with known substrates in black. Landfill sequences are highlighted in yellow. The tree was imaged using iTol [88] and the
muted colour-blind friendly palette designed by Paul Tol. B AbcA ML tree with UbiD outgroup. AbcA clade is highlighted with yellow with
reference sequences bolded; all collapsed clades are UbiD sequences exclusively. The AbcA sequence associated with a high quality MAG is
starred. For both trees, bootstrap values are present as numeric values on the nodes.
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GW1 is notable as the site with the broadest contaminant
profile with the lowest numbers of contaminant degradation
genes identified—further indication this is a disturbed, impacted
microbial community and with implications for contaminant fate
in the aquifer. In particular, the absence of reductive dehalo-
genases in GW1 is interesting on two counts. First, GW1 is the only
surveyed site with detected chlorinated solvents, with a total
concentration of 68.02 µg/L (made up of chloroethane, 1,1-
dichloroethane, trichloroethane, TCE, and <5 µg/L of six other
chlorinated solvents, Supplementary Data 2). Second, reductive
dehalogenases were detected in LW3, GW1’s paired geographic
sample across the landfill boundary, and the known source of
leachate infiltration into the aquifer. The capacity to degrade
chlorinated solvents in GW1 was below our detection limit or
absent, indicating that the solvents transferring across the landfill
barrier are persisting in the environment, while the microorgan-
isms capable of degradation are either not moving into or are not
persisting in the disturbed leachate/groundwater mixed environ-
ment. Further study across time may clarify whether VOC-
degrading organisms eventually establish activity in the aquifer
or if more targeted remediation efforts will be needed.
For the leachate wells and potential fate of chlorinated solvents

within the landfill, it is important to note that the substrates of
most reductive dehalogenases are unknown, and so, while the
number of chlorinated compounds that can be degraded in the
leachate is likely quite high based on diversity of reductive
dehalogenases identified (Fig. 6), it is not possible to identify these
substrates without targeted experiments. Dehalococcoides and
Dehalogenimonas are lineages of obligate organohalide respirers –
they are only able to survive and grow on chlorinated solvents
[55, 83]. These organisms are thus highly useful in remediation
efforts because their activity is tightly targeted [84, 85], and the
novel landfill-derived RDases represent potentially interesting
remediation tools.
Contrasting the metabolic potential for methanogenesis with

the potential for VOC degradation, methanogenesis is the more
abundant function at the site. The VOC degradation capacities
examined, in aggregate, share approximately the same preva-
lence, abundance, and association with MAGs as McrA alone.
None of the functions were specifically abundant with the
exception of the putative DxmA. VOC degradation genes were
present at similar proportions to mcrAs on short versus >2.5 kb
scaffolds (36.3% and 32.9%, respectively), as well as on MAGs (11%
and 18% respectively). Their scaffold coverages and host MAG
coverages were near to the mean for the datasets, indicating
these functions are not dominant or enriched within the landfill
environments surveyed.

CONCLUSIONS
The phylum level profiles for the composite leachate cistern,
leachate wells, and GW1 are consistent with previous landfill
microbial community studies, with Bacteroidota, Firmicutes, and
Proteobacteria among the most abundant phyla. Using metage-
nomic sequencing, we additionally identified Patescibacteria as
one of the dominant phyla in the landfill, a group that may have
been missed in previous studies relying on 16S rRNA gene
amplicon sequencing. Methanogens were only moderately
abundant in the landfill, with limited substrate specificities,
indicating the landfill is in phase 4 of a landfill lifecycle, with
decelerated methane production occurring. At the species/ASV
level, microbial heterogeneity is markedly higher than previously
reported for landfill environments, with little overlap between
communities separated by short distances or one week in time.
Geochemical conditions showed high variance across the site, and
were generally uncorrelated with microbial community member-
ships and anaerobic volatile organic compound degradation

capacities. A suite of novel contaminant degradation genes were
identified from the landfill, including reductive dehalogenases and
anaerobic benzene carboxylases. Taken together, our findings
have implications for waste management strategies, including
targeted remediation efforts, as establishing or supporting
populations and activities of interest will be challenging given
the dynamic nature of the landfill microbial communities.

DATA AVAILABILITY
The assembled and annotated Southern Ontario metagenomes are deposited on IMG
with the following IMG Genome IDs (Taxon Object IDs): 3300014203 (CLC1_T1),
3300014206 (CLC1_T2), 3300014204 (LW1), 3300015214 (LW2), 3300014205 (LW3), and
3300014208 (GW1). Specific genes associated with methanogenesis and VOC degradation
are listed by JGI accession number and gene category in Supplementary File 2.
The 16S rRNA amplicon sequences have been deposited in the NCBI SRA archive
under the bioproject PRJNA706007 and Biosamples SAMN18111220-7.
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