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Growth-stage-related shifts in diatom endometabolome
composition set the stage for bacterial heterotrophy
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Phytoplankton-derived metabolites fuel a large fraction of heterotrophic bacterial production in the global ocean, yet
methodological challenges have limited our understanding of the organic molecules transferred between these microbial groups.
In an experimental bloom study consisting of three heterotrophic marine bacteria growing together with the diatom Thalassiosira
pseudonana, we concurrently measured diatom endometabolites (i.e., potential exometabolite supply) by nuclear magnetic
resonance (NMR) spectroscopy and bacterial gene expression (i.e., potential exometabolite uptake) by metatranscriptomic
sequencing. Twenty-two diatom endometabolites were annotated, with nine increasing in internal concentration in the late stage
of the bloom, eight decreasing, and five showing no variation through the bloom progression. Some metabolite changes could be
linked to shifts in diatom gene expression, as well as to shifts in bacterial community composition and their expression of substrate
uptake and catabolism genes. Yet an overall low match indicated that endometabolome concentration was not a good predictor of
exometabolite availability, and that complex physiological and ecological interactions underlie metabolite exchange. Six diatom
endometabolites accumulated to higher concentrations in the bacterial co-cultures compared to axenic cultures, suggesting a
bacterial influence on rates of synthesis or release of glutamate, arginine, leucine, 2,3-dihydroxypropane-1-sulfonate, glucose, and
glycerol-3-phosphate. Better understanding of phytoplankton metabolite production, release, and transfer to assembled bacterial
communities is key to untangling this nearly invisible yet pivotal step in ocean carbon cycling.
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INTRODUCTION
Phytoplankton bloom development and senescence are closely
entangled with heterotrophic bacterial community activities,
mediated through phytoplankton-derived dissolved organic
carbon [1–3]. Newly released phytoplankton metabolites can be
rapidly consumed by bacterial assemblages, often within minutes
to days [4]. As marine phytoplankton are responsible for half of
Earth’s photosynthesis and much of the fixed carbon is passed on
to heterotrophic bacteria, quantifying this step is important for
modeling global carbon flux [5–7].
Metabolite pools derived from phytoplankton consist of

hundreds of unique organic compounds, most of which accumu-
late in only trace amounts [8]. This diversity coupled to high
turnover rates poses a challenge for chemical identification, with
only 1–5% of compounds identified thus far [8–10]. Transfer of
these metabolites to bacteria has been even more difficult to
quantify. Recent studies have made headway by analysis of
bacterial gene expression as an indication of uptake and
catabolism of substrates [11–14], yet information is lacking on
the diversity of roles of bacterial community members in
determining exometabolite flux and fate.
The extent and composition of direct release of phytoplankton

photosynthate is influenced by the physiological state of the cell
[15–17]. Healthy phytoplankton cells release labile compounds

such as sugars, sugar alcohols, amino acids, and carboxylic acids
[2, 18, 19], which may dominate during early phases of a bloom.
As blooms progress towards senescence, the amount of
metabolites released increases, and larger molecules such as
polysaccharides take on more importance [2, 20, 21]. This release
of labile carbon from phytoplankton to surrounding organisms
can occur by multiple mechanisms [22]. The simplest is diffusion
between intracellular pools and external seawater [23], although
this is constrained to molecules of relatively small size [24].
Alternatively, molecules can be actively released via overflow
pathways when rates of photosynthesis exceed their needs for
growth, for example, carbohydrates are released in response to
photorespiration [18, 23, 25]. Active release of metabolites can
also occur in response to associated microbes [3, 26], such as
through the release of molecules that serve as bacterial
chemoattractants [27, 28].
Substrate release sets the stage for bacterial heterotrophy, with

different substrate preferences governing the succession of taxa
during a bloom [19]. Among heterotrophic bacterial taxa
consistently found associated with phytoplankton there is
evidence for specialization on certain components of extracellular
release [2, 19], even when the extracellular release originates from
a single phytoplankton species [14]. The ability to use common
but distinct substrate sets is likely a benefit to these bacterial
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groups, contributing to their success in surface ocean commu-
nities [2, 29]. Detailed understanding of endometabolite composi-
tion, release, and utilization by heterotrophic bacteria under
different stages of phytoplankton growth is still limited, however,
particularly when there are multiple bacterial species that can
compete and interact.
Globally, primary production is strongly influenced by annual

spring blooms in temperate regions, commonly dominated by
fast-growing diatoms [19, 30]. To mimic a diatom bloom under
controlled laboratory conditions, Thalassiosira pseudonana was co-
cultured with a synthetic community consisting of three hetero-
trophic bacteria (Ruegeria pomeroyi, Stenotrophomonas sp., and
Polaribacter dokdonensis) representing taxa typically associated
with phytoplankton blooms [19]. We used nuclear magnetic
resonance (NMR) spectroscopy to identify the endometabolites of
the diatom and transcriptomics to trace their potential transfer to
bacteria during early and late bloom stages. Coupling diatom
endometabolite quantification with bacterial gene expression
analysis also enabled us to observe temporal patterns, either
matched or mismatched, that are potentially informative of
extracellular release mechanisms.

METHODS
Co-culture conditions
During this synthetic bloom experiment, axenic cultures of the diatom T.
pseudonana CCMP1335 (National Center for Marine Algae) were inoculated
with equal cell numbers (~3 x 104 cells ml−1) of the heterotrophic bacteria
R. pomeroyi DSS-3 (Rhodobacterales; ATCC 700808; isolated from south-
eastern US seawater [31]), Stenotrophomonas sp. SKA14 (Xanthomona-
dales; provided by J. Pinhassi, Linnaeus University Sweden; isolated from
the Skagerrak Sea [32]) and P. dokdonensis MED152 (Flavobacteriales;
provided by J. Pinhassi, Linnaeus University Sweden; isolated from the
Mediterranean Sea [33]). The strains have high 16S rRNA gene identity to
bacteria associated with phytoplankton cultures or flow-sorted with
phytoplankton cells, with percent similarities up to 99.6% for R. pomeroyi
[3, 34–36], 98.8% for Stenotrophomonas sp. SKA14 [34], and 97.2% for P.
dokdonensis [35, 37]. The diatom was grown in organic carbon-free L1
medium [38] prepared in acid-washed glass containers at a salinity of 35
[39] for one week prior to the start of the experiment. Cultures were grown
with a 16:8 h light:dark cycle under 160 µmol photons m−2 s−1 at 18 °C and
checked for bacterial contamination by plating on rich medium (YTSS). On
day 0 of the experiment, diatoms were transferred into 1.9 L culture flasks
containing 1 L of medium to a final concentration of ~2 × 103 cells ml-1.
The medium was made with 13C-bicarbonate (Cambridge Isotope Libraries,
Inc., Tewksbury, MA, USA) to enhance NMR signals. One flask was kept as
L1 medium without organisms for use as a background control for NMR
analyses.
The three strains of heterotrophic bacteria were grown overnight

in either YTSS at 30 °C (R. pomeroyi and Stenotrophomonas) or 1/5YTSS at
25 °C (P. dokdonensis) made with salinity 20 artificial seawater. Cells were
harvested in exponential growth phase and washed five times in the same
artificial seawater used for preparing the L1 medium (1ml wash volume).
The bacteria were inoculated in equal proportions of OD600 into 15 flasks
containing diatoms, with a final combined concentration of ~1 × 105

cells ml−1, which is comparable to pre-bloom conditions during a natural
bloom [19]. One set of three flasks remained axenic. Three co-culture flasks
were sacrificed after 8 h of light (day 0), and then on days 3, 8, 15, 20. The
axenic flasks were only sampled on day 15.
To trace diatom and bacterial growth, 1ml subsamples were fixed with

glutaraldehyde (1% final concentration), stored overnight at 4 °C, and
thereafter at −80 °C until flow cytometric analysis. The samples were stained
with SYBR® Green I (final concentration 1×; Life Technologies, Carlsbad, CA,
USA) and analyzed on a CyAn ADP flow cytometer (Beckman Coulter,
Hialeah, Florida) using 5-µm fluorescent particles (Spherotech, Lake Forest, IL,
USA) for enumeration. The diatom specific growth rate (μ d−1) was calculated
as (ln DE− ln DS)/(tE− tS), where DE is cell number at the end of a period and
DS at the start of the experiment, and tE is the end day and tS the start day.
The three morphologically distinct bacteria (P. dokdonensis by orange color;
Stenotrophomonas sp. by fast growth and large colonies; R. pomeroyi by
slower growth and small colonies; Fig. S1) were individually quantified as
colony-forming units (CFUs) by dilution plating. Subsamples of 100 µl were

diluted 10−1 to 10−7 times and spread onto both YTSS and 1/5YTSS agar
plates. The plates were incubated at 30 °C (YTSS) or 25 °C (1/5YTSS) and
counted after three and four days, respectively. Total bacterial cell numbers
measured by flow cytometry correlated well with the sum of the species-
specific CFUs (Fig. S1).
For sampling diatoms, subsamples (100–200ml for RNA and

700–1000ml for endometabolites) were gently filtered using a peristaltic
pump onto 2.0 µm pore-size polycarbonate IsoporeTM filters (Millipore,
Burlington, MA, USA). For sampling bacteria, the filtrate from the
endometabolite samples was re-filtered onto 0.2 µm pore-size Supor®

PES filters (PALL, Port Washington, NY, USA). Filters collected for diatom
and bacterial RNA were immediately flash-frozen in liquid nitrogen, and
along with endometabolite filters transferred to −80 °C until processing.
Subsamples of the final filtrate were collected for dissolved inorganic
nutrient analysis (10ml stored at −20 °C).

Diatom endometabolite analysis
For endometabolite analysis (day 3 and 15), filters in tubes were sonicated
for 7 min while submerged in ice-water to remove diatom cells (50 s on
and 10 s off sequence) using an SLPe sonifier (Branson, Brookfield, CT, USA)
after adding 15ml of ultrapure water, and the liquid fraction was collected
in fresh tubes as described in Uchimiya et al. [40]. This process was
repeated three times and combined fractions stored at −80 °C until
processing. Samples were lyophilized (Labconco, Kansas City, MO, USA)
and pellets were mixed with 600 µL of phosphate buffer (30mM
phosphate in deuterated water, pH 7.4) and 1mM internal standard (2,
2-dimethyl-2-silapentane-5-sulfonate). Samples were vortexed for 5 min,
centrifuged at 20 800 RCF for 10min, and supernatants were transferred to
5mm NMR tubes (Bruker, Billerica, MA, USA). One pooled quality control
sample was prepared by combining aliquots of all the samples and used
for annotation. All sample processing was carried out at 4 °C. Metabolites
were analyzed by NMR spectroscopy using a 600 MHz AVANCE III HD
instrument (Bruker) equipped with a 5mm TXI probe and pulse programs
of 1H-13C heteronuclear single quantum correlation (HSQC, hsqcetgppr-
sisp2.2 by Bruker nomenclature) and 1H-13C HSQC-total correlation
spectroscopy (HSQC-TOCSY, hsqcdietgpsisp.2). Data were processed by
TopSpin version 4.0 (Bruker). Peak intensity was extracted by rNMR version
1.11 [41], normalized by cell number and auto-scaled. Metabolites were
annotated based on chemical shift (HSQC) and spin network information
(HSQC-TOCSY) (Fig. S2). Chemical shift values for candidate peaks were
obtained from Biological Magnetic Resonance Data Bank [42], and raw
HSQC spectra for validation from Human Metabolome Databases [43]. Four
compounds of interest that are not in these databases were annotated
using literature values (homarine, [44]; 2,3-dihydroxypropane-1-sulfonate
(DHPS), dimethylsulfoniopropionate (DMSP), and β-1,3-glucan, [17]). A
confidence level of annotation was assigned to each metabolite, where
1 = putative compounds with functional group information; 2 = partially
matched to HSQC chemical shift information in the databases or literature;
3 = fully matched to HSQC chemical shift; 4 = fully matched to HSQC
chemical shift and validated by HSQC-TOCSY; 5 = validated by a spiking
experiment. All the data, sample preparation protocols, and NMR analysis
and processing parameters are deposited in Metabolomics Workbench
under Project ID 001231 (https://doi.org/10.21228/M8KT3K). Data were
converted to Z-scores (value – mean/standard deviation). Statistical
analysis of day 3 vs day 15 co-cultures, and day 15 co-cultures versus
day 15 axenic cultures was conducted by using unpaired T-tests (p ≤ 0.05,
n= 3).

RNA extraction
RNA was extracted using the ZymoBIOMICS RNA Miniprep Kit (Zymo
Research, Irvine, CA, USA) according to the manufacturer’s protocol with
20min beating and on-column DNase treatment. Following extraction, an
additional DNA removal was performed using the TURBO DNA-free Kit
(Invitrogen, ThermoFisher Scientific, Vilnius, Lithuania) following standard
kit procedures. Stranded RNA libraries were prepared using the Zymo-Seq
RiboFree Total RNA Library Kit (ZymoBIOMICS) with rRNA depletion.
Libraries and rRNA depletion for samples with low RNA concentration were
prepared at HudsonAlpha Discovery (Huntsville, AL, USA) and all libraries
were sequenced on the Illumina NextSeq platform (SE, 75 bp).

RNA-Seq and differential gene expression analyses
The TrimGalore toolkit was used for sequence trimming and quality
control, imposing a minimum quality score of 20. Reads aligning to the
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rRNA sequences of the microbial taxa were removed using SortMeRNA.
STAR aligner was used to map remaining reads to the genome of each of
the species and HTSeq to count reads mapped to each gene. Genes with
differential expression between co-culture time points (day 3 and 15) and
between co-culture and axenic conditions (day 15; diatoms only) were
identified using DESeq2 in R (Version 4.0.0). Biosynthesis pathways were
identified based on Biocyc [45] and PhyloDB [46]. Heatmaps were created
using the pheatmap package in R.
RNA-Seq data from a previous study [14] that was collected for each

bacterial strain when in individual co-culture with the diatom was
compared to the day 3 RNA-Seq data from this study. The datasets were
analyzed using DESeq2 as described above, with each co-culture
compared to the same reference dataset [14], and significantly enriched
genes emerging from the analyses were compared. The reference dataset
was established by growing bacteria in the same medium as used for both
co-cultures, except that T. pseudonana was not inoculated and 2.5 mM
glucose was added [14]; this provided transcriptomes of actively growing
bacteria on a defined carbon source against which the two co-culture
datasets were analyzed.

Dissolved inorganic nutrients
Dissolved inorganic nutrient concentrations were measured at day 15 in
both axenic and co-cultures as well as in the media-only control (Table S1).
Nitrate and nitrite were measured by the automated cadmium reduction
method, phosphate by the automated ascorbic acid reduction method,
and ammonium by the automated phenate method [47]. Pure water was
used as a blank and 2ml samples were analyzed using standard curves of
0, 50, 100, 200 ppb on a Alpkem RFA 300 (UniGreenScheme, UK). Silicate
was analyzed spectrophotometrically [48, 49] (1 ml sample + 4ml water;
Spectronic 301; Milton Roy, Ivyland, PA, USA) using a standard curve
composed of 0, 5, 10, 20, and 40 μM solutions and a water blank processed
through same chemistry as the samples.

RESULTS AND DISCUSSION
Co-culture dynamics
This study was designed to enhance understanding of metabolite
release and utilization across bloom stages in a simple community
of phytoplankton and heterotrophic bacteria. The synthetic
community was established with the diatom T. pseudonana and
the bacterial strains R. pomeroyi DSS-3, Stenotrophomonas sp.
SKA14, and P. dokdonensis MED152. These bacterial strains have
high genetic similarity to isolates from phytoplankton cultures [14]
and represent taxa that are common in phytoplankton blooms.
Metabolites derived from the diatom were the sole source of
carbon available for the bacteria, since no organic substrates were
added. In addition, none of the bacteria can assimilate nitrate, and
usable nitrogen was only available as diatom or bacterial
extracellular products. The diatom had its highest specific growth
rate of 1.65 d−1 during days 0–3, after which the rate declined

(Fig. 1A). The total abundance of heterotrophic bacteria increased
steadily but there was a succession that favored P. dokdonensis
through day 15, and then R. pomeroyi by day 20; Stenotrophomo-
nas disappeared from the model system by day 3 (Fig. 1B). The
presence of bacteria did not affect the growth of diatoms based
on comparisons of abundance in co-cultures versus axenic
cultures at day 15 (Fig. 1A), as has been found previously
[14, 26]. Inorganic nutrients were not limiting (>5 μM at day 15;
Table S1).

Diatom endometabolite shifts
Analyses focused on the day 3 (early bloom) and day 15 (late
bloom) co-culture time points, for which a complete set of
metabolomic and transcriptomic data were collected. Twenty-two
diatom endometabolites that were annotated with high con-
fidence by NMR analysis (Table S2) and quantified after normal-
izing to diatom cell number revealed that endometabolome
composition differed substantially between bloom stages. Meta-
bolites with significantly different cellular concentrations included
nine compounds that were higher in intracellular concentration
during the late bloom; these were arginine, valine, lysine, DHPS,
glycerol-3-phosphate, phosphorylcholine, DMSP, glycine betaine,
and homarine (T-test; P < 0.05, n= 3; Fig. 2A; Table S3), of which
the last three are known to function as osmolytes [50, 51].
Elevated internal DMSP concentrations in phytoplankton cells
have been linked to nitrogen, CO2, silicate, and phosphate
limitation, increasing during stationary growth phase and
potentially replacing nitrogen-rich osmolytes or serving as an
antioxidant under stressful conditions such as CO2 limitation and
low temperature [52]. All three osmolytes have also been
identified in endometabolomes of natural plankton communities
from surface seawater [53]. Eight metabolites were significantly
lower in intracellular concentration in the late bloom co-cultures;
these were proline, glutamate, glycine, β-1,3-glucan, aspartate,
glucose, guanosine, and uridine (Fig. 2B). Five metabolites did not
change between early and late bloom stages; these were alanine,
leucine, isoleucine, glutamine, and acetate (Fig. 2C).
Differences in diatom endometabolome composition were also

evident in comparisons of the 15 d cultures with and without a
bacterial community. Six diatom endometabolites had accumu-
lated to higher concentrations in the presence of bacteria
compared to axenic cultures by day 15; these were glutamate,
arginine, leucine, DHPS, glucose, and glycerol-3-phosphate; none
accumulated to higher concentrations in axenic cultures (Fig. 2),
similar to previous analyses [17]. Alteration of phytoplankton
physiology in the presence of bacteria has been reported
previously and attributed to processes such as bacterial
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remineralization of ammonium from dissolved organic matter [54]
and release of vitamins [13] or hormones [3]. In this study,
phytoplankton were both nutrient and vitamin replete and there
was no evidence that co-culturing with bacteria enhanced growth.
Nonetheless, the diatom cells accumulated endometabolites
differently depending on the presence or absence of bacteria.

Diatom gene expression
Diatom gene expression provided insights into physiological
changes associated with growth stage. Relative gene expression
fell into two distinct expression clusters consisting of early (days 0,
3) and late (days 8, 15, 20) sample times (Fig. S3). Comparing the
day 3 and day 15 time points, 6 637 of the 11 675 predicted genes
in the T. pseudonana genome (59%) had significantly different
relative contributions to the transcriptome. The diatom’s early
bloom transcriptome was highly enriched in transcripts for CO2

acquisition via carbonic anhydrases (Fig. 3A). Transcripts for
synthesis of glycolysis products pyruvate, acetate, and acetyl-CoA
(Fig. 3B) and for channeling acetyl-CoA into the tricarboxylic acid
(TCA) cycle were also enriched, as were transcripts for multiple
central TCA cycle steps from oxaloacetate to succinate (Fig. 3C).
Transcription patterns indicated that recently fixed carbon was
directed toward chitin precursor N-acetyl-D-glucosamine (GlcNAc)
and chrysolaminarin backbone β-1,3-glucan (Table S4). These
transcriptome features were consistent with the higher concen-
trations of glucose and β-1,3-glucan in the diatom endometabo-
lome on day 3. Overall, this gene expression pattern indicated an
emphasis on carbon fixation and biomass building in the early
bloom (Fig. 2) and is consistent with the diatom’s highest specific
growth rate occurring during days 0–3 (Fig. 1).
Early-stage transcript enrichment was also observed for genes

mediating nitrate assimilation and conversion to ammonium.
Glutamate is a central component of biosynthesis pathways for
amino acids and the assimilation pathway for ammonium, which
serves as the nitrogen homeostasis mechanism. Compared to late
phase T. pseudonana cells, glutamate synthesis genes were enriched

in both the cytosol and mitochondrion (Fig. 3A, B and Table S4).
Indeed, higher internal endometabolome concentrations of gluta-
mate as well as other nitrogen-rich metabolites (amino acids proline,
glycine, and aspartate; and nucleosides guanosine and uridine) were
evident in the early growth stage diatoms (Fig. 2). T. pseudonana’s
urea cycle coordinates cellular nitrogen and carbon status [55], and
several genes in this cycle were enriched during early growth
(Fig. 3D). These patterns are consistent with peak concentrations of
nitrogen-containing amino acids and nucleosides in the early bloom,
and together indicate higher nitrogen requirements by T. pseudo-
nana during the biomass building phase.
Diatom transcripts in the late bloom phase were enriched instead

with genes that synthesize malate and oxaloacetate, two metabo-
lites of the C4 delivery pathway for CO2 that performs well under low
CO2 concentrations (Fig. 3A). Whether C4 metabolism is functional in
diatoms is controversial (e.g., refs [56–58]) but if so, it would be
beneficial in cases where inorganic carbon concentrations decrease
in late phase blooms. Late-phase enriched transcripts were also
found in pathways for putrescine and spermidine synthesis. These
polyamines have several known functions in diatom cells, among
them a role in stress response [59]. In field studies, seawater
concentrations of polyamines increased during diatom bloom
decline [60]. Evidence for physiological stress on late bloom diatoms
also included increased expression of genes for synthesis of the
osmolyte DMSP (Fig. 3); the diatom pathways for synthesizing
osmolytes glycine betaine and homarine are unknown.
Genes related to sulfate assimilation and subsequent synthesis

of the organic sulfur compounds cysteate, sulfopyruvate, sulfo-
lactate, and DHPS, in addition to DMSP mentioned above, were
highly enriched in the later stage cultures, with up to 100-fold
increases in relative expression (Fig. 3B and Table S4). These data
are congruent with higher DMSP and DHPS endometabolite
concentrations in late- compared to early-stage diatom cells
(Fig. 2). The temporal switch from greater investments in synthesis
of nitrogen-rich compounds in the early-stage bloom to organic
sulfur compounds in the late stage could reflect the higher energy
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Fig. 2 Relative endometabolite abundance in diatom cells. Abundance is expressed as mean Z-score of per cell concentration in early
bloom co-cultures (day 3), late bloom co-cultures (day 15), and axenic late bloom cultures (day 15 AX). Metabolites present in significantly
different per cell concentrations are linked by brackets (T-test, p ≤ 0.05, n= 3); no statistical comparisons were made between day 3 and day 15
AX. Row A Endometabolites with significantly higher concentration in day 15 co-cultures compared to day 3 co-cultures; Row
B Endometabolites with significantly higher concentration in day 3 co-cultures compared to day 15 co-cultures; Row C Endometabolites
not significantly different between day 3 and day 15. Bold font highlights the metabolites accumulating to higher concentrations in 15 d
co-cultures compared to 15 d axenic cultures. Plots are colored according to metabolite class. Error bars represent standard deviations. See
Table S3 for metabolite intensity per cell.
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costs for nitrate assimilation compared to sulfate assimilation (41
versus 33 ATP per mol assimilated; [61]). Similar to nitrate
transformation to nitrite and ammonium, sulfate transformation
to cysteate also consumes NADPH, and thus removes excess
reductants produced during photosynthesis [62]. Genes for
cysteate catabolism, believed to be an intermediate in DHPS
formation [50], were significantly enriched during the late growth
phase. Relatively higher sulfate usage as compared to nitrogen in
aging diatom cultures or during bloom senescence is generally
associated with nitrate limitation [62], but here we observed this
even under nitrate replete conditions, suggesting a physiological
response by the cells as their growth rate slowed. Giordano and
Raven [61] suggest that low early ocean sulfate concentrations
may have influenced the evolution of marine phytoplankton,
manifested in divergent present-day strategies for regulation of
nitrogen versus sulfur metabolism.

Bacterial gene expression
The early versus late bloom differences evident in the diatom
metabolome and transcriptome set the stage for responses by

associated heterotrophic bacteria in their substrate acquisition
patterns. The substrates available to the co-cultured bacteria were
inferred from significant differences in relative expression of genes
diagnostic for uptake of organic matter (i.e., those mediating
transport or initial catabolism of exogenous molecules). We focus
on R. pomeroyi and P. dokdonensis in this analysis as Stenotropho-
monas sp. was not present in the co-cultures at day 15 (Fig. 1B).
Expression patterns of R. pomeroyi genes suggested higher

relative availability of taurine, glycerol-3-phosphate, lactate, DHPS,
putrescine, alanine, and glycine betaine in the early bloom; and of
N-acetyltaurine, glycine, choline, spermidine, glycolate, trimethy-
lamine, and sugars during late bloom (Tables 1 and S5).
Transcription patterns suggested that DMSP was available at both
time points but degraded by different pathways in the early
(demethylation pathway) versus late (cleavage pathway) bloom
[63], a temporal switch in pathway dominance consistent with
previous studies in cultures [26, 64] and in a natural phytoplank-
ton bloom [65], and potentially driven by differences in reactive
oxygen stress between pathways [65]. Enriched bacterial gene
expression for spermidine transport coincided with enriched

Fig. 3 Integration of diatom endometabolite and gene expression data for early-stage (left panel) and late-stage (right panel) bloom
phases. Black lines indicate relative gene expression that is significantly higher in one growth stage compared to the other, gray lines indicate
expression that is not significantly higher. Green font indicates significantly higher metabolite concentration in early-stage cells, and blue font
indicates higher concentration in late-stage cells (see Fig. 2). A Carbon and nitrogen assimilation. B Glycolysis/Gluconeogenesis. C TCA cycle.
D Urea cycle. Metabolite abbreviations are as follows: Ala alanine, Ace acetate, Ac-CoA acetyl-CoA, Arg arginine, β-1,3-glu β-1,3-glucan, Citr
citrulline, Cyst cysteate, Arg-S Arginine-succinate, Fum fumarate, GlcNac N-acetyl-D-glucosamine, Glu glutamate, Gln glutamine, Glyo
glyoxylate, Mal malate, G3P glyceraldehyde-3-phosphate, Gro3P glycerol-3-phosphate, 2-OG oxoglutarate, OAA oxaloacetate, PEP
phosphoenolpyruvate, Orn ornithine, Pyr pyruvate, PGA phosphoglycerate, Put putrescine, Spe spermidine.
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diatom gene expression for its biosynthesis. Overall, however,
there were few positive relationships between shifts in R. pomeroyi
gene expression for uptake of a metabolite and shifts in
phytoplankton intracellular concentration or biosynthetic gene
expression for that same metabolite. For example, of eleven
metabolites found in the diatom endometabolome and for which
the R. pomeroyi transporters are known, we found that glycine
betaine, DHPS, and glycerol-3-phosphate had higher concentra-
tions in phytoplankton cells on day 15 but their transporters were
enriched in the bacterial transcriptome on day 3; glycine had
higher concentrations in phytoplankton cells on day 3 but the
transporter was enriched on day 15; alanine and acetate did not
differ in concentration between early versus late bloom phyto-
plankton cells but their transporters were enriched on day 3 and
15, respectively; and proline, aspartate, glucose, glutamate, and
phosphorylcholine were either more abundant in day 3 or day 15
phytoplankton cells but their transporter expression in R. pomeroyi
was not different. Assuming bacterial transporter expression is
induced primarily by substrate availability [66], these mismatches

argue for a minor role for passive leakage in metabolite release
and instead support active release mechanisms that cannot be
predicted from endometabolite concentrations. An additional ten
metabolites detected in the phytoplankton metabolome do not
have confirmed transporters in the R. pomeroyi genome: lysine,
glutamine, arginine, valine, leucine, isoleucine, homarine, guano-
sine, uridine, and β-1,3-glucan.
Flavobacteriia member P. dokdonensis increased in abundance

through time in the co-cultures, as has been observed for marine
flavobacteria in natural diatom bloom progression [19]. This
pattern has been attributed to specialization by this taxon for
glycan utilization, release of which increases in aging phytoplank-
ton cells [67]. Gene expression patterns by P. dokdonensis were
also consistent with increasing glycan importance in the late
bloom, particularly for genes active in polysaccharide utilization
loci (PULs) [68]. These genomic regions enable hydrolysis of
polysaccharides to monomers, which are transported into the
periplasm and subsequently transported across the cell mem-
brane. Several genes within PUL3 (as designated in the CAZy

Table 1. Genes from R. pomeroyi (top) and P. dokdonensis (bottom) with relevance to diatom endometabolome composition and with significantly
higher relative expression (p ≤ 0.05) during early (left) or late (right) diatom growth phase.

Early growth phase Late growth phase

Function Locus tag Function Locus tag

Ruegeria pomeroyi

Glycine betaine transporter SPO2441 N-acetyltaurine transporter SPO0661

DMSP – demethylation SPO0677, 3804 3805 DMSP – cleavage SPO1703

Taurine transporter SPO0674, 0676 Glycine SPOA0310

Putrescine transporter SPO3473, 3474 Choline SPO1083, 0084

DHPS degradation SPO0158 Spermidine transporter SPO3467

Lactic acid transporter SPO1017-1021 Glycolate SPOA0143

Glycerol-3-phosphate transporter SPO0239, 0240 Glycerol transporter SPO0608-0612

Alanine symporter SPO2370 Trimethylamine transporter SPO1551, 1552, 1562

Amino acid transporter SPO1516 Sugar transporter SPO0608-0612

Acetate SPO2963

Polaribacter dokdonensis

Hypothetical protein PUL2 MED152_00445 MFS transporter (fucose) PUL3 MED152_05095

Glycosyl hydrolase family 17 PUL2 MED152_00450 MFS transporter (fucose) PUL3 MED152_05115

O-glycosyl hydrolase family 30 PUL2 MED152_00455 MFS transporter (maltose) PUL3 MED152_05120

MFS transporter (glycoside etc. family) PUL2 MED152_00460 AraC family transcriptional
regulator PUL3

MED152_05185

Choline dehydrogenase PUL3 MED152_05190 Sugar kinase PUL3 MED152_05080

Sugar transporter (glucose/galactose) PUL5 MED152_08460 Alginate lyase MED152_06195

DNA-binding response regulator PUL5 MED152_08465 Sugar transporter MED152_09090

Histidine kinase PUL5 MED152_08470 Polysaccharide transporter MED152_03130

SusC/RagA family TonB-linked outer membrane
protein PUL5

MED152_08475 Glyceraldehyde-3-P dehydrogenase MED152_13444

SusD/RagB family nutrient binding outer membrane
lipoprotein PUL5

MED152_08480

Glucosamine-6-phosphate deaminase PUL5 MED152_08485

CAZyme; beta-N-acetylhexosaminidase (GH20) PUL5 MED152_08490

N-acetylglucosaminase kinase (GlcNac) PUL5 MED152_08495

Glycosyl hydrolase 81 (GH81) MED152_00755

Glycogen synthase (GT4) MED152_05855

Glycine cleavage MED152_06700

1,4-α-glucan branching enzyme MED152_05875

Glyceraldehyde-3-P dehydrogenase MED152_03295
PUL2Chrysolaminarin uptake; PUL3Unknown/multiple function; PUL5N-acetyl-D-glucosamine uptake.
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database; Taxonomy ID 313598 [14, 69]) were significantly
enriched during the late growth phase, including two annotated
as fucose permeases (Table 1 and S6). Polaribacter species were
shown to peak concurrently with fucosidase activity in a natural
bloom [19], indicating an association with fucose degradation
within the genus. Genes in PUL5 hypothesized to transport and
degrade chitin subunits [14] exhibited up to 40-fold enrichment in
late bloom P. dokdonensis transcriptomes. Chitin is a common
organic molecule in the ocean [70–72], and serves as component
of cell walls and a locus for bacterial attachment in diatoms [73,
74].
In addition to utilization of structural polysaccharides, gene

expression in P. dokdonensis PUL2 suggested utilization of the
storage polysaccharide chrysolaminarin ([14]; Table 1). This
parallels the high transcriptional signal and endometabolite
concentration for the β-1,3-glucan building block of chrysolami-
narin in early-stage T. pseudonana (Fig. 3B and Table S4) [75, 76].
Phytoplankton were recently shown to exhibit daily cycles of
internal chrysolaminarin concentrations synchronized with diel
light patterns [17, 76], with this storage polysaccharide comprising
up to 80% of diatom carbon under certain conditions [75]. The
utilization of both structural and storage polysaccharides repre-
sented a distinct niche for P. dokdonensis in the T. pseudonana co-
cultures. As found previously [14], R. pomeroyi and P. dokdonensis
transcriptomes indicated little overlap in resource use, with each
species responding to different suites of organic compounds in
early and late bloom stages.
There was temporal matching of peaks in diatom endometa-

bolite concentrations and P. dokdonensis gene expression for early
bloom peaks of proline, glucose, and β-1,3-glucan. Of these,
proline is a candidate for passive diffusion because of its small
size, but the higher molecular weight metabolites glucose and β-
1,3-glucan are less likely to diffuse through the diatom membrane,
suggesting instead a link to export for physiological balance [18,
23, 25, 77]. Previous studies have found glucose release from
diatoms when carbon fixation rates are high [78], likely due to
photosynthetic overflow pathways. Yet the poor match between
peaks in diatom endometabolites and peaks in both P.
dokdonensis and R. pomeroyi transcription indicate that endome-
tabolite abundance cannot predict the release of metabolites into
surrounding seawater (Table S2), and argues for a key role for
active (i.e., non-diffusive) mechanisms of diatom metabolite
release. Also of interest are the six metabolites (arginine, DHPS,
glycerol-3-phosphate, glutamate, glucose, and leucine) with
higher concentrations in phytoplankton cells in co-culture
compared to axenic culture (Fig. 2). Although the mechanism is
unclear, bacteria appeared to directly or indirectly affect the
internal concentrations of these metabolites.

Community vs. individual bacterial gene expression
These same three bacterial species were co-cultured individually
with T. pseudonana in a prior study [14], providing the opportunity
to explore gene expression as a member of a bacterial community
versus when alone. Several conditions differed between the
studies; in Ferrer-González et al. [14], exometabolites built up in
axenic T. pseudonana cultures for 7 days prior to inoculation of the
bacteria, followed by sampling after 8 h. In the present study, the
diatom and bacteria were inoculated at the same time, with
sampling after 3 d. In both studies, however, the diatom was in
exponential growth at the time of bacterial sampling. Significantly
enriched bacterial genes were identified based on a reference
dataset collected from bacteria growing in a glucose medium. Of
the 24 enriched transporters in R. pomeroyi, 12 were enriched only
in the individual co-cultures, including those with experimentally-
verified substrates N-acetyltaurine and urea; and four were
enriched only in the community co-cultures, including those with
experimentally-verified substrates choline, acetate, and DMSP
(Table S7). There was no difference in distribution of the three

dominant compound classes represented by the transporters
(organic acids, amino acids, and organic sulfur compounds), nor in
the distribution of nitrogenous compound transporters (Table S7).
For P. dokdonensis, the enrichment of genes in PULs 2, 3, 5, 6, and
7 seen in this study matched the Ferrer-González study [14].
However, PUL4 (no annotation available) had only one enriched
gene matching and PUL8 (annotated for siderophore uptake and
potentially colicin toxins [79]) had none (Table S8). Because the
study designs differed in factors other than just the number of
bacterial species, these comparisons are viewed as preliminary.
Nonetheless, they suggest differences in uptake when bacteria are
members of a community, with potential mechanisms including
altered metabolite release by the diatom, or antagonism or
competition for resources by the bacteria.

CONCLUSIONS
The interaction between phytoplankton and bacteria in the
surface ocean represents a central biogeochemical relationship
that is relevant at the global scale. In a model bloom experiment
with the marine diatom T. pseudonana providing the only source
of organic matter to a heterotrophic bacterial community, we
characterized potential substrates and considered their mechan-
isms of release. The diatom’s endometabolome was dynamic,
differed with bloom stage, and was affected by the presence of
bacteria. The diatom’s transcriptome similarly differed between
bloom stages, changing from a composition enabling carbon
fixation and nitrogen metabolism regulation to one focused on
organic sulfur compound synthesis. Bacterial transporter expres-
sion suggested that metabolite availability differed between early
and late bloom, and that the bacterial species maintained distinct
resource niches through the bloom. The dynamics of bacterial
uptake system expression matched the dynamics of endometa-
bolite concentrations in just a few cases, specifically for proline,
glucose, and β-1,3-glucan. The majority of molecules, however, did
not have synchronous patterns, suggesting complex interaction
scenarios that reflect both phytoplankton physiology and bacterial
influence.

DATA AVAILABILITY
Transcriptome data and associated metadata are deposited at NCBI under BioProject
ID PRJNA758094. Metabolomics data and associated sample preparation protocols
and NMR analysis and processing parameters are deposited at the Metabolomics
Workbench Data Repository under Project ID 001231 (https://doi.org/10.21228/
M8KT3K). Additional data products and metadata are available at GitHub (https://doi.
org/10.5281/zenodo.6344452).
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