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Phage-encoded ribosomal protein S21 expression is linked to
late-stage phage replication
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The ribosomal protein S21 (bS21) gene has been detected in diverse viruses with a large range of genome sizes, yet its in situ
expression and potential significance have not been investigated. Here, we report five closely related clades of bacteriophages
(phages) represented by 47 genomes (8 curated to completion and up to 331 kbp in length) that encode a bS21 gene. The bS21
gene is on the reverse strand within a conserved region that encodes the large terminase, major capsid protein, prohead protease,
portal vertex proteins, and some hypothetical proteins. Based on CRISPR spacer targeting, the predominance of bacterial taxonomic
affiliations of phage genes with those from Bacteroidetes, and the high sequence similarity of the phage bS21 genes and those
from Bacteroidetes classes of Flavobacteriia, Cytophagia and Saprospiria, these phages are predicted to infect diverse Bacteroidetes
species that inhabit a range of depths in freshwater lakes. Thus, bS21 phages have the potential to impact microbial community
composition and carbon turnover in lake ecosystems. The transcriptionally active bS21-encoding phages were likely in the late
stage of replication when collected, as core structural genes and bS21 were highly expressed. Thus, our analyses suggest that the
phage bS21, which is involved in translation initiation, substitutes into the Bacteroidetes ribosomes and selects preferentially for
phage transcripts during the late-stage replication when large-scale phage protein production is required for assembly of phage
particles.

ISME Communications; https://doi.org/10.1038/s43705-022-00111-w

INTRODUCTION
Only recently, ribosomal proteins have been recognized in the
genomes of viruses [1–3], including those that infect bacteria (i.e.,
bacteriophages, or phages for short) and archaea. Ribosomal protein
S21 (bS21) is the most ubiquitous of the several ribosomal protein-
encoding genes that have been reported in virus genomes [1, 2]
that range up to 642 kbp in length [2]. In one study, viral bS21 was
exclusively (over 90%) detected from aquatic samples [1]. Functional
assay experiments confirmed that the bS21 from Pelagibacter phage
HTVC008M is incorporated into the 70S ribosomes in Escherichia coli
[1], yet the in situ expression of bS21, and its potential significance
to viral growth remain unclear. One hypothesis is that the viral bS21
protein will substitute for their host equivalent and may preferen-
tially initiate translation of phage mRNA over bacterial mRNA [2]. It
has also been noted that phage bS21 homologs may contribute to
the specialized translation and/or help phages evade bacterial
defenses [4].
The bS21 protein is small (8.5 kD), highly basic, and specific for

bacterial ribosomes. It comprises two α-helices connected by a
coiled region [4]. It locates between the “head” and the “body” of
the small ribosomal subunit (SSU) [4], in contact with the RNA helix
formed between the mRNA and the 3’ terminus of the SSU
ribosomal RNA (rRNA). This SSU region, also known as the anti-

Shine-Dalgarno (ASD) sequence, is crucial for translational initiation
by binding the mRNA Shine-Dalgarno (SD) sequence [5]. Generally,
when bS21 is missing, translation initiation is disturbed and the
mRNA has lower association rates with the SSU [6, 7].
In this study, we report 47 phage genomes that we assigned

to five closely related clades of phages whose genomes
consistently encode a copy of bS21. Notably, the bS21 gene
colocates with genes for structural proteins that are responsible
for virion assembly including the large terminase (TerL), portal
vertex protein (PVP), prohead protease, and major capsid protein
(MCP), but is encoded on the opposite strand. We manually
curated all genomes and two outgroup phage genomes (thus 49
in total) to ensure accurate protein sequence prediction and to
determine overall genome structure and genome sizes (when
complete genomes were achieved). Nine genomes were
completed, the largest of which is 331 kbp in length. CRISPR-
Cas spacer targeting, the taxonomic similarity of phage proteins
to bacterial proteins, including bS21, all predicted that these
phages infect freshwater Bacteroidetes species. We find that
phage bS21 gene expression is significant during late-stage
phage replication, likely specifically translating genes encoding
core structural proteins that are essential to virion assembly and
the lytic cycle.
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RESULTS
Discovery of closely related phage sequences with the
conserved genetic context of bS21
Multiple phage-related sequences with a conserved genomic context
were detected from several freshwater metagenome-assembled
datasets (see Methods). Genes for bS21, TerL, PVP, prohead core
scaffolding, and protease protein (hereafter prohead protease for
short), and MCP are encoded in the genomic region. BLASTp search
of the TerL sequences against the ggKbase sequences (ggkbase.
berkeley.edu) obtained a total of 47 unique scaffolds with the
conserved genomic region (Supplementary Table 1). Two related
phages were included as outgroups for comparative analyses. The
corresponding samples were collected from freshwater lakes or
reservoirs (one from a wastewater treatment plant), and all but three
were from the oxic layer (see Methods for details).

General features of manually curated genomes
All the 49 phage sequences were manually curated to fill scaffolding
gaps and fix the assembly errors, and nine of them (including one
outgroup phage) were curated to completion (circular and no gaps
or local assembly errors) (Supplementary Table 1). A total of 14
related phage genomes from IMG/VR were also included for further
analyses. The eight bS21-encoding complete genomes had genome
lengths of 293–331 kbp, GC contents of 31.0–33.7% and encoded
350–413 protein-coding genes (coding density, 91.1–94.9%), with
5–25 (average 17) tRNA genes. No alternative coding signal (i.e., stop
codon reassignment) was detected in any genome. In comparison,
the outgroup complete genome has a size of 308 kbp (450 protein-
coding genes, 6 tRNAs, 94.7% coding density) and GC content
of 27.3%.

Genomic context of bS21 in phages
Genomic context analyses for bS21 genes showed a highly
conserved gene architecture across phage genomes in proximity
to the region encoding bS21 (see Fig. 1a for example). Specifically,
we found that bS21 was consistently located in between two
hypothetical protein families (positions 1 and –1 in Fig. 1b and
Supplementary Table 2), with core structural proteins—including the
TerL, PVP, prohead protease, and MCP—generally located within five
genes in both the upstream and downstream DNA. Other

hypothetical proteins were also consistently found in this region,
although their positions were more variable upstream (positions –4
through –10, Fig. 1b). Importantly, the bS21 gene was consistently
encoded in the reverse strand relative to the conserved hypothetical
and structural protein genes (Fig. 1a and Supplementary Fig. 1).

Phylogeny of bS21-encoding phages
Phylogenetic analyses based on TerL suggested the phages
belonging to several groups, we thus assigned them to clades a–e
(Fig. 2 and Supplementary Table 1). Most of the phages belong to
clades c, d, and e, and they have a broader environmental
distribution than clades a and b. Interestingly, we found that some
phages within a single clade were from distant sampling sites. Closer
inspection indicated they also shared large genomic fragments with
high similarity (82–98% for nucleotide sequences; Supplementary
Fig. 2). Comparative genome-wide analyses of the complete
genomes from the same site but sampled at different time points
showed sequence variations in some genes (Supplementary Fig. 3).
TerL phylogeny, constructed using sequences from this study and

NCBI RefSeq sequences, indicated the most closely related classified
phages belong to Caudovirales of either the Myoviridae or
Ackermannviridae (Supplementary Fig. 4). A phage baseplate
assembly protein was encoded in most curated genomes. This is an
important building block for members of Siphoviridae and Myoviridae
[8], so we concluded that the bS21-encoding phages are myoviruses.

Predicted bacterial hosts of bS21-encoding phages
To predict host-phage relationships we first used CRISPR-Cas spacers
targeting. While none of the 16.5k unique spacers from the relevant
metagenomes targeted any of the curated phage genomes from the
same sampling sites, a single cross-site target was detected.
Specifically, MIW1_072018_0_1um_scaffold_78 was targeted by a
spacer (24 nt and no mismatch) from a MIW2 Flavobacterium genome
(affiliation: Bacteroidetes, Flavobacteria). We then predicted the
bacterial hosts based on the bacterial taxonomic affiliations of the
phage gene inventories as previously described [2] (Supplementary
Table 3). The results indicated that all of the phages infect members
of Bacteroidetes, which were detected in 43 out of 45 samples (Fig. 3
and Supplementary Table 4). The two metagenomic samples without
Bacteroidetes identified were both collected via filtering through 0.2
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μm and onto 0.1 μm pore size filters. Bacteroidetes were detected in
both of the corresponding 0.2 μm fraction samples (Fig. 3).
We profiled the co-detection of phage clades and Bacteroidetes

classes to test for specific connections (Supplementary Fig. 5).
However, this was uninformative because most samples contained
more than one class. However, phages from clades a and b are
unlikely to infect class Bacteroidia members, as they did not co-
occur in any sample.

Comparison of bacterial and phage-encoded bS21
Phylogenetic analyses revealed that bS21 protein sequences from
phages (this study) and the bacterial bS21 sequences (from the
corresponding samples and NCBI RefSeq) clustered separately
(Supplementary Fig. 6). The bacterial bS21 sequences that are
most similar to phage bS21 were from Bacteroidetes, mostly from
the Flavobacteriia class (Supplementary Table 5). We aligned and
compared the Bacteroidetes and phage bS21 sequences and
mapped the divergent and non-divergent residues to the model
of the ribosome of Flavobacterium johnsoniae (Fig. 4a). Multiple
divergent positions are located at the beginning of the
bS21 sequences and four residues (Arg21, Phe23, Asp25, and
Thr28) were significantly divergent (Fig. 4b).
Bacteroidetes usually lack the SD sequences. It was recently

reported that the bS21 Tyr54 (numbering in F. johnsoniae) is an
important residue for blocking the ASD in the 16S rRNA within the
ribosome [9]. Our analyses predict that all the analyzed bacterial and
phage bS21 in this study have an amino acid with an aromatic ring
(often Tyr54 but in a few cases His54, and in one case Phe54) at the
position of Tyr54 in F. johnsoniae (Fig. 4c, d and Supplementary Fig. 6).
This conservation of the aromatic property in phage bS21 should
ensure stacking interaction with Adenine 1534 (numbering in F.
johnsoniae 16S) from the ASD. In that way, phage bS21 mimics
Bacteroidetes bS21 in the region where it binds the ribosome but
differs from it in the region where the mRNA would bind.
In contrast, the C-terminal regions of both the bacterial and phage

bS21 sets were highly divergent (Fig. 4d). However, the phage
C-terminal regions are generally conserved within the clades
defined based on TerL phylogeny (Fig. 2 and Supplementary Fig. 7).

Metabolic potentials of bS21-encoding phages
Functional annotation of the predicted protein-coding genes
revealed that in addition to bS21, these phages carry other genes

related to protein production and stability (Supplementary Table 6).
Examples include protein folding chaperones and Clp protease,
suggesting the importance of controlling the proteostasis network of
the cell. Interestingly, we also identified many genes involved in
sugar-related chemistry and polysaccharide biosynthesis. Many of
these genes were predicted to perform chemical transformations
related to the biosynthesis of lipopolysaccharide, a major component
of the Gram-negative bacterial outer membrane. We interpret this as
a potential mechanism to remodel the cell surface and prevent
superinfection by competitor phages, a strategy common to the
phage lysogenic cycle. These phages lack detectable integration
machinery (no gene for integrase or resolvase was detected),
suggesting the possibility of a non-integrative long-term infection
state such as pseudolysogeny [10].
Clustering analyses of 22 phages with a minimum genome size of

100 kbp (including the two outgroup genomes) based on the
presence/absence of protein families indicated they shared a total of
16 protein families (Supplementary Fig. 8 and Supplementary Table 7).
Phosphate starvation-inducible protein PhoH (“fam582”) was the only
predicted protein detected in all 22 phages (excluding the shared
predicted proteins in the conserved rpS21-encoding region described
above). Other common protein families include those related to DNA
replication (e.g., DNA primase/helicase, DNA polymerase, HNH
endonuclease, thymidylate synthase (EC:2.1.1.45), deoxyuridine 5’-
triphosphate nucleotidohydrolase (EC:3.6.1.23)), those associated with
virion assembly (e.g., a phage tail sheath protein, phage baseplate
assembly protein W), and those for other functions (e.g., chaperone
ATPase, alpha-amylase, DegT/DnrJ/EryC1/StrS aminotransferase).

Temporal and spatial distribution and activity of bS21-
encoding phages in Lake Rotsee
To reveal the spatial and temporal distribution of the bS21-
encoding phages, we focused on the Lake Rotsee data and
profiled phage occurrence based on the sequencing coverage in
the metagenomic datasets. The Lake Rotsee samples were
collected from the oxic (7 samples) and anoxic (3 samples) layers
of the water column. The bS21-encoding phages were readily
detected in oxic samples, especially in the under-ice samples
when the whole water column was oxic (Fig. 5a).
Rotsee Lake RNA reads were mapped to the phage genomes

curated from this site to reveal the transcriptional activities of
bS21-encoding phages (Fig. 5b). In general, the phages were likely
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to be most transcriptionally active in the oxic water columns. A
total of 736 genes were transcribed in at least one sample
(Supplementary Table 8), those for MCP, an AAA ATPase, tail
sheath protein, bS21, FKBP-type peptidyl-prolyl cis-trans isomer-
ase, and a methyltransferase FkbM domain protein are among the
top 100 most highly transcribed. The high transcriptional activities
of MCP in five phages indicated they were in the late stage of
replication at the time of sampling.

The transcriptional behavior of phage bS21 genes
To seek evidence of a transcriptional relationship involving bS21
and other genes we focused on the three phages that were most
active based on the transcriptional level of their 19 shared single-
copy genes (Fig. 6a). bS21 had very similar (but slightly lower)
transcriptional activities as a neighboring gene (hereafter, bS21_CN
gene) encoded on the opposite strand. The bS21_CN gene encodes
a hypothetical protein (protein family: fam498) and was not
detected in the two outgroup phages without bS21 (Supplementary

Table 6). Interestingly, a comparison of the phylogenies of bS21 and
bS21_CN showed a very similar evolutionary pattern (Supplemen-
tary Fig. 9), likely suggesting their potential functional relationship in
the bS21-encoding phages.
Inspection of the RNA reads mapping profiles indicated that the

conserved region encoding bS21 and core structural proteins was
not transcribed as an operon, whereas bS21 and bS21_CN, MCP
and its upstream hypothetical protein gene, and prohead protease
and its downstream hypothetical protein gene may each be
transcribed together (Fig. 6b). Given the observed RNA expression
patterns, we conclude that the phage-encoded bS21 genes were
actively transcribed during late-stage replication, along with other
core structural proteins.

Genomic context of bS21 genes in published phage genomes
To determine whether the phage bS21 genes are generally co-located
with those for core structural proteins in diverse phages, we profiled
the genomic context of bS21 in 900 published bS21-encoding phages
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shown with red. c Zebra2 conservation results from the same alignment as in (b) mapped on F. johnsoniae bS21 with conserved residues
shown in yellow. The stacking interaction between Tyr54 and Adenine 1534 is indicated. d The sequence logo and consensus sequences of
phage and bacterial bS21 alignments and the corresponding position of Tyr54 in F. johnsoniae bS21 in the alignment are highlighted. The
C-terminal parts are highlighted with gray backgrounds.
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[2, 11] (Supplementary Table 9). Functional annotations were
performed for the upstream and downstream ten genes of the
bS21 genes using pVOG (Supplementary Table 10). Of the 20 most
abundant pVOGs, 6 were related to core structural assembly (Fig. 7a),
i.e., prohead protease (n= 310), MCP (n= 154), PVP (n= 120), TerL
(n= 78), neck protein (n= 70), and a tail sheath protein (n= 29). A
total of 388 genomes contained at least one of these genes within ten
genes of bS21, and eight had all of these six core structural proteins in
close proximity. Three pVOGs were related to DNA processing, i.e., an
exonuclease (n= 37), an endonuclease (n= 32), DNA helicase (n=
30). Other pVOGs included Hsp20 heat shock protein (n= 127), two
ATP-dependent CLP proteases (n= 50 and 47, respectively), and
lysozyme (for lysis; n= 29). Interestingly, the prohead protease and
the MCP pVOG genes are very close to the bS21 gene (generally 2–4
genes; Fig. 7b), as in the bS21-encoding phage genomes analyzed in
this study (2–6 genes away; Fig. 1 and Supplementary Fig. 1).
We respectively predicted the hosts of the bS21-encoding

phages with the four most dominant pVOGs within ten genes of
bS21 (Fig. 7c and Supplementary Table 11). The bacterial hosts are
diverse and include Proteobacteria, Bacteroidetes, and Firmicutes.

DISCUSSION
The Bacteroidetes-infecting bS21-encoding phages are
abundant and active in oxic water columns
Bacteroidetes, including Bacteroidia or Flavobacteriia, were ubiquitous
in the analyzed samples and are the predicted hosts of most of the
newly reported bS21-encoding phages (Fig. 3). Bacteroidia spp. are
strictly anaerobic [12] whereas Flavobacteriia spp. are strictly aerobic
[13, 14], in line with the general detection of Bacteroidia in anoxic
samples and Flavobacteriia spp. in oxic samples (Fig. 3). The majority
(51/61) of the phage-encoding bS21 genes in this study are most
similar to those from Flavobacteriia (Supplementary Table 5), explaining
why most of the bS21 phages, and the most transcriptionally active
subset, were detected in the oxic water column of Lake Rotsee.
Flavobacteriia spp. likely degrade high molecular weight compounds
such as polysaccharides and proteins [13, 15]. Based on the detection of
phage genes for these functions (Supplementary Table 6), we conclude

that the bS21-encoding phages may primarily impact the abundance
of Flavobacteriia and thus alter its impact in the community.

Features of phage bS21 that may enable substitution for
bacterial bS21 in ribosomes
Some highly similar phages detected in lakes separated by thousands
of miles (for example, Supplementary Fig. 2b), share identical bS21
genes in conserved genomic context, despite sequence divergence
throughout the rest of the genome. This points to the high functional
importance of bS21 in the phages. The conservation of the C termini
of phage bS21 proteins across all of the phage clades that we defined
using TerL phylogeny (Supplementary Fig. 8) may indicate that the
phage bS21 C termini are important for the phage proteins to
substitute for the bacterial bS21 in the ribosomes.
bS21 is composed of two α-helices that interact in different

ways with the 16S rRNA. The N-terminal α-helix is situated on top
of the ASD where the mRNA would bind, whereas the C-terminal
α-helix is tucked between the ASD and the rest of the 16S rRNA
(Fig. 4a) and anchors bS21 to the 16S rRNA [4]. Our results are
congruent with these observations since sequences of phage
bS21 show strong divergences from the bacterial sequences in the
N-terminal α-helix (Fig. 4b). These changes should not alter the
binding of bS21 to the 16S rRNA but may provide specificity for
attracting phage-specific mRNA.
All bS21 phages had either Tyr54 (54 out of 61) as occurs in

Flavobacteriia johnsoniae, or a residue with an aromatic ring (7 out of
61) near the C-terminus of bS21 (Supplementary Fig. 6). It has been
suggested that this helps to block the ASD sequences [9]. Thus, the
phage bS21 may function in essentially the same way as that of their
Bacteroidetes hosts. We infer that once phage bS21 proteins are
available, the bS21 incorporates into the bacterial ribosomes,
potentially enabling the phages to have their mRNA transcripts
translated preferentially over the host transcripts.

Why might phages use bS21 to hijack the ribosome in the late
stage of replication?
Our RNA analyses showed the simultaneous transcription of the
genes for bS21 and core structural proteins (e.g., capsid proteins,
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prohead protease, TerL, scaffolding proteins, and tail proteins; Fig. 6
and Supplementary Table 8), suggesting the potential significance of
bS21 in the late-stage replication [16]. The genomic placement and
timing of transcription of bS21 genes make sense given the huge
number of proteins needed for assembly and packaging. On the
other hand, a previous study showed that stalling of phage protein
synthesis is an important defense strategy for a Bacteroidetes
species, i.e., Cellulophaga baltica (class Flavobacteriia [17]). The
replacement of bacterial bS21 with phage bS21 may be a
mechanism that counters this defense strategy. It is also possible
that the phage bS21 protein is encapsulated within the viral particles
and delivered into host cells along with the viral genomes to
modulate translation from the onset of infection. This hypothesis
could be tested by performing proteomics analyses on the
concentrate of encapsulated phage particles.
Our genetic context analyses of published bS21-encoding phage

genomes showed that many bS21 genes are co-located with genes
for core structural proteins, and sometimes with genes for DNA
replication and lysis. Thus, we suggest that the acquisition and timing

of expression of bS21 may be a more general and consistently
evolved phenomenon across diverse phage lineages. This motivates
future analyses that could experimentally investigate phage-encoded
bS21, especially when the genes co-occur with DNA processing or
lysis genes, and test the hypothesis that bS21 may be important for
efficient translation of the nearby genes.

CONCLUSION
By carefully manual curating nine huge phage (also sometimes called
jumbo phages) [18] genomes to completion, we accurately
determined genome sizes, genome organization, and gene inven-
tories (e.g., lack of other genes encoding ribosomal proteins). Partial
curation further constrained the genome sizes of other phages and
ensured that all key protein sequences are correct. Given RNA
expression of bS21 and the flanking structural proteins in several
transcriptionally active phages, we suggest that the bS21 genes in
phages that infect some freshwater Bacteroidetes species are
important in the late-stage replication. Our analyses of publicly
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available genomes suggest that this phenomenon may be more
general across phage groups that infect diverse bacterial hosts.

MATERIALS AND METHODS
A global search for related phage sequences encoding bS21
To detect related phage sequences encoding the detected bS21 gene, a
BLASTp search using the TerL protein was performed against all metage-
nomic datasets in ggKbase (ggkbase.berkeley.edu). All the contigs/scaffolds
bearing the top BLASTp top hits were manually checked for bS21. It was
confirmed that when the TerL similarity dropped to below ~70% similarity,
the bS21 that located near the TerL was no longer observed. Two of the
scaffolds with the highest TerL similarity to that of bS21 containing contigs/
scaffolds but without bS21 were included in this study as an outgroup for
phylogenetic and comparative genomic analyses.

Site description of the samples with bS21-encoding phages
detected
The samples with bS21-encoding phages detected were collected from several
freshwater lakes, including Lac Pavin (45°30'0”N, 2°52'60”E) and Lake Fargette
(45°44'24”N; 3°27'39”E) in France, Lake Rotsee (47°04'11”N, 8°18'51”E) in
Switzerland, and three freshwater reservoirs of mining-impacted water in
Canada. The freshwater samples were conservation with dry ice before
genomic DNA was extracted. See related publications for details of sampling
procedures [19–21].

Manual curation of phage genomes
To ensure the phage genomes reported in this study were without any
assembly errors that could be detected, manual curation was conducted on
each of them individually as described previously [22]. Firstly, the correspond-
ing metagenomic quality paired-end reads were mapped to the scaffold using
bowtie2 [23] with default parameters, and the sam file was filtered to remove
unmapped pairs using shrinksam (https://github.com/bcthomas/shrinksam).
The shrunk sam file was imported into Geneious Prime version 2021.1.1
(https://www.geneious.com). The manual check was performed to identify any
assembly errors (regions lacking paired read support), which were subse-
quently fixed using unplaced paired reads as previously described [22]. Those
scaffolds with sufficient coverage (generally ≥20×) were selected for curation
to completeness. For all of the curated scaffolds, the paired high-quality reads

were re-mapped to the genome sequences for a final check. Regions that
could not be covered by reads are scaffolding gaps and indicated by 10Ns.

Retrievement of related phage genomes from IMG/VR
To reveal the distribution of related phages encoding bS21 in public databases,
the IMG/VR database (version 2020-10-12_5.1) was downloaded [24]. The IMG/
VR proteins were searched against the TerL protein sequences predicted from
the curated genomes (see above) using BLASTp. The BLASTp hits with a
minimum similarity of 97% and longer than 400 aa in length were filtered for
manual inspection to include only those from IMG datasets that have been
published. As a result, a total of 14 IMG/VR genomes from three sampling sites
[25, 26] which are highly similar to our bS21-encoding phages were included in
our analyses (Supplementary Table 1), which were determined to be public by
checking “published” on IMG/VR website for usage.

Phylogenetic analyses
To reveal the phylogenetic relatedness of the phages, phylogenetic trees
were built using TerL. The protein sequences were aligned using MUSCLE
[27] with default parameters and filtered using trimal-trimAl v1.4.rev15 [28]
to remove columns comprising ≥90% gaps. The trees were built by IQtree
version 1.6.12 [29] with 1000 bootstraps using the “LG+G4” model. For the
phylogeny of bS21, the alignment, filtering and tree construction of
bacterial and phage bS21 protein sequences were performed the same as
did for the TerL sequences.

Comparative analysis between phage and bacterial bS21
To understand the differences between phage and bacteria encoded bS21 we
built a sequence alignment of phage bS21 sequences, most closed bacterial
bS21 sequences in the corresponding metagenomic samples, and publicly
available bacterial bS21 sequences. The alignment was built using MUSCLE
v3.8.31 with default parameters [27]. Zebra2 [30] and TwinCons [31] were
used to perform a search for divergent positions in the generated alignment.
Results were mapped on the bS21 structure from the Bacteroidetes
representative F. johnsoniae (PDB ID: 7JIL) [9].

Genomic context analysis
Protein sequences for the combined phage set were predicted using Prodigal
version 2.6.3 using the “-m”model [32]. To investigate the genomic context of
bS21 in phage genomes, we gathered protein sequences within a 10 open
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reading frame (ORF) distance (or, to the scaffold end) in both genomic
directions of the identified bS21 genes. Each ORF was assigned a genomic
position relative to the bS21 (position 0). All “neighboring” proteins were
subjected to a two-part, de novo protein clustering pipeline in which proteins
are first clustered into “subfamilies” and highly similar/overlapping subfamilies
are merged using and HMM-HMM comparison approach (--coverage 0.75)
(Méheust et al. 2019). We next searched all neighboring proteins against Pfam
(pfam.xfam.org) and pVOG (dmk-brain.ecn.uiowa.edu/pVOGs) [33] HMM
collections and retained hits with e value <1e–5. Consensus annotations for
each family were obtained by computing the HMM with the most above-
threshold hits among member sequences of the family (minimum 5% of
member sequences). If no HMMs met these thresholds, the protein family was
labeled “hypothetical” (hyp). Finally, we plotted the frequency at which each
protein family was found as a function of its relative position to the focal bS21
gene (Fig. 1). In addition, we plotted genomic diagrams of individual regions
of interest using gggenes (wilkox.org/gggenes).

Microbial community composition analyses
To reveal the community composition of the samples analyzed in this study,
the protein-coding genes were predicted using Prodigal [32] (-m = meta)
from all metagenomic assembled sequences with a minimum length of 1000
bp. The ribosomal protein S3 (rpS3) was predicted using hmmsearch (version
HMMER 3.3) [34] with the hmm database from TIGRFAM [35]. For taxonomic
information, the predicted rpS3 protein sequences (minimum length, 100 aa)
were searched using BLASTp against the rpS3 proteins from NCBI RefSeq and
those of Candidate Phyla Radiation reported previously [36], and taxonomy
of the best hits was used. The nucleotide sequences of the predicted rpS3
genes (minimum length, 300 nt) were clustered using cd-hit-est (parameters:
-c= 0.97, -aS= 0.5, -aL= 0.5, -G= 1) [37] to generate a non-redundant
dataset. The quality metagenomic reads from each sample were individually
mapped to the non-redundant dataset and filtered allowing ≤3% mismatch.
The coverage of each rpS3 sequence was determined by the total mapped
bases divided by its length.

Host prediction of phages
To predict the bacterial hosts of the phages, CRISPR-Cas spacers were
searched for targeting. Firstly, all the scaffolds with a minimum length of 1
kbp from all the corresponding samples with the bS21 phages were predicted
for CRISPR repeat arrays using PILER-CR [38] with default parameters. The
protein-coding genes within 10 kbp of both upstream and downstream of
each repeat array were predicted and searched for Cas proteins using the
TIGRFAM HMM database [35] with hmmsearch (version HMMER 3.3) [34]. For
the scaffolds with both CRISPR repeat arrays and at least one cas protein,
spacer sequences were extracted. Spacers were also extracted from the
mapped reads and unplaced paired reads that may carry divergent spacers.
The extracted spacers were searched against the manually curated phage
sequences using blastn-short [39] with parameters as follows: -e value= 1e–3,
-perc_identity= 70. The search results were parsed to retain those hits with a
minimum match of 24 nt and no more than one mismatch [2], or 30 bp with
no more than three mismatches. The phages whose scaffolds had matches to
the spacers were considered as the likely bacterial hosts.

The temporal and spatial distribution of bS21 phages by read
mapping
The quality reads of Rotsee Lake samples were mapped to all the curated
bS21 phage genomes from this site using Bowtie2 [23]. A given bS21
phage was considered to be detected in a given sample if 90% of its
genome was covered with at least one read (minimum nucleotide
sequence similarity of 97%), and the coverage of this phage in the sample
was accordingly determined as the total length of mapped reads dividing
by the total covered genome length. A custom python script (dCov.py) was
prepared to perform the analyses.

Gene annotation and metabolic prediction
The tRNAs encoded on all the curated phage genomes and retrieved IMG/
VR sequences were predicted using tRNAscanSE (version 2.0.3) [40]. The
predicted protein-coding genes were annotated by searching against the
databases of Kyoto Encyclopedia of Genes and Genomes [41], UniRef100
[42], and UniProt [43] using Usearch (version v10.0.240_i86linux64) [44]
with an e value threshold of 10−4. For the specific metabolic potential of
interest, the predicted protein-coding genes were also investigated using
online HMM search tools.

Metatranscriptomic analyses
The seven raw metatranscriptomic RNA datasets from Lake Rotsee were
downloaded [45] and filtered to remove sequencing contamination, adaptors
and low-quality bases/reads as performed for metagenomic reads (see
above). To profile the transcription of protein-coding genes, the quality RNA
reads were mapped to the curated phage genomes reconstructed from Lake
Rotsee using Bowtie2 [23] allowing three mismatches each read (i.e., 98%
similarity). The normalized transcriptional level of a given protein-coding gene
(gene_a) in a given sample was determined by calculating as follows:
total_basegene_a/lengthgene_a/total_readgenome_a, in which total_basegene_a
means the total bases mapped to a given gene, lengthgene_a means the
length of the nucleotide sequence of the gene, and total_readgenome_a means
the total number of reads mapped to the corresponding genome. Only those
protein-coding genes with at least 80% of the bases covered were calculated
for normalized transcriptional level. To evaluate competitive mapping to
regions of bacterial and phage genomes that are shared due to horizontal
gene transfer, we also mapped RNA reads to datasets including both bacterial
and phages and found no difference.

Genomic context of bS21 in published bS21-encoding phage
genomes
To reveal if the bS21 genes in the published viral genomes are also co-located
with these for core structural proteins, we checked all the huge phages
genomes reported by Al-Shayeb et al. [2], and also the viral genomes
reconstructed from the Global Ocean Virome (GOV) [11]. The protein-coding
genes were searched against the bS21 HMM from TIGRFAM [35] using
hmmsearch (version HMMER 3.3) [34] with the parameters of “--cut_tc”. The
results were parsed using cath-resolve-hits [46]. We identified bS21 genes in 68
huge phages [2] and 832 GOV viral genomes. The genomic context of the
bS21 genes in these 900 genomes was performed as described above (see
section “Genomic context analysis”). For the phage bS21 genes with genes for
some specific proteins within ten genes, the taxonomy of their most similar
bacterial bS21 was evaluated by comparison against the NCBI RefSeq bS21
proteins using BLASTp [39], the hits with the highest bit scores were retained
for further analyses. When we checked the IMG/VR genomes for bS21 there
were more than 14,000 bS21 hits. However, given the policy of IMG data use,
we restricted our analyses to the published genomes.

DATA AVAILABILITY
The genomes of the bS21-encoding and outgroup phages are available at ggkbase
https://ggkbase.berkeley.edu/PS21/organisms (please sign in by providing your email
address to download) and at figshare (https://figshare.com/articles/dataset/
bS21_encoding_phages/16744504).
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