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Determining the drivers of microbial community assembly is a central theme of microbial ecology, and chemical ecologists seek to
characterize how secondary metabolites mediate these assembly patterns. Environmental structure affects how communities
assemble and what metabolic pathways aid in that assembly. Here, we bridged these two perspectives by addressing the chemical
drivers of community assembly within a spatially structured landscape with varying oxygen availability. We hypothesized that
structured environments would favor higher microbial diversity and metabolite diversity. We anticipated that the production of a
compound would be more advantageous in a structured environment (less mixing) compared to an unstructured environment
(more mixing), where the molecule would have a diminished local effect. We observed this to be partially true in our experiments:
structured environments had similar microbial diversity compared to unstructured environments but differed significantly in the
metabolites produced. We also found that structured environments selected for communities with higher evenness, rather than
communities with higher richness. This supports the idea that when characterizing the drivers of community assembly, it matters
less about who is there and more about what they are doing. Overall, these data contribute to a growing effort to approach microbial
community assembly with interdisciplinary tools and perspectives.

ISME Communications; https://doi.org/10.1038/s43705-022-00097-5

INTRODUCTION
A central focus of microbial ecology is characterizing the forces
that govern microbial community assembly. Because microbial
communities exist in spatial patches [1, 2] and assemble into cell
aggregates [3, 4], interactions will play a major role in community
assembly as populations establish complex networks that define
how microbial communities function. For example, microbial
interactions can drive geochemical processes [5–7] or nutrient
uptake and host physiology in gut systems [8, 9]. Many microbial
interactions are mediated by the production of secondary
(specialized) metabolites that aid in communication [10] or
competition [11]. Characterizing the chemical communication
network in which microorganisms exist is crucial to understanding
the rules that govern interactions at the population level [12, 13].
Where microbial ecology often halts is in bridging the gap
between biodiversity/community assembly and chemical ecology/
chemodiversity [14]. Because ecology is mediated by chemical
agents at various temporal and spatial scales, the chemistry of a
system is an important factor when characterizing a community’s
function and stability [14, 15]. Since many microorganisms
naturally exist in a spatially structured, heterogeneous environ-
ment like biofilms [3], it is important to characterize the effect of
environmental structure on microbial community composition
and function.
A structured environment contains many habitats defined by

barriers, chemical or physical, which can then influence the
structure of a microbial community and its spatiotemporal

dynamics (i.e., habitat heterogeneity, niche construction, stability)
[16–20]. Structured environments would lead to more environ-
mental gradients and unstructured environments would harbor
fewer environmental gradients (i.e., habitats) [21–24]. Structure can
result abiotically from microscale gradients in nutrients or
chemicals, like oxygen or light, as well as physical barriers, like
surfaces [23, 25]. Structure can be established biotically through the
metabolic activity of microorganisms themselves via nutrient
degradation and the production of metabolites involved in
signaling or competition [26–28]. Overall, gradients create spatial
heterogeneity which affords more niches into which diverse groups
can sort. It is as populations seek to assemble or compete in these
gradients that microorganisms interact with each other [12] and
where biodiversity and chemodiversity are intrinsically linked.
Structured environments provide a mosaic of habitats in which

neighbors can affect each other and their surroundings [29]. The
effect that structured environments have on clonal microbial
populations has been characterized for some organisms, such as
colicin-producing and colicin-sensitive Escherichia coli strains,
where the structure of the environment and the population size
determined if a producer strain could outcompete the sensitive
strain [30]. A structured environment also selects for phenotype
diversification in Pseudomonas fluorescens compared to a con-
stantly mixed, unstructured environment [31]. In the case of P.
fluorescens, structure provided vacant niches which allowed for
different genotypes to partition along a gradient, particularly an
oxygen gradient [31]. Another example using a mixture of algal
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species showed that spatial structure afforded by heterogenous
stream flow rates selected for coexistence (diversity) where a
uniform flow rate (unstructured) led to competitive exclusion [32].
Overall, structured environments can afford multiple niche spaces,
selecting for both microbial and functional diversity [33], and
thereby creating ecological opportunity [34]. It follows that where
there is opportunity that can be exploited by multiple groups,
there will be competition for resources as organisms seek to
establish themselves. Unlike the previous examples, we sought to
characterize community assembly and interactions in a structured
environment using a complex microbial community.
We hypothesized that structured environments would select for

the production of antimicrobial metabolites as a competitive
advantage during community assembly. We anticipated that the
production of a compound would be more advantageous in a
structured environment (limited mixing), compared to an unstruc-
tured environment (more mixing) where the molecule would have a
diminished local effect [35]. Specifically, a structured environment
would keep the producer and compounds within close range so that
a producer can incur the benefit from costly production [12, 30, 36].
Therefore, spatial structure will determine the effect molecules can
have on a population. We also hypothesized that the static
communities would be more diverse (i.e., higher richness) since
differential gradients could allow for slow-growers to partition,
compared to the shaking communities that had a highly oxygenated
environment that could select for a few, fast-growers. To test these
hypotheses, we took a diverse wastewater community, diluted it to
obtain inocula of varying cell densities, and incubated them in static
conditions to promote structure (e.g., oxygen gradients) or shaking
conditions to disrupt any gradients [31]. Microbial communities
associated with wastewater treatment facilities provide a diverse, and
metabolically active community, in which many populations are
interacting [37–39]. We measured the microbial community diversity
over time via 16S rRNA gene amplicon sequencing and the
metabolite diversity through untargeted metabolomics. We found
that structured environments selected for different microbial
communities and different chemical profiles.

MATERIALS AND METHODS
Sampling and experimental setup
Wastewater was collected from the aerator basin at the Norman Water
Reclamation Facility, Norman, OK on 11 February 2020. The sample (50 mL
volume) was homogenized vigorously on a vortex mixer for ~2min to
break up flocks and produce a slurry. The sample was serially diluted (1:10)
in sterile R2B liquid medium to generate 5 different dilutions (dilution
factors of 1 to 10,000) to be used for the starting inocula [40]. R2B medium
was chosen as a low-nutrient medium designed to increase cultivable
isolates from water treatment facilities [40]. Each dilution was inoculated
into sterile R2B medium for a final volume of 35mL. A total of 150
enrichments were made so that three replicates could be sampled
destructively, representing each dilution (1e−00, 1e−01, 1e−02, 1e−03, 1e
−04) for each sampling day (Day 0, 3, 6, 9, 12) and for each condition
(shaking or static). A total of 15 uninoculated medium controls were made
to be used at each time point (n= 3). All cultures were incubated at 30 °C,
either shaking at 250 rpm or static (Supplementary Fig. 1).
For each time point, triplicate cultures from each inoculum size and

condition were vortexed and pooled. From this pool, three 1.0 mL aliquots
were used to generate a cell pellet for DNA extraction (see Supplementary
Detailed Methods). Cells were resuspended in 750 µL Zymo bashing bead
buffer (per Zymo Quick-DNA manufacturer protocol), transferred to Zymo
bashing bead tubes (Zymo Research Corp., Irvine, CA, USA), homogenized
for 45 seconds using a hand-held reciprocating saw with custom
attachment (RYOBI, Anderson, SC, USA), and stored at −20 °C until DNA
extraction. Lastly, 103mL of ethyl acetate was added to the remaining
volume of the pooled samples (~103mL) and mixed to generate a 1:1 ratio
of culture and solvent for an overnight, organic extraction at room
temperature. Medium controls for each time point, described above, were
pooled, sampled for DNA extraction, and prepared for ethyl acetate
organic extraction as described above for the cultures to be used as blanks
for both sequencing and metabolomic data.

DNA extraction and sequencing
Before DNA extraction, each sample was thawed on ice and homogenized
for 45 s using a hand-held reciprocating saw. DNA was extracted according
to manufacturer specifications using the Zymo Quick-DNA Fungal/Bacterial
Miniprep kit (Zymo Research Corp., Irvine, CA, USA). Samples were stored
at −20 °C until extractions could be processed at once. For community
characterization, a conserved region of the SSU rRNA gene of most
bacteria, archaea, and eukarya was amplified using primers 515F-Y and
926R [41] following a previously published protocol [42]. The amplified
fragments were purified using Sera-Mag magnetic beads (ThermoFisher,
Waltham, MA, USA) with the AmPureXP (Beckman Coulter, Indianapolis, IN,
USA) protocol at a final concentration of 1.8× v/v. After purification, each
PCR product was used in a separate barcoding PCR (6 cycles) in 50 µL
reactions to attach a unique barcode to amplicons of each library [42]. The
now barcoded amplicons were purified using Sera-Mag (ThermoFisher,
Waltham, MA, USA) beads with the AmPureXP (Beckman Coulter,
Indianapolis, IN, USA) protocol to a final volume of 40 µL, quantified using
the QuBit HS DS DNA assay kit (ThermoFisher, Waltham, MA, USA), and
pooled in equimolar amounts. The pooled, barcoded amplicon libraries
were then concentrated to a final volume of 100 µL (16.6 ng/µL) with an
Amicon-Ultra filter (Millipore, Burlington, MA, USA) following manufac-
turer’s protocol. The combined amplicon libraries were denatured
according to MiSeq library preparations protocol (Illumina, San Diego,
CA, USA). The sample was loaded at a concentration of 10 pM and
sequenced using 2 × 250 paired-end strategy on the MiSeq (Illumina San
Diego, CA, USA) platform for 251 cycles.

ASV detection
Barcodes from raw SSU rRNA amplicon sequences were trimmed and
sequences were dereplicated using cutadapt v3.0 [43]. Demultiplexed
reads were quality filtered, forward and reverse reads were merged (~372
bp) and amplicon sequence variants (ASVs) were inferred as a part of the
dada2 pipeline [44]. Taxonomy was assigned using the SILVA database v32
[45, 46]. Contaminants were removed via the r package decontam v. 1.10
using the frequency- and prevalence-based filtering with a threshold of 0.5
[47]. The final, experimental dataset consisted of ~1.4 million reads
resulting in 1923 ASVs with a median of 9054 reads per samples.

Tree building and community analysis
Sequences were aligned using the r package DECIPHER v2.0 [48, 49] and
the r package phangorn v2.5.5 [50] was used to first construct a neighbor-
joining tree to use as the starting point for a GTR+G+ I maximum
likelihood tree. Community analysis was done using the r package phyloseq
v1.26.1 [51]. Richness was calculated using the r package breakaway which
calculates error in richness estimation [52]. Evenness was calculated using
Pielou’s index [53]. To test whether environmental structure influenced the
richness and evenness of the microbial communities for each dilution, a
Levene’s test was used to confirm homogeneity of variance [54] using the r
package car [55] before a two-way ANOVA coupled with a Tukey’s honest
significant difference test was used to compare differences between
shaking and static cultures for each time point in PRISM v9 (GraphPad
Software, San Diego, CA, USA). Dilutions were treated as independent
communities and alpha diversity significance tests were run on each
dilution separately.
To characterize beta diversity, distances were calculated using weighted

UniFrac distances [56] and ordinated using Principal Coordinate Analysis
(PCoA) calculated with 95% confidence ellipses. Statistical comparisons
across cultivation conditions, dilution, and day were done using PERMA-
NOVA with the adonis function in the vegan r package (~Dilution*Condition*-
Day) [57]. To understand the significance described in the PERMANOVA, a
PERMDISP with the betadisper function in vegan was used to describe any
within sample variance (i.e., across replicates) that could explain any
significant differences detected in the PERMANOVA. Hypothesis testing via
ANOVA with permutations (n= 999) was used with PERMDISP to determine
any significant differences in variation within samples. To investigate
changes in abundance of certain taxa between shaking and static
conditions, the r package corncob was used to calculate differential
abundances using a beta binomial model at the genus level [58]. This
model tested for differential abundance and variability between cultivation
conditions, while controlling for the effect of dilution and day on dispersion.

Organic extractions and HPLC-ESI mass spectrometry
After overnight ethyl acetate extractions, the organic layer was transferred
to round-bottom flasks and evaporated on a Heidolph Hei-Vap Value
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(Heidolph, Schwabach, Germany) rotovap. Samples were resuspended in
100% methanol and transferred to pre-weighed scintillation vials. Samples
were dried under nitrogen gas at room temperature and weighed for final
yield (mg). For this experiment, all beakers were brand-new from the same
lot, rinsed with 100% methanol prior to use, and one beaker was incubated
overnight with 103mL of ethyl acetate to generate a glassware blank to
attribute any metabolites in the metabolomics data to glassware alone.
Once samples were dry, they were stored at −80 °C until experiment was
complete. Each sample was resuspended to a final concentration of 11mg/
mL in 100% isopropanol containing 0.1 μM of sulfadimethoxine as an
internal standard. A volume of 100 μL of each sample was transferred to a
LCMS/MS 96-well plate and stored at −80 °C until it was run on the
instrument. In addition to the internal standard, a pooled sample control
containing 2 μL of every sample was also prepared. Lastly, 100% methanol
blanks were run between each experimental sample.
HPLC separation of the samples was performed on an Agilent 1290 HPLC

system (Agilent, Santa Clara, CA, USA) with a Waters ACQUITY UPLC BEH
column (ODS-18; 2.1 × 100mm; 1.7 μm particle size, Waters, Milford, MA,
USA). The resulting eluent from the HPLC column was run on an Agilent
6545 accurate mass Q-TOF mass spectrometer with an electrospray
ionization source operating in the positive mode (Agilent, Santa Clara, CA,
USA) (see Supplementary Detailed Methods). Data was collected with Mass
Hunter Acquisition software (B.08.00).

Molecular networking and spectral library search in GNPS
Raw data obtained from the LCMS/MS instrument was converted to.
mzXML files using msConvert within ProteoWizard v3 [59]. The mass
spectrometry data were first processed with MZmine2 v2.51 [60]. Peaks
were identified (MS1 noise cutoff: 1.0E2, MS2 noise cutoff: 1.0E1).
Chromatograms were built using the ADAP chromatogram builder [61]
and deconvolution was achieved via the local minimum algorithm.
Isotopes were grouped and the feature table was aligned and filtered
(see Supplementary Detailed Methods for parameters). Poor peaks were
removed from the peak list (long tails or plateaus) and any feature found in
a blank (methanol, glassware, or isopropanol) was removed from the
feature table. Results were exported to GNPS [62], for feature-based
molecular networking analysis [63] (see Supplementary Detailed Methods
for parameters).

Metabolomics data analysis and hypothesis testing
Principal coordinate analysis using Bray–Curtis distances and 95%
confidence ellipses calculated from total ion current (TIC)-normalized
feature (metabolite) table was used to visualize the composition of
metabolites using the r package phyloseq v1.26.1 [51]. The molecular
networks were visualized using Cytoscape software v3.8.1 [64]. To test for
differences, a PERMANOVA and PERMDISP were used (as described above)
to characterize differences between metabolite composition among
samples. To test the hypothesis that structured environments yield a
community that produces a richer pool of metabolites, we performed a
Mann–Whitney U test (Wilcoxon rank sum test) with Benjamini-Hochberg
correction using the r package stats [65]. We also used a Fisher’s exact test
to confirm differences in unique/total metabolites for each condition. To
characterize how metabolite diversity changes over time, a liner mixed
effects model was fit using REML via the r package lme4 lmer function
[66]. The formula Metabolites ~ Condition * Day+ (1 | Dilution) was used to
compare the change in metabolite diversity (richness) over time
between shaking and static conditions. This formula treated inoculum
size as a random variable to account for dispersion while Day and
Condition were fixed effects. Lastly, well-annotated metabolites were
grouped into molecular classes using the classification program ClassyFire
[67] and TIC-normalized values were summed for each class of molecule
to generate a heatmap in PRISM v9 (GraphPad Software, San Diego,
CA, USA).

Data deposition and job accessibility
Sequence data have been deposited at NCBI’s Sequence Read Archive
database under accession number PRJNA732431.
Mass spectrometry data were deposited on MassIVE (MSV000086507).

The molecular networking job can be publicly accessed at https://gnps.
ucsd.edu/ProteoSAFe/status.jsp?task=e96bf8001f6d4518834ac6ba3742bd
81. (Supplemental run containing samples from Day 0 can be accessed at
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=807cc96f3c5d4898aca6
4659484d86ea).

RESULTS
Differences in microbial community structure were primarily
driven by environmental structure
Serially diluted wastewater samples were incubated in shaking or
static enrichments to represent unstructured or structured
environments, respectively. The microbial diversity was character-
ized through 16S rRNA gene sequencing, while the chemical
diversity was characterized through untargeted metabolomics.
Despite the intention to remove structure through shaking and
homogenization, many shaking cultures contained visible biofilm
on the walls of the culture tube at the air-media interface (Fig. 1).
However, there was nevertheless less visible structure in shaking
cultures compared to static cultures. To focus on cultivated
communities, Day 0 samples were removed from the analysis (See
Supplementary Results and Supplementary Figs. 2–4). After
removing Day 0, the most obvious pattern was the separation
of static communities and shaking communities, where samples
clustered according to cultivation condition (Fig. 2 and Supple-
mentary Table 1A, B). Microbial communities also clustered
according to inoculum size where samples partitioned from low
to high dilutions for both static and shaking conditions (Fig. 2A).
Lastly, microbial community structure changed little over time
(Fig. 2B, Supplementary Table 1A, B). Interaction effects between
variables suggest that main effects alone do not drive differences,
but rather combinations of factors like time and condition jointly
have an effect (Supplementary Table 1A, B). Interactions between
treatments and the significant dispersion within treatments, like
dilution or time, highlight important factors that will affect
microbial community assembly. For most conditions, the beta
diversity between replicate samples became more variable as
inoculum size decreased (i.e., high variability for distance to
centroid) (Supplementary Fig. 5A). Overall, beta diversity indicates
that structure, afforded by static cultivation or removed by
shaking cultivation, was the primary driver of diversity, though
interactions among the factors show that the size of the starting
community and time can influence community assembly in
structured and non-structured environments as well.

Structured environments selected for different community
compositions
The number of different taxa (i.e., richness) was similar between
shaking and static communities, and richness changed little over
time (Fig. 3A, Supplementary Tables 2–6). In contrast, microbial
evenness significantly differed between some shaking and static
communities (Fig. 3B, Supplementary Tables 7–11). Microbial
evenness also significantly changed over time (Fig. 3B, Supple-
mentary Tables 7–11). Further, structured environments selected
for higher abundances of certain taxa (Fig. 4), despite some taxa
being shared between shaking and static conditions (Supplemen-
tary Fig. 6). Specifically, static cultures had significantly higher
relative abundances of Arcobacter spp., Prevotella spp., Pseudomo-
nas spp., and Delftia spp. compared to shaking. We also observed
lower abundant taxa, like Desulfovibrio spp., to have significantly
higher relative abundances in static cultures compared to shaking
cultures (Fig. 4). In contrast, shaking cultures were dominated by
Aeromonas spp. with similar relative abundance across inoculum
size (Supplementary Fig. 6). Overall, communities resulting from
shaking or static samples were composed of similar populations
but were structurally different.

Cultivation conditions produced communities with different
metabolic profiles
Since this study focused on the effect of structured environments
on microbial interactions, our untargeted metabolomics methods
primarily characterized specialized and secondary metabolites,
molecules typically driving these types of interaction [68]. We
observed the structure of the metabolome to differ based on
individual factors like cultivation condition, time, and inoculum

E.N. Junkins et al.

3

ISME Communications

http://www.ncbi.nlm.nih.gov/bioproject/732431
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e96bf8001f6d4518834ac6ba3742bd81
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e96bf8001f6d4518834ac6ba3742bd81
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e96bf8001f6d4518834ac6ba3742bd81
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=807cc96f3c5d4898aca64659484d86ea
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=807cc96f3c5d4898aca64659484d86ea


size based on higher F-values, more so than interactions among
factors. (Figs. 5A, B, Supplementary Table 12A, B). This indicates
that these conditions (i.e., shaking or static) resulted in different
metabolic profiles over time and based on the size of the starting
inoculum. A total of 391 metabolites were shared between
shaking and static cultures, while static cultures had 1204 unique
metabolites and shaking cultures had 263 unique metabolites
(Fisher’s exact test, p < 0.0001) (Fig. 5C). Additionally, static
cultures had significantly higher richness than shaking cultures
(Mann-Whitney/Wilcoxon, W= 952.5, p value = 3.657e−05),
though differences in richness between shaking and static was
dependent on starting inoculum sizes (Fig. 3C, Supplementary
Tables 13–17). We also found an overall greater diversity of

metabolites over time in static cultures (anova(lmer):Chi-sq = 22.4,
p < 0.0001) (Fig. 3D), but not shaking cultures. Because we
normalized by weight, the increase in metabolite counts is not
simply due to increases in biomass as cultures grew.
Classes of molecules identified in the metabolome differed

between shaking and static condition (Fig. 6). Of these metabolites
that could be annotated, the majority belonged to families of
compounds involved in quorum sensing and signaling, particularly
observed in Pseudomonas spp. physiology (Figs. 5D, 6 and
Supplementary Fig. 7). The production of these molecules and the
ability to rapidly adapt make pseudomonads successful colonizers
and aggressors [31, 69–71]. Lastly, compounds known to have
antagonistic activity were more common in static cultures compared

Fig. 1 Images showing biofilm formation. Cultivation conditions included for A shaking, B controls, and C static cultures. Also shown are
biofilms forming at the top or bottom of a static culture D.
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to shaking cultures, like the phenol ether, anisomycin [72, 73], or
peptidomimetic orfamides [74–76] (Fig. 6, Supplementary Figs. 7 and
8). This observation suggests that structured environments afford
more opportunity to interact and may select for organisms that use
metabolite-mediated strategies to be successful during community
assembly, compared to shaking cultures where the advantage was
most probably due to increased growth rate (e.g. Aeromonas sp.).

DISCUSSION
By manipulating the physical environment through shaking or static
cultivation, we characterized the microbial community response
through changes in microbial diversity and chemodiversity. Our data
show that (1) environmental structure drives differences in the
metabolome and microbiome, (2) environmental structure selected
for more evenness in microbial communities compared to unstruc-
tured environments, and (3) environmental structure selected for
higher metabolite richness. We show that environmental structure
plays a significant role in secondary metabolic processes that may
drive community assembly. These findings add to efforts seeking to
determine what drives microbial community assembly and how the
metabolome can be linked to those drivers.
Community structure was primarily determined by cultivation

condition, suggesting that selection was driven by the structure of
the environment. Because there is no pattern of change in
structure from day 3 through day 12 (Fig. 2), we suggest that
cultivation condition has the greatest selective effect and

benefited strains that could grow quickly. Constant mixing of
the shaking cultures reduced any oxygen gradients and poten-
tially selected for fast-growing taxa that would allocate resources
to increase growth rate over costly secondary metabolite
production, which would have a diminished local effect in well-
mixed environments [12]. The suggestion is supported by the fact
that Aeromonas sp. quickly establish dominance (Day 3) in shaking
cultures compared to static cultures that had higher evenness.
Static cultures could have provided different niches, particularly
along an oxygen gradient, that may allow different taxa to grow
equally well, resulting in more even communities [31]. This is
contrasted with shaking cultures, that possibly selected for more
oxygen-adapted taxa that were able to quickly outcompete other
taxa, resulting in communities with a dominate taxon, like
Aeromonas sp. However, this ubiquitous taxon, commonly found
in wastewater [77, 78] and gastrointestinal tracts [79], is a known
biofilm producer [39]. Despite the intention to remove structure,
the shaking cultures yielded visible biofilms on the walls of the
tubes where medium was washed through shaking (Fig. 1).
In contrast, static cultures exhibited significant biofilm forma-

tion but did not contain abundant Aeromonas spp. populations
(Fig. 4). Of the taxa that were significantly associated with static
cultures, Arcobacter spp., Delftia spp., and Pseudomonas spp. were
the most abundant in those cultures. Each of these genera contain
members involved in biofilm formation [80–82]. Further, Pseudo-
monas spp. are particularly associated with competitive interac-
tions in structured environments, like biofilms [83, 84]. The act of a
population outcompeting and establishing itself will create spatial
structure [4], since a molecule acting locally will help generate
structure in chemical space by establishing a gradient [4, 35]. In
our experiment, we observed Pseudomonas sp. to be significantly
associated with structured conditions and elicitation of multiple
families of metabolites associated with pseudomonad quorum
sensing and signaling (Figs. 5 and 6). Overall, cultivation
conditions selected for differential abundances of shared taxa
resulting in two biofilm-forming communities that either had a
dominant taxon (shaking) or a more even community composition
(static), highlighting the growth mechanism of microorganisms
seeking to establish or thriving in structure [3, 29] through
biomass and/or metabolite production [85–88]. Future efforts
should seek to quantify the formation of a biofilm (e.g., stains of
polymeric substances or fluorescence in situ hybridization (FISH)
for specific taxa).
Differences in community structure were also affected by the

size of the starting inoculum (i.e. dilution) (Fig. 2B). Diluting the
inoculum reduced the number of cultivable organisms and
introduced variability at high dilutions. The effect of decreased
inoculum sizes has been demonstrated in dilution-to-extinction
cultivation efforts [13]. We observed this in our data where,
despite having differences in community structure based on
dilution, we observed significant dispersion within each dilution
(Supplementary Table 1B, Supplementary Fig. 5A). This would
suggest that community assembly follows a predictable trend
when the inoculum is larger, but as populations are diluted, the
outcome of community assembly becomes more difficult to
predict. Conversely, little dispersion between static and shaking
samples suggests that the effect of environmental structure is
acting in a predictable manner (Supplementary Fig. 5B). When
samples vary differentially, this could indicate that the cultivation
conditions may not be selecting for a single type of community or
taxon through deterministic processes (e.g. interactions or
environmental filtering) where they are acting equally on each
dilution, but rather creating stochastic assembly opportunities,
where the establishment of an organism is based on random, non-
niche based chance [89] introduced through altering the inoculum
size. In short, the success of an organism will be a function of its
abundance in the inoculum where both stochastic and determi-
nistic processes can affect that success.

Fig. 2 Principal coordinate analysis of microbial communities
using weighted UniFrac distances. SH refers to shaking cultures, ST
refers to static cultures. Shape and 95% confidence ellipses refer to
cultivation condition, color refers to A inoculum size and B time.
PERMANOVA cultivation condition: F= 75.121, r2= 0.24, p value =
0.001. All PERMANOVA and PERMDISP results can be found in
Supplementary Table 1A, B.
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Though environmental structure did not influence the richness
of a microbial community, we did observe these cultivation
conditions to select for a more even community. Evenness has
been implicated in the resilience, stability, and productivity of

microbial communities [90, 91]. We observed that more even
communities had higher richness of metabolites, highlighting that
microbiome-level metrics of richness failed to capture the
metabolic capabilities of a community, particularly those related

Fig. 4 Differential abundance calculated using beta binomial regression at genus level between shaking and static conditions [58]. This
model tested for differential abundance and variability between cultivation conditions, while controlling for the effect of dilution and day on
dispersion. Blue refers to genera positively associated with static conditions; gray refers to genera negatively associated with static conditions.
Order of genera based on relative abundance across experiment.

Fig. 3 Microbial and metabolite alpha diversity metrics. Panels describe A microbial richness measured with breakaway estimates [52],
B microbial evenness measured with Pielou’s Index [53], C metabolite richness, and D a mixed effects model of metabolite richness over time
(Metabolites ~ Condition * Day+ (1 | Dilution)). Shape and color refer to cultivation condition. Data (A–C) were handled as independent samples
based on inoculum size (n= 3), points are averages and bars are 95% confidence intervals. Significant differences from Tukey’s HSD test (p >
0.05) between shaking and static cultures designated with (*). All ANOVA tables and reporting can be found in the following Supplementary
Tables: for microbial richness, Supplementary Tables 2–6; for microbial evenness, Supplementary Tables 7–11; and for metabolite richness,
Supplementary Tables 13–17.
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to interactions and the production of metabolites. One explana-
tion for the differences in the metabolome between structured
and non-structured environments could be that it was driven by
the bacterial strains for which the conditions are selecting and the
method through which the metabolites were extracted. For
example, structured environments could be selecting for organ-
isms that use structure and the production of small molecules as
an advantage [15, 92], like Pseudomonas spp. during biofilm
production [93, 94]. But it is important to acknowledge that non-
polar extraction methods, like ethyl acetate used here, will favor
the recovery of less polar molecules, like Pseudomonas spp.
metabolites. In this case, both environmental structure and the
type of molecules extracted would describe differences in the

metabolome, rather than an effect driven by the microbial
richness of that community.
Metabolome diversity (richness) increased over time and the

structure was primarily driven by cultivation condition and time
(Supplementary Table 12A). This increase in metabolite diversity
could potentially highlight different metabolic mechanisms aiding
populations during community assembly. For example, differences
in the composition of the metabolome could be related to
strategies for increased growth rates during community assembly
where many of the detected metabolites are by-products of rapid
resource consumption. Alternatively, in the case of our structured
environment data, the composition of the metabolome had many
molecules used during interactions, like quinolones and their

Fig. 6 TIC-normalized quantifications of annotated metabolites were classified using ClassyFire [67]. Individual metabolite quantifications
were summed based on class and log10-transformed to create a heatmap describing classes of annotated molecules.

Fig. 5 Principal Coordinate Analysis of metabolites using Bray–Curtis distances.Metabolite samples colored by A time and B inoculum size;
shape and 95% CI refer to shaking (SH) or static (ST) PERMANOVA Cultivation Condition: F= 64.83, r2= 0.07, p= 0.001. All PERMANOVA and
PERMDISP results can be found in Supplementary Table 12A, B. C Venn diagram showing metabolites shared or unique between cultivation
conditions. D Networks of Pseudomonad signaling metabolites. Nodes are pie charts showing the relative metabolite abundance between
cultivation conditions. Orange call-out lines indicate an annotated node (see Supplementary Fig. 7 for mirror plots supporting annotations).
HAQ refers to 4-hydroxy-2-octylquinolone 1-oxide. NHQ is 2-nonylquinolin-4(1H)-one. HHQ is 2-heptylquinolin-4(1H)-one. PQS is Pseudomonas
quinolone signal. NQNO is 2-nonyl-4-hydroxyquinolone N-oxide [71].
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derivatives [70, 71], (Figs. 5D, 6, Supplementary Figure 7) and/or
had antimicrobial properties, like anisomycin and orfamide
[72, 73, 75, 76] (Fig. 6, Supplementary Figs. 7 and 8). This suggests
that biotic interaction played a role during community assembly in
structured environments. The type of interaction can vary [95–97],
but for those mediated by small diffusible molecules, the effects of
those molecules will have greater effect in shorter ranges
[12, 30, 98], something a structured environment would provide.
Here, we showed that community assembly patterns are
dependent on environmental structure, and that a structured
environment selected for communities with higher chemical
diversity. Not only do these findings seek to connect the ‘who is
there’ and ‘what are they doing’ paradigm of ecology, but also
highlights the role cultivation can play in targeting new
metabolisms for natural product discovery.
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