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Hydrological properties predict the composition of microbial
communities cycling methane and nitrogen in rivers
Dave R. Clark 1,2✉, Boyd A. McKew1, Andrew Binley3, Catherine M. Heppell4, Corinne Whitby 1 and Mark Trimmer 5

© The Author(s) 2022

Sediment microbial communities drive the biogeochemical cycles that make rivers globally important sources and sinks of carbon
(C) and nitrogen (N). The structure of these communities is strongly determined by the local physico-chemical environment.
However, we currently lack an understanding of the factors that determine microbial community structures at the catchment scale.
Here, we show that the contribution of groundwater to total river flow (quantified as base flow index; BFI) predicts the structure and
diversity of the different microbial functional groups that cycle N and C across nine UK rivers, spanning a geological BFI gradient
from 0.23 (clay sediment) to 0.95 (chalk gravel sediment). Furthermore, the GC-content (percentage of guanine-cytosine bases in a
DNA sequence) and codon-usage bias of ammonia monooxygenase DNA sequences, and the hydrophobicity and net-charge of the
corresponding amino acid sequences, were all strongly correlated with BFI, likely reflecting physiological adaptations to different
riverbed sediment structure along the BFI gradient. Our results offer an opportunity to overcome the “paradox of scales” that has
seen microbial ecologists focus on small- rather than large-scale environmental variables, enabling us to scale-up our
understanding of microbial biogeochemistry to the catchment and beyond.

ISME Communications; https://doi.org/10.1038/s43705-022-00087-7

INTRODUCTION
Rivers play a crucial role in the biogeochemical cycles of key
macronutrients such as nitrogen (N) and carbon (C). Not only do
rivers transport 0.4 Pg of C [1] and 61.5 Tg of N [2] per year to the
sea, but they are increasingly recognised as key players in global
biogeochemical cycles. Less than half of the C pool transported by
rivers reaches the coast [3] whilst around 40% of terrestrial
N-runoff is converted to inert atmospheric N2 gas within rivers [4],
highlighting the ability of rivers to attenuate and transform
macronutrients.
Within rivers, sediment microbial communities are the major

drivers of C- and N-cycles, and thus control the abundance and
forms of these nutrients. Consequently, understanding the
environmental and ecological drivers of these functionally
important microbial communities has remained a key priority in
advancing our knowledge of riverine biogeochemistry [5–9]. To
date, most microbiological research in rivers and other ecosystems
has focussed on the small-scale physico-chemical environment.
Consequently, extrapolating ecological patterns to understand
microbial biogeochemistry at spatial scales beyond single rivers
has remained challenging.
The ability of landscape-scale geodiversity variables—the

diversity of geology, landforms and abiotic processes [10]—to
explain microbial community dynamics offers a viable, but
understudied, route to scale-up microbial ecological research
[11]. Along the river continuum, from headwaters to estuaries,
shifts in hydraulic conditions alter microbial functional profiles

[12, 13], but the landscape-scale variables that explain differences
in community composition between similar order streams and
rivers remain elusive.
Base flow is the contribution of flow to a river from delayed

groundwater pathways. The base flow index (BFI) of a river is the
ratio of flow from base flow to total river flow and ranges from 0
(no contribution of delayed groundwater flow) to 1 (river totally
fed from delayed groundwater) [14] and, as such, reflects the
permeability of the catchment. Catchment permeability is largely
determined by underlying geology, but also depends on
surrounding land use and soil type [15–17]. Similar factors can
also influence the riverbed physicochemistry at local scales. Our
previous work in the Hampshire Avon catchment (UK) has shown
BFI to be highly correlated with various physico-chemical variables
including pore-water oxygen concentration, sediment particle
size, dissolved organic C, and pH [8, 17, 18]. BFI therefore
integrates up-stream catchment permeability and thus offers a
potential path to upscale our understanding of the microbial
communities driving fluvial biogeochemistry.
Here, we test the ability of BFI to predict the diversity,

composition, and abundance of six C- and N-cycling microbial
functional groups across a BFI gradient, spanning impermeable clay
sediments (BFI 0.234–0.635), moderately permeable greensand
sediments (BFI 0.695–0.868) and highly permeable chalk sediments
(BFI 0.838–0.953). We demonstrate that the BFI alone explains up to
35% of the variation in community diversity, and 58% of the
variation in community composition. Furthermore, we show that the
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predictive power of BFI extends beyond broad community-level
properties to various enzymatic characteristics of biogeochemically
significant functional genes, highlighting BFI as a potential route to
studying fluvial biogeochemistry at the catchment-scale.

METHODS
Field sampling
Sampling was conducted during February (winter), April (spring), August
(summer) and November (autumn) in 2013 at nine river sites within the
Hampshire Avon catchment (southern England), as described in [8]. Three
sites were selected from each of three geologically contrasting sub-
catchments (clay, Greensand and Chalk, Fig. 1) that differ in permeability,
thus maximising the range of base flow conditions observed. The BFI for each
site was calculated previously from a 2-year discharge dataset [17], using the
hydrograph separation procedure [14]. At each site, three replicate sediment
cores (9 cm diameter) were taken from the middle of the river channel,
representing 0–5 cm depth, avoiding areas with substantial macrophyte
growth, as described by [8]. A smaller single sediment subsample was taken
from each core, homogenised and cryogenically preserved in a vapour
shipper, before being stored at −20 °C prior to molecular analyses. Our total
dataset therefore consisted of 108 samples (4 seasons × 9 sites × 3 replicate
sediment samples= 108 samples). Pore water chemistry was measured as
described previously [8].

Molecular analyses
DNA was extracted from 0.25 g of frozen sediment using a PowerSoil DNA
isolation kit (MO BIO Laboratories), following the manufacturer’s protocol.
N (amoA, nirS, hzo) and C (mcrA) cycle functional gene abundances and
bacterial 16S rRNA gene abundances were quantified by qPCR using a
SensiFAST SYBR No-ROX kit (Bioline) on a CFX96 Touch Real-Time PCR
Detection system (BioRad), using gene-specific primer sets (Table S1).
Briefly, gene abundances were quantified against an internal standard
calibration curve using DNA standards of each target gene from 102 to 107

copies in 20 μl reactions, containing 200 nM of primers and 1 μl of DNA
template. Cycle conditions for all genes were 95 °C for 3 mins followed by
40 cycles at 95 °C for 10 s then 60 °C for 30 s. Specificity of qPCR assays

were confirmed via melt curve analysis. All qPCR amplifications were
performed in triplicate and averaged (arithmetic mean) prior to down-
stream statistical analysis.
Amplicon sequencing of N (amoA, nirS, hzo) and C (mcrA, pmoA) cycle

genes and of phylogenetic marker genes (archaeal and bacterial 16S
rRNA) was performed for samples collected in February and August
(n= 54 samples). All genes were analysed via locus-specific primer sets
to exclude non-specific amplification (e.g. between pmoA and amoA
genes). Each primer was flanked by an Illumina-specific overhang
sequence that enables multiplexing indices and MiSeq flow cell
binding sequences to be attached downstream (see Table S1 for
further details). PCR conditions for ammonia oxidising archaea (AOA)
and bacteria (AOB) amoA genes and anaerobic ammonium oxidising
(anammox) bacterial hzo genes followed those described previously
[8, 19]. PCR conditions for other genes replicated those in Clark et al.
[19] either exactly (archaeal 16S rRNA, bacterial 16S rRNA), or with
modified annealing temperatures (nirS= 57 °C, mcrA= 60 °C, pmoA=
56 °C). Preparation of sequencing libraries broadly followed those
described by Illumina (https://support.illumina.com/downloads/
16s_metagenomic_sequencing_library_preparation.html). Amplicons
were initially bead-purified using Agencourt AMPure XP beads (Beck-
man Coulter Ltd), before a short eight-cycle PCR to attach sample-
specific Nextera XT indices (Illumina). Indexed libraries were then bead
purified again prior to quantification. Libraries were quantified using a
Quant-iT PicoGreen dsDNA assay kit (Invitrogen) on a NanoDrop 3300
(Thermo Fisher), before being pooled in equimolar ratios. The quality
and concentration of multiplexed libraries were verified using a DNA
1000 kit on an Agilent 2100 Bioanalyzer. Sequencing was conducted on
an Illumina MiSeq using a V3 MiSeq Reagent kit (2 × 300 bp; Illumina) at
the Earlham Institute (Norwich, UK).

Bioinformatic analyses
For all functional genes, we used cutadapt (v 2.4 [20]) to remove primer
sequences, using a minimum overlap 2–3 bp shorter than the primer
length, and demultiplex libraries by primer sequence. Sequences were
then quality-controlled using fastp (v 0.20.0 [21]) with the following criteria;
minimum Phred score 20, maximum 20% of bases below min phred score,
minimum length after trimming of 150 bp, minimum of 30% complexity in
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Fig. 1 Sampling locations within the Hampshire Avon river catchment. A map of sampled rivers (A) with the inset map (top left)
highlighting the position of the Hampshire Avon catchment within the United Kingdom. Spatial data used in this map were obtained from the
Environment Agency Catchment Data Explorer (https://environment.data.gov.uk/catchment-planning). B The base flow index (BFI) of the
sampled rivers, which is the ratio of flow from base flow to total river flow and ranges from 0 (no contribution of delayed groundwater flow) to
1 (river totally fed from delayed groundwater).
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sequence, and a sliding window moving from 5′ to 3′. For genes where the
amplicon length was short enough (all genes except archaeal amoA), we
also used fastp to overlap paired-end sequences, allowing error correction
in the overlap region, and specifying a minimum overlap of 10 bp. Errors
were corrected using the BayesHammer algorithm with default settings,
implemented in SPAdes (v 3.13.0 [22, 23]). Custom Linux shell scripts were
then used to inspect sequence length distributions and to filter overly long
or short sequences that could represent PCR artefacts or poor quality
overlaps. The following length (ɭ) thresholds were used to filter sequences,
archaeal amoA; ɭ ≥ 280 bp, bacterial amoA; ɭ ≥448 bp, hzo; 160 bp ≤ ɭ ≤ 190
bp, nirS; 360 bp ≤ ɭ ≤390 bp, mcrA; ɭ ≥ 415 bp, pmoA; ɭ ≥ 460 bp. Linux shell
shell scripts were then used again to inspect the library size of each
sample. Samples were discarded if they had fewer sequences than the
following thresholds: archaeal amoA; 1800 sequences, bacterial amoA;
2600 sequences, hzo; 17,000 sequences, nirS; 3900 sequences, mcrA; 4900,
pmoA; 3000, in order to ensure that remaining samples retained an
adequate number of sequences after normalisation (details of final sample
sizes are presented in Table S2). Phylogenetic marker gene (bacterial and
archaeal 16S rRNA) libraries were analysed as described in [19] following
protocols detailed in [24].
After filtering small library sizes from the dataset the remaining sequences

were pooled. To correct any frameshift errors and remove any non locus-
specific sequences from the functional gene datasets, we used a local
installation of the FrameBot tool [25], which aligns and compares functional
gene translated protein sequences to those in a database. For each gene, we
assembled a custom database by downloading locus-specific protein
sequences from the FunGene database [26] with a Hidden Markov Model
coverage ≥90% and then de-replicated sequences using USEARCH (v 11.0667
[27]). For archaeal AmoA, the resulting database was too large to use with
FrameBot (>18,000 sequences), so we randomly subsampled this database to
2000 sequences. The number of protein sequences in the de-replicated
databases for other functional genes were as follows; bacterial AmoA= 306,
anammox HZO= 2883, NirS= 197, McrA= 209, PmoA= 369. FrameBot was
run using a minimum amino acid identity of 50% to remove non locus-
specific sequences. The resulting sequences were then analysed at the amino
acid level and nucleotide level. Firstly, to examine shifts in the putative
functional composition of microbial communities, corrected protein
sequences were dereplicated by sample using USEARCH, and used to create
an amino acid variant (AAV) matrix. Here, an AAV represents a cluster of
nucleotide sequences (with no fixed similarity threshold) that share an
identical protein sequence, and thus any variation in nucleotide sequences
within an AAV is silent. Secondly, a more traditional approach was used to
examine shifts in community structure based on nucleotide sequences. Here,
frameshift corrected nucleotide sequences output by FrameBot were
clustered into operational taxonomic units (OTUs) at a 97% similarity level,
using VSEARCH (v 2.10.2 [28]). Herein, we focus on the analysis of AAVs, but
present results from OTU analyses for comparison in the supplementary
materials.

Statistical analyses
AAV and OTU tables were imported into R (v 3.6.2, [29]) and any AAVs or
OTUs that occurred in only one sample were discarded prior to further
analyses. OTU and AAV tables were rarefied independently to the
minimum sample size of each table prior to statistical analyses (Methods
and Table S2) in order to normalise variance due to unequal library sizes in
an ecologically meaningful manner [30, 31]. To investigate the role of BFI
on the β-diversity of AAV and OTU communities, pairwise community
dissimilarity was quantified as Sørensen dissimilarity. To test the relation-
ship between BFI and community turnover, we parameterised negative
exponential functions using a generalised linear modelling (GLM)
approach [32]. Goodness of fit was quantified as a pseudo-R2, defined as
the reduction in deviance compared to a null model. The statistical
significance of these relationships was quantified by a bootstrapping
procedure using 1000 permutations. For each functional group, relation-
ships to BFI were compared between AAV and OTU datasets by
bootstrapping coefficients 1000 times. α-diversity was measured as either
AAV or OTU richness, and was modelled as a function of BFI and geology
using negative binomial GLMs. Adjusted D2 was calculated to quantify the
explained deviance of a model. In addition, the qPCR-based abundance of
AOA, AOB, and anaerobic ammonia-oxidisers as a proportion of the total
ammonia-oxidising community (AOA+ AOB+ anammox), and of other
functional groups as a proportion of the total bacterial community (16S
rRNA gene copies) were analysed using β-GLMs. Coefficients are presented
on the odds-scale.

To test the hypothesis that shifts in AAV composition were related to
differences in protein hydrophobicity selected for by differences in base flow
regimes, we calculated the Kyte-Doolittle hydrophobicity index for each AAV,
and used this to calculate an average hydrophobicity index for each sample,
weighted by the abundance of each AAV in each community. We then tested
for any relationship between the average hydrophobicity and BFI or geology
using linear regression. Similarly, we also calculated the net charge for each
protein sequence, using the Lehninger pKa scale and assuming an
intracellular pH of 7 for charge calculations.
The following R packages were necessary to conduct our analyses:

vegan [33], betapart [34], MASS [35], Peptides [36], datatable [37], and
ggplot2 [38]. Our catchment map (Fig. 1) was constructed using data
available from the Environment Agency (UK) Catchment Data Explorer
portal [39] and manipulated using the sf package in R [40]. All R/Linux
shell scripts and data necessary to recreate our analyses are available in
the Figshare repository under the https://doi.org/10.6084/m9.figshare.
c.5404437. Raw sequence data are available in the NCBI sequence read
archive under accession number PRJNA723875.

RESULTS AND DISCUSSION
Relationships between microbial diversity and base flow index
The number of reads obtained per sample and total number of OTUs
obtained after rarefaction for each gene dataset are summarised in
Table S2. According to taxonomic analyses of our 16S rRNA gene
dataset, archaeal communities in our river sediment samples
consisted largely of OTUs assigned to the Woesarchaeota (20.8%
of OTUs and 24.7% of reads) and Methanomicrobia (16.9% of OTUs
and 31.8% of reads). Of the functional groups analysed here, ten
OTUs were assigned to AOA, Nitrososphaera (n= 8) and Nitrosopu-
milus (n= 2), that together formed 4.8% of all archaeal 16S rRNA
reads. A total of 137 OTUs were assigned to orders of methanogenic
archaea, with 15.3% and 16% of archaeal reads assigned to the
orders Methanomicrobiales and Methanosarcinales, respectively,
with other methanogen orders constituting a further 6.7% of reads.
Bacterial communities were more diverse and OTUs assigned to

taxa within the functional groups analysed here formed a relatively
small proportion of our bacterial 16S rRNA gene dataset. Ammonia
oxidising bacteria were represented by only five OTUs (all assigned
to Nitrosospira) that together constituted 0.02% of the total bacterial
community across our sediments. A further 84 OTUs were assigned
to methanotrophic genera, and these OTUs contributed a total of
0.88% of all bacterial 16S rRNA sequences. These were Methylobacter
(30 OTUs, 0.7% of bacterial sequences),Methylophilus (15 OTUs, 0.1%
of bacterial sequences), Methylosoma (7 OTUs, 0.004% of bacterial
sequences), Methylomonas and Methylotenera (6 OTUs each, 0.02
and 0.002% of bacterial sequences, respectively), and Methylosarcina
(5 OTUs, 0.002% of bacterial sequences), with a further eight genera
represented by a total of 15 OTUs. As reported previously, no OTUs
were assigned to known anammox genera, which were likely below
the limit of detection in our study [8].
The OTU richness of archaeal communities (based on 16S rRNA

amplicons) was negatively, albeit weakly, related to BFI (coef= 0.52,
z=−2.95, adj-D2= 0.12, P < 0.01), whereas bacterial OTU richness
was not significantly related to BFI (coef= 0.88, z=−1.53, adj-D2=
0.003, P= 0.13). The richness of both aerobic ammonia-oxidising
bacteria and anammox bacteria changed along the BFI gradient,
positively for anammox and negatively for AOB (Fig. 2 and Table S3).
Ammonia oxidising archaea (AOA) increased in AAV richness in high
BFI rivers, but not at the OTU level (Fig. 2). No relationships were
observed between BFI and AAV or OTU richness for nitrite-reducing,
methanotrophic, or methanogenic communities (Fig. S1). Temporal
shifts in richness between summer and winter were rarely significant
for any of the genes analysed (Fig. S1; Table S3).
Communities from rivers with similar BFI were compositionally

more similar to each other than those from contrasting BFI rivers
(Fig. 3 and S2). BFI explained the most variance in community
composition for ammonia-oxidising archaea (AAV R2= 0.40, P <
0.001; OTU R2= 0.52, P < 0.001) and nitrite-reducing communities
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(AAV R2= 0.52, P < 0.001; OTU R2= 0.58, P < 0.001). In contrast, BFI
had a less explanatory power for the composition of methane-
oxidising and methanogenic communities (Fig. 3), and for the
overall composition of the archaeal and bacterial communities.
Contrasting levels of phylogenetic diversity, encapsulated

within the functional groups analysed here, could partly explain
the different strengths of relationships between BFI and commu-
nity composition due to phylogenetic niche conservatism. Aerobic
and anaerobic ammonia oxidisers comprise relatively narrow
phylogenetic diversity [41, 42] compared to methane-oxidisers
and nitrite-reducers which are spread across several taxonomic
classes [43, 44]. The strong relationship observed between BFI and
nitrite-reducing community composition is therefore unexpected,
as this group contains phylogenetically diverse species that,
together, likely have a broad niche width. Potentially, the nitrite-
reducers detected in our sediments represent only a limited
subset of the phylogenetic diversity encompassed within this
group, albeit some of which may overlap with taxa found in the
other functional groups studied here due to nir genes being found
in genomes from across the bacterial tree of life.
Shifts in community composition along the BFI gradient can be

driven by turnover (the replacement of phylotypes along the
gradient), or nestedness (the subsetting of communities along the
gradient). Therefore, we partitioned Sørensen dissimilarity into its
turnover and nestedness components to examine the roles of
these distinct processes separately. Turnover dominated the total
dissimilarity between communities across the BFI gradient
compared to nestedness (Fig. S3). For many of the communities
analysed, relationships between BFI and nestedness were
statistically significant but the effect size and explanatory power
of these relationships was small compared to those for turnover-
BFI relationships (Fig. S4 and Table S4). This result shows that
phylotype replacement drives compositional changes in microbial
communities along the BFI gradient.
Turnover of AAV communities was generally higher than for

OTU communities across all genes (Fig. S5), indicating a fine-scale

partitioning of widespread OTUs into multiple amino acid
sequences. Contrastingly, BFI explained substantially more varia-
tion in community composition for OTU datasets than for AAVs,
presumably reflecting different levels of ecological selection
acting on them. Despite occasional differences in the turnover-
BFI relationships between AAV and OTU datasets, overall
dissimilarity patterns for these datasets were generally strongly
correlated, especially for nitrite reducers and methane oxidisers,
but less well-correlated for ammonia-oxidising bacteria and
methanogens (Table S5).
Stronger patterns at the DNA level (for OTU datasets) than at the

amino acid level (AAV datasets) could indicate a higher frequency of
synonymous substitutions, leading to higher turnover of DNA
sequence diversity relative to amino acid sequence diversity. Thus,
environmental selection may not be acting on the physical structure
of the enzyme, but could be selecting for distinct strains or species
(for an example in AOB, see [45]). Instances where we observed a
stronger relationship between BFI and AAV communities (e.g. in the
richness of AOA communities) suggest selection on the primary
structure of the enzyme that may propagate to/from higher levels of
protein structure. Subtle changes in the amino acid sequence of the
ammonia monooxygenase enzyme may alter its activity or
substrate-affinity [46], with potential biogeochemical implications.
Significantly, the active site, or sites, of the archaeal ammonia
monooxygenase enzyme remain unresolved [47, 48] and thus
variation in the AmoA subunit may have implications for nitrification
in geologically contrasting rivers.

Ammonia−oxidising archaea

Anammox bacteria Ammonia−oxidising bacteria

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

200

300

400

500

600

700

600

800

1000

40

80

120

160

Base flow index

A
m

in
o 

ac
id

 v
ar

ia
nt

 r
ic

hn
es

s

Chalk
Clay
Greensand

Fig. 2 Relationships between base flow index (BFI) and the
diversity of ammonia-oxidising microbial communities. The
richness of amino acid variants (AAV) for anammox bacteria,
ammonia oxidising bacteria and ammonia-oxidising archaea in
relation to river BFI. Anammox bacterial richness was assessed using
the hydrazine oxidoreductase (hzo) gene, whereas richness of
aerobic ammonia-oxidising bacteria and archaea was quantified
using the ammonia monooxygenase α-subunit (amoA) gene. Solid
lines show statistically significant relationships (P < 0.05) and grey
ribbons show 95% prediction intervals.

Fig. 3 Relationships between base flow index (BFI) and microbial
community dissimilarity. Relationships between pairwise differ-
ences in BFI and Sørensen dissimilarity for amino acid variant
datasets. Sørensen dissimilarity values close to 1 indicate fewer
shared species between communities. Lines show fit of negative
exponential models and points are transparent to show their
density. R2 and P values for each model are based on 1000
bootstraps.
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Base flow niches of microbial functional groups
Ammonia-oxidising archaea and bacteria, and anammox bacteria
potentially compete for the substrate ammonia, and thus we
tested for evidence of niche differentiation between these groups
in relation to BFI based on gene abundances measured via qPCR.
The ratio of AOA amoA genes to other ammonia-oxidisers
(bacterial amoA and anammox hzo genes) decreased with
increasing BFI (Fig. 4A; coef= 0.03, z=−28.24, adj-D2= 0.56,
P < 0.001) so that AOA dominated the low BFI clay sediments, and
AOB were more abundant in high BFI chalk sediments, reflecting
similar observations from permeable Mediterranean catchments
[49]. Furthermore, the ratio of anammox bacterial hzo genes to
aerobic ammonia-oxidiser (AOA and AOB) amoA genes increased
with BFI (Fig. 4B; coef= 5.06, z= 4.48, adj-D2= 0.18, P < 0.0001),
reaching a mean of 21.7% of the total ammonia-oxidising
community in the most permeable chalk sediments (BFI= 0.953).
The ratio of bacterial amoA and anammox hzo gene abundances

to bacterial 16S rRNA gene abundance also increased dramatically
in high BFI rivers (AOB; coef= 5.47, adj-D2= 0.23, P< 0.0001, hzo;
coef= 8.53, adj-D2= 0.33, P< 0.0001) reflecting an increase in the
abundance of these groups relative to the total bacterial community
as well as archaeal ammonia oxidisers. Bacterial nirS gene abundance
increased relative to bacterial 16S rRNA gene abundance in high BFI
rivers, albeit less markedly than the AOB or anammox bacteria
(coef= 2.24, adj-D2= 0.06, P< 0.01), whilst the absolute abundance
of bacterial 16S rRNA genes decreased by approximately 32% across
the BFI gradient (coef= 0.32, adj-D2= 0.11, P < 0.001).
AOA:AOB ratios are often interpreted as evidence of niche

differentiation between these functionally synonymous groups. In
the surrounding floodplain soils of the Hampshire Avon, we
previously found AOA to be dominant, regardless of underlying
geology [19]. In contrast, here we found that ammonia-oxidising
communities transition from being AOA-dominated to AOB/
anammox-dominated at a BFI of ~0.6, suggesting that catchment
permeability impacts fluvial communities but not their counter-
parts in floodplain soils. AOA usually dominate at low ammonium
concentrations due to their greater affinity for ammonium [50],
however, the clay sediments in our study catchment had the
highest pore-water ammonium concentrations where the AOA
dominated (Table S6). Instead, the dominance of AOA in the low
BFI sediments may be due to the overriding effects of lower
dissolved oxygen concentrations and more acidic pH, both of
which favour AOA (Table S6 [19, 51]). The higher relative
abundance of anammox bacteria in high BFI gravel sediments
compared to low BFI clays suggests the presence of a micro-
anoxic niche in these otherwise oxic, permeable sediments,
perhaps provided by sediment grain topography and/or stratified
biofilm formation [52, 53].
Several of the functional groups showed temporal shifts in their

relative proportions between the sampling months (Table S7).
However, the importance of accounting for sampling month
varied strongly between the different functional groups. The ratio
of nirS gene copies to total bacterial 16S rRNA gene copies
appeared most dependent on sampling month, with inclusion of
sampling month improving model fit ~10 fold (Table S7), whereas
temporal variation explained little further variance in the ratio of
hzo gene copies to bacterial 16S rRNA gene copies (Table S7).
Temporal variation within our study had negligible impacts on the
richness of the functional groups analysed but varying effects on
the relative proportions of each functional group. From our study
it is not possible to detect whether these effects are seasonal,
however if they are, they may be driven by nutrient inputs which
have been shown to vary seasonally in these rivers [17]. Over
longer temporal scales (years to decades), we would expect the
patterns observed here to be relatively stable given that BFI is
most strongly related to geology which does not usually vary
much over non-geological timescales [15]. However, climate
change and land-use shifts in the catchment may invoke more

rapid changes in BFI that could in turn impact upon sediment
microbiomes over the coming decades [54, 55].

DNA and protein sequence properties
For both ammonia-oxidising archaea and bacteria, GC-content of
amoA genes decreased with BFI (Fig. 5A and Table S8), whereas
CAI increased in AOA and decreased in AOB (Fig. 5B and Table S8).
The shifts in GC-content and CAI of archaeal and bacterial amoA
genes were accompanied by changes in the average hydro-
phobicity and net-charge of the translated protein sequences.
AOA and AOB showed opposing relationships between BFI and
AmoA hydrophobicity (AOA; coef=−0.07, AOB; coef= 0.03,
Table S8), with archaeal AmoA protein sequences becoming more
hydrophilic in high BFI rivers, and bacterial AmoA sequences
becoming more hydrophobic. Despite the contrasting trends of
hydrophobicity and CAI between AOA and AOB along the BFI
gradient, both groups showed negative relationships between BFI
and the average net-charge of their AmoA protein sequence (AOA;
coef=−0.08, AOB; coef=−0.25, Table S8). The DNA and protein
sequence properties of the other microbial functional genes
analysed here were less clearly related to BFI. GC-content and CAI
of nirS genes showed weak relationships with BFI compared to
those of AOA and AOB, whilst both NirS and McrA protein
sequences became more negatively charged as BFI increased
(NirS; coef=−0.59, R2= 0.12, McrA; coef=−1.13, R2= 0.15, P <
0.05 in both cases, Table S8).
Along the BFI gradient, the sediment changed from silty clays in

the low BFI rivers to coarse gravels in the high BFI chalk rivers,
likely shifting the dominant mode of life from free-living to
biofilm-associated. The observed relationships between BFI and
protein sequence properties, particularly for the AmoA sequences,
may therefore represent broad physiological responses to the shift
in lifestyle between sediment types. The ammonia monooxygen-
ase enzyme is a membrane-bound protein ([56, 57], although see
[58] for an example of a soluble form). The charge and
hydrophobicity of microbial cell membranes play important roles
in biofilm formation [59, 60]. Microbial cells tend to adhere better
to surfaces that match their membrane hydrophobicity/hydro-
philicity—that is to say that a hydrophobic surface will be more
readily adhered to by hydrophobic cells and vice-versa [60]. We
found that both AOA and AOB AmoA protein sequences showed
opposing hydrophobicity trends along the BFI gradient. Poten-
tially, this suggests that they may adhere to different components
of the river sediment that differ in their hydrophobicity, thus
spatially differentiating their niche at the scale of individual
sediment particles. Ammonia oxidising archaeal and bacterial
AmoA protein sequences also showed similar (negative) relation-
ships between net charge and BFI. The more negative charge
associated with AmoA proteins in high BFI sites may play a role in
acquiring ammonium from the environment [47], although the
role of hydrophobicity and charge in substrate affinity and
enzymatic function remain unknown.
For AmoA sequences, changes in protein sequence properties

along the BFI gradient were accompanied by changes in DNA
properties, showing that not only did the identity of amino acids
forming these proteins change, but so too did the underlying DNA
sequences encoding them. Biased codon use is associated with
increased gene expression at the genomic level, but also reflects
contrasting lifestyles among microorganisms [61]. Codon usage
has also been found to differ between phylogenetic lineages,
including in amoA sequences from the archaeal orders Nitroso-
pumilales and Nitrososphaerales [41], both of which were
detected by our analysis of archaeal 16S rRNA amplicons. The
relationships between CAI and BFI could therefore result from
taxonomic turnover across the base flow gradient.
The average GC-content of archaeal and bacterial amoA genes

also changed with respect to BFI. GC-content may be environ-
mentally driven [62], but is also indicative of growth rate
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differences between microbial taxa [63]. In AOA, the GC-content of
entire amoA genes predicts GC-content in the third codon
position of each amino acid, potentially explaining concurrent
shifts in CAI and GC-content of the archaeal and bacterial amoA
genes [64]. These coupled relationships may therefore both result
from taxonomic turnover along the BFI gradient. Higher GC-
content (both across the genome and in the third codon position)
has been proposed as an adaptation to oxidative stress in aerobic
prokaryotes [65, 66]. However, given that both AOA and AOB
showed lower average GC-content in the high BFI river sediments,
which had the highest pore water oxygen saturation (Table S6),
this explanation seems unlikely.
The pmoA gene is evolutionarily related to the amoA gene, both

being part of the copper-containing membrane-bound monoox-
ygenase family of enzymes [67, 68]. Therefore, it is surprising that
we did not observe strong relationships between the sequence
properties of pmoA genes and BFI, as we did for amoA genes.
Codon usage biases may arise as the result of limitation of certain
resources, such as N [69, 70], and can also improve transcriptional
and translational efficiency in certain environments, as observed
in type 1a methanotrophs [71]. Consequently, the contrasting
relationships observed between the functional groups analysed
here may reflect substrate limitations specific to each functional
group, as observed in global marine microbiomes [70]. The lack of
relationship between BFI and pmoA gene properties could
alternatively result from a complex interplay between substrate-
competition-inhibition effects between ammonia-oxidisers,
methanotrophs, and ammonia. Both ammonia- and particulate
methane-monooxygenase enzymes can oxidise methane and
ammonia [72], but neither ammonia oxidisers or methano-
trophs are able to use the energy from the oxidation of the
alternate substrate for growth. However, ammonia competitively
inhibits the PMO enzyme and produces a toxic product,
hydroxylamine, when oxidised. Methanotrophs have different
strategies to detoxify hydroxylamine, and these may differ from
those of AOB or AOA, thus further setting apart their environ-
mental niche from that of the AOA or AOB based on their ability to
deal with reactive N [73].

Limitations and future directions
An important caveat of our results is that correlation is not causation.
BFI is not acting on microbial communities per se—BFI is a synthetic
concept, and a microorganism cannot sense the BFI of its habitat
afterall. However, BFI is strongly correlated with a number of small-
scale variables that do act directly upon microbial communities such
as redox profiles, pH, pore water oxygen saturation, and importantly
geological sediment type [8, 17, 18, 74]. Furthermore, BFI will not
explain all of the variation in microbial community composition and

functionality, as river biodiversity is likely structured by a hierarchy of
variables acting at different spatial scales. However, as BFI is a large-
scale integrative property [16], which constrains the physico-
chemical profile of river sediments, it represents a useful proxy for
estimating microbial community composition at the regional scale
(Fig. S6).
Here, amplicon-based analyses of the target C and N cycling

functional groups was required in order to provide sufficient
coverage of known rare groups, particularly the anammox bacteria
which constitute <1% of the total bacterial community in the
sampled river sediments [8], and even less once archaeal and
eukaryotic DNA detected by a metagenomic survey is accounted
for. However, metagenomic analysis of other membrane-
associated enzymes from the wider microbial community, in
tandem with analyses of whole-community functional profiles
[12], may shed further light on microbial functionalities associated
with geological- or hydrological contexts. In particular, metage-
nomic data may show us the extent to which shifts in microbial
lifestyles from geologically distinct rivers constrains the physiolo-
gical properties of their enzyme encoding protein sequences, and
thus their contributions to riverine biogeochemistry.
Establishing the generality of the relationships observed here

across a greater diversity of geological settings is a key priority in
order to fully disentangle the role of hydrology from geology. In our
study sites, sediment types shifted from silty clays to highly
permeable coarse gravels along the BFI gradient, reflecting the fact
that both of these properties are strongly linked to the underlying
geology of a catchment. Therefore, we would expect the relation-
ships observed here between BFI and microbial community
properties to be replicable across other catchments. That said,
opportunities to unravel potential confounding effects of sediment
structure from hydrology may come from sampling rivers with
similar base flow conditions but contrasting sediment properties
[75]. Alternatively, in situ experiments that manipulate the sediment
structure of a river (e.g. to create fish spawning habitat; [76]) would
allow us to control for the effects of hydrological variation and
biogeographical processes, separating variation solely due to
sediment structural changes. Understanding how hydrology and
sediment properties interactively shape microbial community
structure and functionality will further enhance our ability to make
large-scale predictions about the microbial ecology supporting
riverine biogeochemistry.
In summary, our results show the statistical power of a single

geodiversity variable, catchment permeability, in predicting not
only shifts in community composition of C- and N-cycling
functional groups, but also genetic and protein properties. Our
study highlights the ability of geodiversity variables to over-
come what we term the “paradox of scales” that has seen
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Fig. 4 Relationships between base flow index (BFI) and relative abundances of ammonia-oxidisers. Relationships between BFI and the
proportion (P) of (A) ammonia oxidising archaea (AOA) compared to ammonia oxidising bacteria (AOB), and (B) anammox bacteria to aerobic
ammonia-oxidisers (sum of AOA and AOB), based on qPCR quantification of the amoA (AOA and AOB) and hzo (anammox bacteria) genes.
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microbial ecologists predominantly focus on the small-scale
physico-chemical environment. Questions about the spatial
scales at which the environment influences microbial commu-
nities remain enigmatic and difficult to answer [77, 78]. In part,
this is because we know that microorganisms perceive their
environment at microscopic scales [53, 79], and thus even
macroecological studies usually consider environmental vari-
ables that can vary at small spatial grain [78]. However, because
these environmental variables change across very small spatial
scales, they do not facilitate a generalised understanding of

microbial community ecology that can be extrapolated to larger
scales or new sites [80, 81]. Instead, shifting our focus to broader
spatial scales by using geodiversity variables as proxies for
smaller scale environmental heterogeneity may enable us to
make more generalisable links between microbes and their roles
in global biogeochemical cycles, a need for which has long been
recognised [82, 83]. Overall, our results offer a possible route
towards ‘scaling-up’ predictions of fluvial biogeochemistry and
explaining differences in the fluxes of C and N between
geologically distinct river catchments.
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