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Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder influenced by both genetic and environmental factors.
Recently, gut dysbiosis has emerged as a powerful contributor to ASD symptoms. In this study, we recruited over 100 age-matched
sibling pairs (between 2 and 8 years old) where one had an Autism ASD diagnosis and the other was developing typically (TD)
(432 samples total). We collected stool samples over four weeks, tracked over 100 lifestyle and dietary variables, and surveyed
behavior measures related to ASD symptoms. We identified 117 amplicon sequencing variants (ASVs) that were significantly
different in abundance between sibling pairs across all three timepoints, 11 of which were supported by at least two contrast
methods. We additionally identified dietary and lifestyle variables that differ significantly between cohorts, and further linked those
variables to the ASVs they statistically relate to. Overall, dietary and lifestyle features were explanatory of ASD phenotype using
logistic regression, however, global compositional microbiome features were not. Leveraging our longitudinal behavior
questionnaires, we additionally identified 11 ASVs associated with changes in reported anxiety over time within and across all
individuals. Lastly, we find that overall microbiome composition (beta-diversity) is associated with specific ASD-related behavioral
characteristics.

ISME Communications; https://doi.org/10.1038/s43705-021-00080-6

INTRODUCTION
Autism Spectrum Disorder (ASD) is a complex neurodevelop-
mental disorder that occurs in 1 out of every 54 children in the
United States [1]. ASD is characterized by a set of social and
cognitive impairments and can be influenced by a growing
number of both genetic and environmental factors [2, 3].
Environmental factors such as maternal prenatal medication use,
maternal health factors, and prenatal infection have been
associated with ASD development [4]. ASD is also associated with
increased prevalence of gastrointestinal (GI) issues [5, 6]. These GI
issues can include symptoms such as chronic constipation,
diarrhea, abdominal pain, and potential signs of GI inflammation
such as vomiting and bloody stools [7]. Growing evidence
suggests that ASD is associated with gut dysbiosis. In animal
studies, food-based exposure to Lactobacillus reuteri or Bacteroides
fragilis reduced ASD-like social deficits in mice [8, 9]. Evidence of
dysbiosis of the gut microbial community has also been observed
in humans with ASD, specifically altered levels of Bifidobacterium,
Lactobacillus, and Clostridium species [10, 11]. In addition, fecal
microbiota transplants in children with ASD demonstrated
improvements in GI and ASD symptoms [12, 13]. Reductions of

core-ASD symptoms with probiotic usage have also been
observed [14].
Studies show that individuals with ASD have increased

intestinal permeability and systemic levels of bacterial metabolites
that may contribute to ASD pathogenesis by affecting the nervous
system [15, 16]. Furthermore, ASD’s comorbid disorders, such as
anxiety and Hypothalamus-Pituitary-Adrenal dysfunction, have
been associated with gut dysbiosis [17, 18]. Recent studies have
also identified microbial markers associated with the ASD
phenotype and/or the diet and lifestyle qualities associated with
ASD [10, 19–22]. These studies constitute an important initial step
towards understanding the complex role the gut plays in
neurodevelopmental disorders, but studies to date have often
been limited by small sample sizes, limited data on dietary
practices, and, most importantly, a lack of longitudinal data points
that account for the high variability of gut microbiome structure
over time. Notably, most of these studies also do not include a
control cohort of participants matched for environmental
variables, which have a tremendous impact on the gut
microbiome [23, 24]. These are limitations we attempt to address
in this paper.
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The present study aims to characterize the gut microbiome
associations in ASD while minimizing issues stemming
from limited or single timepoint data. We analyzed 432 stool
samples from 72 pairs of siblings diagnosed with ASD and their
typically developing (TD) siblings between 2 and 8 years old, and
within 2 years of each other, over the course of a month (three
timepoints, each separated by two weeks). Each stool sample is
accompanied by detailed lifestyle and dietary information (over
100 variables were reported), allowing for a more holistic
understanding of ASD and its relationship with the gut
microbiome. The present study aims to identify taxa that are
differentially abundant between the two cohorts over time, to
quantify the predictive value of those microbial features, and to
place those microbial associations in the larger context of dietary,
lifestyle, and behavioral variables. Figure 1 shows an overview of
the study design.

RESULTS
Eleven ASVs are significantly associated with the ASD
phenotype, as determined by the union of at least two
differential analysis methods
Out of 834 total ASVs (Amplicon Sequence Variants, assigned
using DADA2), 117 were identified to be significantly different
between the ASD and TD cohorts (Supplementary File 1) by at
least one of the contrast analysis methods used after normal-
ization and filtration (DESeq2, MetagenomeSeq, and ANCOM, see
methods). Out of the 117 ASVs found to be significant across
timepoints (Supplementary File 1), 37 belonged to the Lachnos-
piraceae family. Oscillospiraceae and Bacteroidaceae were the
second most represented families with 10 ASVs belonging to each
of these families. 93 of the 117 ASVs were detected as significant
by DESEQ2, 28 by MetagenomeSeq, and 4 by ANCOM. 45 ASVs

were not associated with any lifestyle or dietary variables
extracted from the questionnaires. Most notably, 11 ASVs were
identified by at least 2 differential analysis methods.
Table 1 summarizes the 11 ASVs with overlapping detection

between two contrast methods independently, and their lifestyle/
dietary associations if applicable. Two of these were solely
associated with the ASD cohort, and no other dietary or metadata
co-variate: one from the genus Holdemania and one from the
family Lachnospiraceae. Interestingly, the Blautia genus was
represented in 3 of the 11 ASVs.
Figure 2 shows total sum scaled abundance bar plots for the

ASVs identified as significant by two methods (CLR normalized
counts in Supplementary File 2). The ASV with the highest
abundance among the 11 belonged to Blautia wexlerae with a
relative abundance of almost 4% within the NT and around
2.5–3% within the ASD cohort as shown in Fig. 2. ASVs from
Bacteroides thetaiotaomicron and a different Blautia ASV were
among the next highest abundances with values around
0.005–0.01%.
We also performed differential abundance testing using all

three contrast methods on ASV counts aggregated by annotated
genus (Supplementary File 3). We found many of the differentially
abundant ASVs from Table 1 to be members of differentially
abundant genera, namely the genera Bacteroides, Borkfali,
Haemophilus, Streptococcus. Interestingly, the genus Veillonella
was identified as increased in TD participants by all three analysis
methods.

Demographics, diet, and lifestyle differences between cohorts
We recorded 331 diet and lifestyle variables for each individual
participating (Supplementary File 4).
Unsurprisingly, as ASD has been found at a higher prevalence in

males [25], 84.7% of the ASD cohort were male as compared to

Fig. 1 Overall study design. Each sibling pair consisted of one ASD child and their respective TD sibling. Dietary, lifestyle, and other host
variables collected can be viewed in Supplementary File 4. The DADA2 pipeline was used to process the 16S V4 amplicon sequences. Samples
from sibling pairs with ASD phenotypes unverified by parent reports or home videos were removed, leaving 432 samples. ASVs that significantly
varied between timepoints in a Friedman test or were not present in 3% or more of the samples were removed. 117 ASVs were found to be
significantly enriched in either the TD or ASD cohort. 11 of those ASVs were identified by more than one of the contrast methods shown above.
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52.7% of the TD cohort. There were no demographic differences
between ASD and TD cohorts as siblings were exclusively
documented as the same ethnicity.
A total of 14 of the 331 variables were significantly different

between the ASD and TD cohorts. Categorical variables significant
in chi-squared tests between cohorts are shown in Table 2 as well
as cohort age and C-section birth status. Notably, bowel function
and GI symptoms were observed significantly more often in ASD
participants, as were special dietary regimes and dietary
supplementation (adjusted p < 0.05 in Wilcoxon rank-sum tests
or two-way repeated anova). Six of these variables were also
associated with microbial community dissimilarities using the
Bray–Curtis distance metric tested by PERMANOVA. These
variables were “dietary restriction”, “dietary supplementation”,
“GI symptoms within 3 months”, “GI issues this week”, “habitual
fruit consumption”, and “last 2 weeks dairy consumption”. Other
variables significantly associated with microbial structure but not
significantly different between cohorts can be found in Supple-
mentary File 5 and PCoAs using Bray–Curtis distance and
constrained by phenotype and each of the permanova variables
with R2 values above 0.01 are contained in Supplementary File 6.
Similar plots using unweighted and weighted UniFrac distance are
in Supplementary Files 7 and 8. Extreme consumption rates such
as ‘Daily’ or ‘Never’ were, as expected, most easily distinguishable
from the microbiome signature.

Dietary/lifestyle, but not global microbiome compositional
features, explain ASD phenotype
To assess the overall associations between lifestyle, microbial
factors, and ASD phenotype, we employed logistic regression

using different feature sets as follows: (1) Basic (age + sex), (2)
Basic + lifestyle/dietary variables, (3) Basic + microbiome features,
(4) Basic + lifestyle/diet variables + microbiome features.
Microbiome features were calculated as scores along a principal
coordinate ordination using Bray–Curtis distance. Additionally, null
models were created by replacing features with uniformly
randomly distributed noise.
We found that inclusion of lifestyle/dietary variables, but not of

microbiome features, significantly improved the explanatory
power of a model over basic features (Fig. 3A). Microbiome
features did explain phenotype significantly more accurately than
random noise variables. A combination of lifestyle and micro-
biome features did not significantly improve performance over
lifestyle features.
Because highly correlated variables are difficult to distinguish

using regression models, we calculated the Pearson correlation
matrix between all significant lifestyle variables and other lifestyle
variables (Fig. 3B). We find that high bread, multivitamin,
fermented vegetable, and olive oil consumption, along with GI
distress and non-celiac sensitivity, are significant predictors of
ASD. Home-prepared meals, as opposed to ready-to-eat meals,
were inversely correlated with both ASD phenotype and GI
distress.
While the major axes of variation within the gut microbiome did

not present additional explanatory power on top of age and sex,
some of the axes were statistically significantly related to
phenotype. Correlations between axes coordinates and lifestyle
variables are found in Fig. 3C. Most notably, a sample’s position
along the axes of highest variation (axis1) was associated with the
TD phenotype, and scores along this axis correlated with

Table 1. Eleven ASVs significantly associated with the ASD or typically developing cohorts by two independent contrasts methods.

Family Genus Species Enrichment Associated Variables
Bacteroidaceae Bacteroides thetaiotaomicron ASD DESEQ2, MtgSeq Seafood consump�on frequency

Lachnospiraceae Blau�a unclassified ASD DESEQ2, MtgSeq
Seafood consump�on frequency, Dietary supplement*, 

Mul�vitamin

Lachnospiraceae Blau�a_A unclassified ASD DESEQ2, MtgSeq Seafood consump�on frequency

Lachnospiraceae unclassified unclassified ASD DESEQ2, MtgSeq None

Oscillospiraceae unclassified unclassified ASD DESEQ2, MtgSeq GI symptoms within 3 months*

Anaerovoracaceae unclassified unclassified ASD DESEQ2, MtgSeq
Lactose intolerance, Dietary supplement*, 

Seafood consump�on frequency

Erysipelotrichaceae Holdemania unclassified ASD DESEQ2, MtgSeq None

Christensenellaceae Borkfalki ce�riaxensis ASD DESEQ2, MtgSeq Dietary supplement*

Streptococcaceae Streptococcus unclassified TD MtgSeq, ANCOM

Vegetable consump�on frequency (L), Dairy consump�on 

(L)*, Toilet-trained, Dietary restric�ons*, Mul�vitamin, 

GI symptoms within 3 months*

Lachnospiraceae Blau�a_A wexlerae TD MtgSeq, ANCOM

Vegetable consump�on frequency (L) Sugary food 

consump�on (L), Dairy consump�on (L)*, Seafood 

consump�on frequency, Lactose intolerance, Dietary 

supplement*, GI symptoms within 3 months*

Pasteurellaceae Haemophilus_D unclassified TD MtgSeq, ANCOM
Pets in home, Lactose intolerance, Dietary restric�ons*, 

Mul�vitamin

Method

ASVs taxonomic families, genus, and species are displayed. Some ASVs were unable to be assigned to a single species or genus. ASVs were significant (q < 0.05)
using the methods displayed. Associated variables significant within a PERMANOVA and correlated significantly to the reported individual ASVs. Arrows
indicate positive or negative associations with each variable. (L) refers to variables taken on a longitudinal basis and represent differences in intake near the
time of sampling.
aSignificant permanova variables that significantly differ between cohorts in either a chi-squared test or wilcoxon-ranked sum test. MtgSeq refers to
MetagenomeSeq.
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vegetable, fruit, and fat/oil consumption, in addition to meats,
seafood, and in general eating home-prepared meals.
Some principal component axes, while not obviously correlated

with any lifestyle characteristic, were enriched for the 8
biomarkers associated with ASD or the 3 biomarkers associated
with TD (Fig. 2, Table 1). A modified gene set enrichment analysis
where a set was considered the eight ASD or three TD biomarkers
revealed that scores for biomarkers along particular significant
axes were more skewed than would be expected by random
chance (gsea p < 0.05) (Fig. 3D).

11 Taxa correlate with anxiety scores within and across
individuals
Anxiety in the last 2 weeks before each sample collection was
reported by caretakers on a scale of “No elevated anxiety”,
“Somewhat elevated”, and “elevated” (0, 1, 2). This metric was
used to measure changes in anxiety within the same individual
across time, allowing us to fully leverage the longitudinal nature of
the data to identify specific ASVs associated with reported anxiety.
We found 10 ASVs significantly negatively correlated and 1 ASV
positively correlated with increasing anxiety (Fig. 4A, B). Two ASVs
from the species A. butyriciproducens, well-known for it’s butyrate
production, both negatively correlated with anxiety. 6 of the 10
ASVs negatively correlated with anxiety were members of the

Lachnospiraceae family. Three of the ASVs found correlated with
anxiety in the full cohort were similarly correlated with anxiety
when considering only the ASD samples (Fig. 4B).
We also found diversity metrics (Chao1, Shannon, FaithPD) to be

correlated with ASD severity score (MARA) and age, however,
diversity was not significantly different between ASD and TD
cohorts (Supplementary File 9).

Ten behavioral variables are associated with the microbial
structure within the ASD cohort
Out of the 14 behavioral questions within the Mobile Autism
Risk Assessment (MARA, “Methods” for details) collected in
the ASD cohort, 10 were significantly associated with gut
microbiome composition (Table 3). Constrained PCOAs using
Bray–Curtis distances of DESEQ2 normalized counts were created
for each of the significant behavioral variables (Supplementary
File 10).

DISCUSSION
The present study provides novel insights into the relationship
between the gut microbiota and ASD. By leveraging siblings
as controls and recording longitudinal gut microbiome, lifestyle,
and dietary factors, this work identified differentially abundant

Fig. 2 Relative abundance counts of ASVs significantly associated with the ASD cohort in two independent contrast methods. ASVs
taxonomic annotation of the 16S amplicon (at the families, genus, and species) and the corresponding relative abundance for the 11 taxa
identified in at least two independent contrast methods (ANCOM and/or MetagenomeSeq and/or DESeq2) over the three timepoints.
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Table 2. ASD and TD comparison of demographic information and significant lifestyle variables.

Per child ASD
(n= 72)

TD
(n= 72)

q value Associated with microbial community structure

Probiotic consumption

Never 15/72 38/72 6.94E−04 No

Rarely 9/72 11/72

Occasionally 3/72 1/72

Regularly 6/72 2/72

Weekly 8/72 6/72

Several times weekly 11/72 9/72

Daily 19/72 9/72

Vitamin B supplementation

Never 40/72 57/72 1.09E−02 No

Rarely 2/72 7/72

Occasionally 9/72 1/72

Regularly 3/72 1/72

Several times weekly 3/72 1/72

Daily 15/72 5/72

Vitamin D consumption

Never 35/72 47/72 3.25E−02 No

Rarely 1/72 11/72

Occasionally 3/72 0/72

Regularly/Weekly 9/72 4/72

Several times weekly 6/72 4/72

Daily 1/72 6/72

Dietary supplementa

True 37/61 14/61 1.40E−03 Yes (q= 0.002)

False 24/61 47/61 R2= 0.007

Dietary restrictions

True 27/72 8/72 1.08E−02 Yes (q= 0.001)

False 45/72 64/72 R2= 0.008

Functional bowel findingb

Tends to have diarrhea 19/72 7/71 7.47E−03 No

Tends to have constipation 13/72 3/71

Tends to have normal BM 40/72 61/71

GI symptoms within 3 months

True 36/72 64/72 2.80E−05 Yes (q= 0.004)

False 36/72 8/72 R2= 0.003

Biological sex

Male 61/72 38/72 1.91E−03 No

Female 11/72 34/72

Age

Mean 5.39 4.90 0.15 No

Standard deviation 1.42 2.43

C-section birth

True 27/72 27/72 1.00 No

False 45/72 45/72

Fruit consumption

Never 25/72 35/72 3.26E−02 Yes (q= 0.002)

Rarely 9/72 0/72 R2= 0.027

Weekly 11/72 2/72

Several times weekly 21/72 23/72

Daily 6/72 12/72
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taxa between the two cohorts, and identified environmental
variables possibly influencing these abundances. We also measure
the explanatory power of lifestyle and dietary variables as
compared to compositional microbiome features to distinguish
between ASD and TD, and identified taxa associated with anxiety
changes, a condition comorbid to ASD. Lastly, we find that overall
microbiome composition (beta-diversity) is associated with
specific ASD-related behavioral characteristics.

Associating microbial biomarkers with ASD
The set of 117 ASVs identified by any differential analysis method
represents the most inclusive analysis and is meant to capture all
potentially relevant hits, at the cost of increased expected false
positives. In contrast, the 11 ASV set represents the intersection of
multiple methods and is expected to contain more robust hits that
are reproducible across multiple methods. Among these 11 ASVs,
the observed increase in Bacteroides annotated-ASVs and the
decrease of the Streptococcus annotated-ASVs in ASD individuals
are consistent with findings from previous studies on the genus
level [26, 27]. The enrichment of a Haemophilus genus member
and Blautia wexlarae within the TD cohort coincides with findings
of increase of Haemophilus parainfluenzae and the Blautia genus in
TD individuals compared to ASD cohorts [27, 28]. In contrast, we
also found two other ASVs from the Blautia genus were
significantly increased in the ASD cohort. Notably, B. wexlarae
has also been found to be associated with non-celiac gluten
sensitivity, a common comorbidity of ASD (we also observed a
trend towards gluten sensitivity in our cohort (q val 0.01,
Supplementary File 11)) [29]. As 16S amplicon studies have
limited taxonomic identification, these sub-genus level discrepan-
cies call for deeper phylogenetic characterization, which could be
achieved by metagenomic sequencing. We also noted that a
member of the Holdemania genus was enriched in the ASD cohort,
which another study found was associated with ASD children who
were classified as “picky eaters” [30]. Association of Borkfalki
ceftriaxensis and the Anaerovovracaceae family with ASD do not

seem to have been reported yet in the literature. Among the 117
ASVs detected to be significant in at least one of our methods,
Faecalibacterium, Anaerofustis, and Erysipelatoclostridium ASVs
were associated with ASD, and one ASV from Dialister with the
TD cohort, which is consistent with previous studies, but may
represent false-positive hits [27, 31–34].
In addition to ASV level analyses, we also performed differential

analysis after aggregating ASV counts into genera. We found
many of the differentially abundant ASVs from Table 1 to be
members of differentially abundant genera, namely the genera
Bacteroides, Borkfali, Haemophilus, Streptococcus. Interestingly, the
genus Veillonella was identified as increased in TD participants by
all three analysis methods. This genus is best known for
fermenting lactate to propionate and has been observed to be
increased in TD controls in other ASD studies as well [19, 22, 35].

Differentiating between phenotype-based signals and
environmental proxies
Dietary selectivity and food sensitivity amongst children with ASD
have been widely reported in the literature [19, 36]. Dietary habits
and gut microbiome compositions are integrally linked; diet
influences microbiome composition and bacteria may influence
dietary choices [37]. This study attempted to pinpoint the
confounding factors that both impact the microbial structure
and are significantly associated with one of the two cohorts within
our 4-week-long assessment. Six variables listed in Table 2 were
both different between cohorts and associated with gut micro-
biome composition. As such, these are highly relevant confound-
ing factors that should be considered carefully when untangling
the complex relationship between the gut microbiome and ASD.

Overall effect size of diet/lifestyle vs. microbial signature
While differential analysis allows us to identify specific ASVs of
interest, it does not reveal the overall signal strength of the set of
variables identified. We used logistic regression models to
estimate the explanatory power of environmental variable

Table 2. continued

Per timepoint ASD
(n= 216)

TD
(n= 216)

Associated with microbial community structure

Dairy consumption*M

Never/less than once a week 90/203 36/202 3.75E−2 Yes (q= 0.001)

3–4 meals per week 33/203 45/202 R2= 0.009

7–10 meals per week 42/203 76/202

Almost every meal 38/203 45/202

Recent anxietyM

No elevated anxiety 151/203 185/202 1.98E−02 No

Somewhat elevated anxiety 34/203 13/202

Elevated anxiety 18/203 4/202

GI issues this week

True 66/216 9/216 1.02E−11 Yes (q= 0.003)

False 150/216 207/216 R2= 0.005

Other symptoms this weekc

True 4/214 23/214 2.76E−03 No

False 210/214 191/214
MPer timepoint dietary consumption and anxiety measures had 13 missing ASD responses and 14 TD responses resulting in an n of 203 or 202. *This variable
was significant in per timepoint (question answered every 2 weeks) and during initial assessment. The q value column is the adjusted p value from Wilcoxon-
ranked sum tests, chi-squared tests, or two-way repeated-measures ANOVA based on the category of variable. Age and C-section birth status are the only two
variables included in this table that were not significantly different between cohorts. Age is listed in years. Racial demographic information and household
information not included as they are the same across cohorts for each sibling pair. All participants were from the United States.
aMissing 11 TD and ASD responses resulting in an n of 61 out of 72 per cohort.
bMissing one TD response.
cMissing responses for two timepoints in both ASD and TD.
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signatures, and found that lifestyle and dietary features are able to
differentiate individuals with ASD from their siblings significantly
above a baseline model of sex and age, but that global
microbiome compositional features cannot. At the same time,
actual microbiome features do provide more explanatory power
than random noise, implying that compositional microbiome
features may capture some of the influences of diet and lifestyle
that are predictive of phenotype. Some axes of gut microbial
variation that are not obviously reflective of diet/lifestyle but are
still statistically associated with phenotype may be driven by
abundance of the reported biomarkers, however, this effect is
small compared to the effects of diet.
We emphasize that many of the predictive diet/lifestyle

variables are likely informed by a child’s ASD status and therefore
cannot be interpreted as directly related to biology. For instance,
fermented vegetable consumption and vitamin D supplementa-
tion are predictive of the ASD phenotype possibly because
parents interested in the intestinal health of their ASD children
provide these interventions intentionally.

The overall microbial structure is associated with self-reported
behavioral measures
This study is not the first to report that the microbiota may
reflect complex behavioral traits. Multiple animal-animal or
human-animal stool microbiome transplant studies have
shown that some behavioral traits seem to be mediated by

the gut content [38, 39]. In humans, Flannery et al. determined
that taxonomic and functional composition of the gut
microbiome is associated with behavior and early development
in school-aged children [40]. Other studies have also associated
microbiome structure with a toddler’s temperament [41]. In
ASD specifically, an open-label study showed that microbiota
transfer therapy from a neurotypical donor to a recipient
with an ASD diagnosis improved GI and behavioral symptoms
[12, 13].
Reduction of alpha diversity between children with ASD and a

control cohort has been reported in several studies
[10, 20, 22, 34, 42] but remains inconsistent across cohorts,
especially in sibling studies [43, 44]. Notably in this study, younger
participants were more likely to report more severe ASD symptoms
and to have a less diverse microbiome, suggesting that
discrepancies in age or failure to utilize severity of ASD symptoms
in analysis may both be confounding factors and explain some of
the discrepancies in alpha diversity metric results across studies.

Detecting stable microbial signatures over time
We found 33 ASVs that were significant in a single timepoint, but
were not consistently different across timepoints. For example, single
timepoints implicated ASVs annotated to the species Faecalibacter-
ium prausnitzii, Bacteroides intestinalis, and Bifidobacterium bifidum, all
species that have previously been observed as differentially
abundant in ASD [31, 34]. Without longitudinal data to account for

Fig. 3 Overall effect size of diet/lifestyle vs. microbial compositional features. A Logistic regression models were trained using age+ sex
(basic), basic+diet/lifestyle features, basic+microbiome features, and basic+diet/lifestyle+microbiome features. Null models included basic+
random noise features that matched the range of the original variables. Compared to basic features (AUC= 0.69), diet/lifestyle variables improved
cross validated performance significantly (AUC= 0.79) (p= 0.004 rank-sum test) while microbiome features did not (AUC= 0.67, p= 0.25). B Pearson
correlation between diet and lifestyle variables significantly related to ASD phenotype within the logistic regression model (vertical) and all other
lifestyle variables (horizontal). Columns are annotated by Z-score from a slope test within the combo (basic+ diet/lifestyle+microbiome) logistic
regression model. C Pearson correlation between axes of variation (Principal component analysis) that are related to ASD phenotype within the
combo logistic regression model (vertical) and all lifestyle variables (horizontal). Columns are annotated by Z-score from a slope test within the
combo model. D ASV abundances are ranked based on their scores across principal components. A set is either the eight biomarkers associated
with ASD or the three associated with TD (Table 1). Axes where biomarkers appear significantly skewed to one end or the other (as compared to
randomly distributed) as determined by gene set enrichment analysis are represented.
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Fig. 4 Correlations between changes in anxiety and log2 fold changes in relative taxa abundances. A Change of ASVs abundance
correlated with changes in anxiety score across the entire cohort. Positive/negative values on the x axis signify increases/decreases in anxiety
respectively between timepoints within an individual. Positive/negative values on the y axis represent an increased/decreased log2 fold
change between the relative abundance of an ASV between timepoints within the same individual. R2 and p values represent results from a
spearman correlation. B ASVs correlated with changes in anxiety scores across both cohorts, and still significant when considering the ASD
cohort only. C ASVs that correlate negatively with anxiety in the ASD cohort also correlate with alpha diversity (shannon) of samples.
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intra-individual gut microbiome variability, differential analyses are
likely to detect false positives. As such, the lack of longitudinal data
likely accounts for at least a portion of the inconsistencies observed
between gut microbiome association studies [45].

Anxiety changes over time correlate with changing taxa
abundances
Among the ASVs linked to changes in reported anxiety, six ASVs
annotated as Lachnospiraceae were negatively correlated with
anxiety. As mentioned above, the association of the Lachnospir-
aceae family with ASD is widely discussed in the literature;
but this family has been reported negatively correlated
with ASD comorbid and psychological distress disorders frequently
[33, 46–48].
Two ASVs from the same species, Agathobaculum butyricipro-

ducens, were negatively correlated with anxiety in the full cohort
and within only the ASD cohort. This species is known for heavy
butyrate production, which has been demonstrated to decrease
gut inflammation and enhance gut epithelial barrier integrity
[49, 50]. Given the prevalence of GI issues and leaky gut in ASD
[51], the inverse relationship between these butyrate producers
and anxiety may be related to some of the GI and core symptoms
we observe in ASD. Furthermore, the same three ASVs were
positively correlated with the alpha diversity indices in the ASD
cohort, suggesting that these taxa are among those lost in lower
diversity guts.
While a non-traditional three-point scale was used to measure

anxiety, our results are consistent with association scales identified
using the more widely used Beck Anxiety Inventory. One study
using single timepoint data from 73 individuals reports significant
Spearman correlation coefficients of around 0.3 when correlation
individual taxa to anxiety metrics across individuals, as compared
to our reported coefficients of around 0.16 [52].

Further considerations and future directions
Despite the number of longitudinal samples and wealth of dietary
information, 16S rRNA amplicon analysis can only provide a
superficial identification of stool-associated microbial structure.
Discrepancies in the species and strain identification could be
reduced using shotgun metagenomic sequencing. Paired with
multi-omics analysis, such studies would help pinpoint specific
mechanisms beyond microbial structure associations.
This paper presents one of the largest longitudinal studies

implemented in ASD. But with each sampling separated by two
weeks, our sampling only represents a small snapshot of time
within an individual’s gut microbiome (one month). Gut micro-
biomes can fluctuate based on the season due to differences in
dietary habits during these times and this effect can be seen
to some degree in our study. We attempted to mitigate this issue
by sampling sibling control at the same time, but observing a

longer collection period would help to maximize the signal/
noise ratio.
Previous literature suggests that TD siblings of children with

ASD may not constitute a perfect control group, as they tend to
exhibit microbiome compositions between their own siblings and
unrelated neurotypical controls [22, 53]. Therefore, the ASVs
identified in this study are likely to be biased towards precision
(confidence that observed difference is related directly to
phenotype) rather than sensitivity (confidence that all possible
differences have been detected). This study design is likely to have
limited the potential biasing effects of enterotypes (distinct
community types that stratify individuals) in differential analysis
as well [54]. Because sibling pairs are likely to display the same
enterotype, a brief investigation into the Bacteroides to Prevotella
as well as Firmicutes to Bacteroidetes ratios amongst participants
suggests an even spread of this variable between phenotypes
(Supplementary File 12).
In addition, ANCOM authors have released ANCOMBC, a newer

version of the ANCOM than the ANCOM2.1 used in this study [55].
While there may be slight benefit from using ANCOMBC, we do
not expect a drastic change to our conclusions by using
ANCOMBC as only 4 of the 117 taxa were significant through
ANCOM2.1.
Finally, the lifestyle and dietary information collected from

participants was self-reported. While we had more objective
measures of verifying the ASD phenotype, the validity of the
dietary and behavioral measures collected in this study can vary
between families, and even within families if the caregiver
changed between samplings. Again, we believe that potential
reporting inaccuracies were partially mitigated by the fact that the
caregiver answered questions for both the ASD child and their TD
sibling for each timepoint.

CONCLUSION
In the present study, we report 11 microbial taxa consistently
associated with ASD in one of the largest longitudinal gut
microbiome datasets collected on paired siblings to date. This
large sample size was coupled with comprehensive metadata
composed of over 100 dietary, lifestyle, and ASD-related variables,
and allowed us to identify 6 potential confounding variables
within this dataset: habitual fruit and dairy consumption, dietary
supplementation or restrictions, and GI symptoms within the past
week or last 3 months. In this study, we pinpointed which of the
ASVs that significantly differ between the two cohorts are also
associated with these factors, providing additional context into
what might be driving these associations. We determined that
compositional microbiome features do not add extra information
above a baseline of age and sex, but diet and lifestyle variables
significantly increase explanatory power. We also identified taxa,

Table 3. Significant behavioral variables associated with overall microbial structure in the ASD cohort as determined by a permanova.

Variable Factor class Total samples R2 q value

Childhood behavioral development finding Numeric 189 0.016 0.005

Plays imaginatively with others Numeric 213 0.015 0.005

Plays in a group with others Numeric 216 0.011 0.005

Language ability and use Numeric 216 0.011 0.005

Sleep pattern finding Numeric 216 0.01 0.005

Eye contact finding Numeric 216 0.01 0.005

Repetitive motion Numeric 216 0.009 0.011

Response to typical sounds Numeric 216 0.009 0.016

Imitation behavior Numeric 216 0.008 0.028

Picks up objects to show to others Numeric 216 0.008 0.033
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including A. butyriciproducens, that were negatively correlated
with anxiety changes across both cohorts. These ASVs are strong
candidates for further investigation into the mechanisms behind
these findings and the relationship between ASD, the gut-brain
axis, and the gut microbiome. Lastly, we find the overall
microbiome composition (beta-diversity) did associate with
specific ASD-related behaviors, implying that the nature of ASD
as a spectrum must be fully considered in future gut microbiome
studies.

METHODS
Recruitment and data collection
We recruited families with two siblings, one previously diagnosed with
ASD by a health care provider and one TD, via the website microbiome.
stanford.edu. In total, 1432 families visited the website. We recruited
children between 23 months to 8 years old, and siblings had to be within 2
years of each other. Dietary, lifestyle, demographic, and host health
information were collected via an initial and bi-weekly questionnaires (at
each collection time) for each individual (see Supplementary File 4).
General dietary habits as well as recent dietary intake during the week
prior was collected (labeled as longitudinal within Supplementary File 4).
Each sibling provided three stool samples, spaced two weeks apart.

While we received 701 samples total, sibling pairs with individuals that
were younger than 23 months, were currently being breast-fed or had ASD
children that did not meet ASD criteria (See ASD Diagnosis Verification)
were removed, leaving a total of 72 sibling pairs consisting of 432 samples
from 144 different participants.

Autism spectrum disorder diagnosis verification
The MARA, a parent-reported behavioral questionnaire designed to screen
children who are at high risk for ASD, was collected electronically from ASD
participants [56].
Additionally, parents submitted a short video of their child with and

child without ASD via encrypted file share to be rated for ASD symptoms
by Stanford Institutional Review Board approved raters on a set of 30
behavioral features [57]. Scores across multiple raters were fed to
previously published Machine Learning classifiers to predict ASD risk
scores [58, 59]. By combining these risk scores with the parent-report
screening tool (MARA), as well as parent-reported physician diagnosis, we
confirmed diagnosis using majority rules consensus. We excluded (3)
children and their TD siblings for whom the consensus did not agree with
original parent diagnosis. Please see Supplementary File 13 for expanded
methods.

Stool collection and storage
Every 2 weeks, caretakers of participants collected a sample using a
provided toilet collection kit, and shipped it back at room temperature in
preservation buffer (Norgen Biotek, ON, Canada). At the initial timepoint,
caretakers also collected a second sample that was immediately frozen at
home at −20, then shipped back overnight with two ice packs provided to
the participants. Once received, stool samples were stored at −80C until
processing. Please see Supplementary File 13 for expanded methods.

DNA extraction, amplification, and sequencing
Before DNA extraction, stool samples were thawed, pelleted, and
supernatant was removed. DNA was extracted from the pelleted stool
samples using the MagAttract PowerMicrobiome DNA/RNA Kit (Qiagen) on
the KingFisher Flex 96 (ThermoFisher), following manufacturer’s instruc-
tions. If DNA did not meet quality standards, an additional DNA clean-up
procedure was performed with the Zymo ZR-96 DNA Clean-up kit. All
samples were quantified via the Quant-iT PicoGreen dsDNA Assay Kit. The
16S rRNA V4 region was amplified with degenerate primers designed
against conserved regions of the 16S rRNA V4 gene region, fused with
Illumina adapters and indexing barcodes (slight modifications from [60]).
The following primer sequences with adapters, pads, and linkers
were used:
Forward primer: AATGATACGGCGACCACCGAGATCTACAC TATGGTAATT

GT GTGYCAGCMGCCGCGGTAA
Reverse primer: CAAGCAGAAGACGGCATACGAGAT XXXXXXXXXXXX

AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT (Where “XXXXXXXXXXXX”
represents the Barcode)

PCR products were cleaned-up using AMPure XP beads (Beckman
Coulter) and then quantified via the Quant-iT PicoGreen dsDNA Assay Kit
(Invitrogen)
Libraries were pooled, and paired-end sequencing (2 × 250 bps) was

performed on an Illumina MiSeq using the MiSeq Reagent Kit v2 (500-
cycles) and custom sequencing primers. We obtained an average of
157,103 reads per sample (with a min of 23,321 and max is 996,530).

Sequence processing, filtering, and taxonomic annotation
Raw sequence reads were processed with DADA2 applying default settings
for filtering, learning errors, dereplication, ASV inference, and chimera
removal [61]. Truncation quality (truncQ) was set to 2. Ten nucleotides
were trimmed from each terminus of each read. An average of 156, 246
reads per sample library remained after processing the raw reads. For
strain level ASV assignment, ASVs were mapped to an in-house strain
database (StrainSelect, https://www.secondgenome.com/platform/data-
analysis-tools/strainselect, version 2019 (SS19)) using USEARCH (usearch_-
global) in the same manner as a recent study by Shah [62]. Please see
Supplementary File 13 for expanded methods.

Statistical analysis
Statistical analysis was performed using R version 3.6.2 using RStudio
Server Pro 1.2.5033-1. The following packages were used: shiny 1.5.0, tibble
3.0.2, data.table 1.13.0, devtools 2.3.1, knitr 1.29, tidyr 1.1.0, reshape2 1.4.4,
dplyr 1.0.0, ggplot2 3.3.2, pander 0.6.3, DT 0.14, gridExtra 2.3,
adegraphics1.0–15, stats, smart 3.4–8, caret 6.0–86, randomforest 4.6–14,
ROCR 1.0–11, exactRankTests 0.8–31, nlme 3.1–148, compositions 2.0–0,
ggpubr 0.4.0, vegan 2.5–6, MetagenomeSeq 1.28.2, DESeq2 1.26.0,
biomformat 1.14.0, phyloseq 1.30.0 and sourced ANCOM2.1 from https://
github.com/FrederickHuangLin/ANCOM.git. Full code used for analysis can
be found at https://github.com/MaudeDavidLab/M3_Phyloseq_Analysis/
tree/manuscript.

Normalization and taxa filtration
Before filtration, we attained a minimum read depth of 2.3 × 104 reads and
a maximum depth of 9.9 × 105 reads. Taxa not present in at least 3% of the
samples were removed. Taxa abundances were normalized using DESeq2
or Cumulative Sum Scaling (CSS) depending on the contrast analysis
performed [63, 64]. Due to how DESeq2 normalized minimized intra-group
variance within families more so than CSS (Supplementary File 14), DESeq2
was used as the primary normalization in our gut microbial community
analysis.
In addition, taxa that significantly vary over time within the same

individual were removed to increase the chance of identifying taxa directly
related to core phenotype characteristics, rather than changes due to diet
or season. A Friedman test was used to model ASV abundance as
dependent on timepoint for each individual, and ASVs that were
significantly related to timepoint (p < 0.1) were removed. 64 ASVs were
removed from DESeq normalized data, 78 ASVs were removed from CSS
normalized data, and 72 ASVs were removed from unnormalized data.
See Supplementary File 13 for complete methods description.
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