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Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can
affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these
root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host
dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with
relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant
species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the
differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest
modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-
occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the
host plants. Our results further suggested that plants harbor more abundant shared, “generalist” pathogens are likely segregated,
while hosting more abundant unique, “specialist” ectomycorrhizal fungi might be an important strategy for promoting spatial
aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and
testable approach to integrate this host-dependent root fungal “fingerprinting” into the plant diversity patterns. We highlight that
this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level
effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.

ISME Communications; https://doi.org/10.1038/s43705-021-00072-6

INTRODUCTION
A wide range of fungal species, including beneficial ones (e.g.,
mycorrhizal fungi) and plant pathogens, can influence the
performance of their hosts, including survival, growth rate,
reproduction, and competitiveness [1–3]. In addition, evidence is
mounting that the diversity maintenance and population
dynamics in plant communities are mediated by plant-soil
feedbacks [4–13], whose direction and strength may depend on
how plants structure and shape the belowground fungal
communities and interact with them [3, 10, 11]. Previous studies
of plant-fungi interaction have mainly focused on how plants alter
belowground fungi throughout the root interface, the rhizosphere,
and microbial feedbacks on plant dynamics [1, 5]. However,
relatively little attention has been devoted to the roles of root-
associated fungal communities per se in host plant spatial co-
occurrence, despite the fact that diverse fungal species have been
associated and coevolved with most plant species in nature and
are host-specific [2, 3, 14–16].
These highly host-related fungi influence the plant’s growth and

fitness [5]. They could be recruited in the surrounding soil by the
focal hosts as they grow and cause plant-soil feedbacks when
plants are growing together. Within the existing theoretical

framework of plant-soil feedbacks, the effects of pathogenic and
mutualistic fungi have attracted a great deal of attention,
suggesting that focal plants can negatively or positively affect
the performance of surrounding conspecific and heterospecific
individuals by accumulating these soil biota [3, 5, 17, 18]. Logically,
this microbe-mediated process is likely a principle for both host-
specific and nonspecific fungal species, yet the former ones have
been more intensively studied. This is possibly due to the
apparent host-specific impacts among plants with a phylogeneti-
cally constrained signal [19–21] and the differential effects from
generalists across the infected host species (e.g., effective
specialization in pathogens) [1, 22]. Largely unknown is the
community-level effect from overall root-associated fungal com-
munities (including potential specialists and generalists) and its
contribution to the observed plant co-occurrence patterns across
highly variable environments. Relating the differentiations of root
fungal associations between plant species to their spatial
relationships informed from forest inventory data [13] is a
promising strategy and provides essential insights into this gap.
Increasing compelling evidence suggests that pathogenic and

mutualistic fungi play essential but opposing roles in regulating
the plant species diversity and distribution in a large-scale
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[3, 11, 23, 24], and jointly influence the hosts co-occurrence
[17, 18]. The co-occurrence of plants is expected to be dependent
on the differences in their sensitivity to pathogens or the benefits
they accrue from mutualists. Specifically, if two plant species can
be colonized by more shared pathogens, they will experience
stronger negative effects when growing closely with each other
and are unlikely to co-occur. On the other hand, if they can recruit
more shared mutualists, they are likely to experience stronger
positive effects, which may promote co-occurrence or alternatively
impede co-occurrence because of the enhanced interspecific
competition. Thus, our research goal is to explore whether the
differentiation of root fungal associations could be considered as a
host-dependent proxy of spatial co-occurrence pattern between
plants in the species-rich forest ecosystem.
Here, we present a study relating the root-associated fungal

communities to the spatial co-occurrence patterns among 39-
plant species in a subtropical forest (Fig. S1). First, we estimated
the spatial relationships between plant species using spatial
statistical approaches [25–27] based on the forest inventory data
[28, 29]. Second, we evaluated the community-level host
specificity among plant species at different developmental stages
[29, 30]. For this purpose, we investigated the fungal communities
in 501 root tip samples and 1708 bulk soil samples throughout the
50-ha forest plot with relevant environmental properties. Finally,
we related the differentiation of root-associated fungal commu-
nities to the observed plant co-occurrence patterns and tested the
validity using Random Forest modeling [31]. This study deepens
our understanding of the importance of root-associated fungi in
plant co-occurrence in subtropical forests.

MATERIALS AND METHODS
Brief description
Details related to study site, root tip and background soil sampling,
molecular characterization of fungal communities, sequence processing,
core root-associated fungal communities, phylogenetic relatedness, func-
tional traits, and spatial co-occurrence patterns of plant species, and spatial
variation of soil environmental properties are provided in Supplementary
Materials and Methods. To explain the data collection and analyses
procedures more clearly, we diagrammed the detailed workflow and key
description of the materials and methods in Fig. S1. In addition, the custom
R codes underpinning the main analyses and the sample data files are
available in figshare (https://doi.org/10.6084/m9.figshare.10084625.v5).
Briefly, we collected our soil and root tip samples from a 50-ha typical

subtropical forest plot in Heishiding Nature Reserve (111°53′ E, 23°27′ N),
located in Guangdong province, China. This plot is one of the large
permanent forest plots within a global monitoring network called
the Center for Tropical Forest Science-Forest Global Earth Observatory
(http://www.forestgeo.si.edu/). The comprehensive plant census of this
plot was completed in 2013, and a total of ~218,000 free-standing plant
individuals with diameters at breast height (DBH) ≥1 cm were tagged and
mapped spatially [29]. In this study, we investigated the co-occurrence
among 39-plant species, accounting for ~60% of the total plant individuals
across the plot (Table S1 and Fig S2). We divided the plant species into
three groups based on their relative abundances: ≥1% (H), 0.1–1% (M), and
≤0.1% (L) [29] (Table S1). We classified the plant individuals into three size
classes to represent different plant developmental stages according to
their DBH: ≤5 cm for saplings, 5–10 cm for juveniles, and ≥10 cm for adults
[29, 30]. We constructed the molecular phylogeny for the plant species
using the sequences of four genes (i.e., rbcL, matK, ITS1, and 5.8S) obtained
from GenBank. The pairwise phylogenetic distances of plant species were
calculated based on the maximum likelihood phylogenetic tree using the
“ape” package (cophenetic.phylo function) in R (Table S2). The functional
traits of the plant species in this study were downloaded from the TRY
website (https://www.try-db.org/) [32] (Table S3). The pairwise functional
distance (Gower dissimilarity) was calculated using the “FD” package
(gowdis function) in R (Table S2). Based on the forest inventory data, we
estimated the spatial relationships (i.e., aggregated or segregated) for all
the 741 pairs of plant species by applying bivariate pair correlation
function gij(r) [25–27] using the “spatstat” package (pcfcross functions) in R
(Table S4).

In a previous study [29], we randomly collected 529 root tip samples
from 45 plant species in the plot (3 to 19 individuals per species with
detailed spatial locations recorded from the census data). In this study, to
link the spatial patterns between different plants species with their
representative root-associated fungal communities, we retained 39-plant
species (a total of 501 individuals) with at least 7 replicates for subsequent
analyses (Table S1). Meanwhile, we intensively collected a total of 1708
bulk soil samples using a checkerboard design throughout the plot
(Fig. S3a). We characterized the root-associated and background soil fungal
communities by amplifying and sequencing the second internal tran-
scribed spacer (ITS2) region of fungal rRNA genes following the procedure
described previously [29, 33]. Briefly, the entire ITS region was first
amplified using the fungal-specific primers ITS1-F (5′-CTTGGTCATTTAGAG-
GAAGTAA-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′), and then a
second PCR using the primers ITS3 (5′-GCATCGATGAAGAACGCAGC-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). For the subsequent analyses,
we resampled 3000 and 4100 high-quality sequences for each root tip and
background soil sample, respectively. The profiles of root-associated fungi
can be influenced by the surrounding soil environment [1, 3, 15], such as
background soil properties and fungal communities. Thus, the root fungal
associations for a given plant species may vary among individuals,
especially across markedly heterogeneous soil environments. To obtain the
representative root-associated fungal communities for each plant species,
we defined core root-associated fungal OTUs at nine different cutoffs
according to their detected frequency (e.g., cutoff= 0.5 indicated that
these OTUs could be found in half of the root tip samples of a given plant
species). We conducted subsequent analyses using the datasets of the
overall OTUs and core OTUs to examine the consistency of the results.
We measured the environmental properties by using the background

bulk soil samples (Table S5) and then estimated the spatial variation for the
whole 50-ha plot by applying geostatistical interpolation technique of
ordinary kriging (krige function in “gstat” package in R) (Fig. S3b).
Subsequently, the associated soil environmental properties of each plant
individuals from which we collected root tip samples were estimated
according to their spatial locations (Table S6).

Host specificity of root-associated fungal communities
We hypothesized that the COMMs of root-associated fungi depend on their
hosts and can be differentiated among different plant species. To test this,
we compared the root-associated fungal community of each target plant
species against every root-associated fungal community of all the other 38
plant species. The community-level host specificity was tested by
PERMANOVA test (Adonis function, Bray-Curtis distance with permutations
= 999, “vegan” package in R) based on the relative abundances of overall
OTUs or core OTUs at different cutoffs between every pair of different plant
species. For a given plant species, the P values from the 38 comparisons
were extracted and adjusted by the false discovery rate (p.adjust function,
method= “fdr”). In this study, we defined the fungal community profile for a
given plant species as host-specific when it was significantly (P < 0.05)
different from those of all the other 38 (i.e., 100%) compared plant species.
Meanwhile, we defined the fungal community profile as host-dependent
when it was significantly different from those of at least 35 (i.e., >90%)
compared plant species. Such host specificity was also tested with the same
definition criteria for each plant species at their different developmental
stages.
We further validated the host specificity of root-associated fungal

communities using environmental properties and fungal communities of
background soils in the plot to confirm they were largely dependent on
the plant species themselves rather than their background soils. We
estimated the environmental properties of each plant individual based on
the interpolated environmental properties of background soils as
mentioned above (Tables S5, S6). Meanwhile, we estimated the fungal
communities (overall OTUs) of surrounding bulk soils by summing up the
sequences from the top three nearest background soils related to each
plant individual (12,300 reads in total) (Table S7). Notably, the mean
distance between the plant individuals and the third nearest bulk soil
samples was 14.9 m. To avoid individuals of a given plant species to share
the same set of background soils, one of these individuals was randomly
selected for subsequent PERMANOVA tests of host-dependent differentia-
tion if they were close to each other with distance <30m, and a total of
305 root tip samples were then selected (Table S7). Similarly, the host-
dependent differentiations of background soil environmental properties
and fungal communities were tested with the same definition criteria
mentioned above. Furthermore, we conducted Mantel tests (Pearson
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correlation with permutations of 999 times) to reveal the relationships
between the root-associated fungal communities in relation to the
background soil environmental properties and fungal communities based
on these 305 selected root tip samples, respectively.

Pairwise differentiation of root fungal associations
We compared the root-associated fungal communities of each pair of
plants. We aimed to explore whether such pairwise differentiation of root
fungal associations could be used to (i) approximate the community-level
effects on the outcome of potential plant-soil feedbacks when plants are
growing together and interacting, and (ii) subsequently reflect the spatial
co-occurrence of host plants.
For a plant pair, we split the root-associated fungal species into shared

(i.e., detected in both plants) and unique (i.e., detected in either plant) core
OTUs to differentiate the influences from potential, pairwise “generalists”
and “specialists”, respectively. We then calculated an index (termed
“modified relative abundance”) to evaluate the relative abundance of each
shared (or unique) core fungal OTU (an example of the calculation
procedure are shown in Fig. S4). Specifically, for the MRAs of unique core
OTUs, we divided their relative abundances by the sum of relative
abundances from all unique core OTUs. For the MRAs of shared core OTUs,
we divided their products of relative abundances by the sum of each
product between the two relative abundances of shared core OTUs. Thus,
for a pair of plants, the sum of MRAs of all shared (or unique) core fungal
OTUs was adjusted to 1. A fungal OTU had a higher value of MRA implied
higher recruitment of this fungal species when plants grew together.
We applied this calculation procedure for all pairs of different plant

species and the pairs of plant species at their different developmental
stages. In addition, we calculated these profiles of MRAs based on the core
OTUs at cutoffs of 0.5 and 0.9. We obtained the MRA profiles for shared (or
unique) OTUs and used them as the input predictor variables in the
subsequent Random Forest modeling.

Prediction of spatial relationships between plant species
By applying Random Forest modeling (classification procedure), a machine
learning approach [31], we predicted the spatial co-occurrence patterns
(i.e., aggregated or segregated) of all pairs of 39-plant species based on
different predictive variables, including the species-level dissimilarities of
relative abundance (RA), phylogeny (PL), functional trait (FT), richness
(RICH), and community composition (COMM) of overall root-associated
fungal OTUs between plants (Table S2), and the modified relative
abundance (MRA) profiles of shared (or unique) core root-associated
fungal OTUs at cutoffs of 0.5 and 0.9. Modeling analyses were also
conducted using the MRA profiles for plant species at their different
developmental stages. Notably, we did not test the importance of
environmental properties in this study because they were interpolated
based on the spatial autocorrelation, and were not suitable for testing our
spatial co-occurrence hypothesis.
We developed rules to assign plant pairs into two classes (i.e.,

aggregated and segregated) and to assess the performing differences
among different predictor variables. We used one single predictor variable
(i.e., the species-level dissimilarity) in five different models to examine how
the differences of RA (or PL, FT, RICH, COMM) between plant species can
predict the pairwise spatial relationships. Meanwhile, we considered each
of the shared (or unique) core root-associated fungal OTUs as a separate
predictor in the models based on the MRA profiles (Fig. S4). For each
model, 80% of the total dataset was randomly selected for training, and
the remaining 20% of the dataset was used for validation. For the training
dataset, we used the “ROSE” package (ovun.sample function in R) to deal
with binary classification problems in the presence of imbalanced data.
Simultaneously, we generated a shuffled dataset for null model testing by
randomizing the labels associated with the real training dataset. Then we
performed the Random Forest modeling using both observed and shuffled
datasets by the “randomForest” package (randomForest function, trained
with 1000 trees). After model construction, the receiver operating
characteristic (ROC) curves were computed based on the associated
validation dataset, and the area under the ROC curve (AUC) was calculated
using the “ROCR” package (prediction and performance functions). To assess
the modeling performance, we repeated the whole process of modeling
100 times and obtained the AUC values from both observed and shuffled
data for all different dissimilarities of plant features. For a random guess,
the AUC value is near 0.5. The performance differences between models
using observed and shuffled data were compared by Wilcoxon tests and
the significances (P values) were adjusted by the false discovery rate

(Benjamini algorithm). One-way ANOVA (ANalysis Of VAriance) with post
hoc Tukey HSD (Honestly Significant Difference) test was conducted using
the “agricolae” package (aov and HSD.test functions) to compare the
distributions of AUC values for different predictor variables.
Finally, we summarized the modified RAs of core OTUs (cutoff= 0.5) for

different functional guilds and examine their differences between plant
pairs with distinct spatial co-occurrence patterns. The putative function-
ality (e.g., fungal functional guilds) of core OTUs was determined by
searching against the fungal database program FUNGuild [34] based on
their taxonomic affinity, following the approach that has been widely
applied in recent studies [10, 11, 28, 35]. In this study, we specifically
focused on the core OTUs that could be annotated into functional guilds as
“plant pathogen”, “ectomycorrhizal (EcM) fungi”, or “saprotrophs”. The
modified RAs of these putative functional guilds were calculated as the
sum of modified RAs from the shared (or unique) core OTUs that could be
assigned to them. Core OTUs that had multiple function assignments in
FUNGuild were excluded from the analysis. We explored the functional
differentiation by comparing the modified RAs of fungal functional guilds
between aggregated and segregated plant pairs at different develop-
mental stages using Wilcoxon tests (wilcox_test and wilcox_effsize functions
in “rstatix” package).

RESULTS
Plant features and root-associated fungi
The 39 investigated plant species accounted for ~60% of the total
plant individuals across the 50-ha subtropical forest plot (Table S1),
which represents a wide range of RA, phylogenetic relatedness,
and FTs (Fig. 1; Tables S2, S3). Our spatial statistic results showed
distinct co-occurrence patterns between different pairs of plant
species (Table S4) in this markedly heterogeneous soil environ-
ment (Figs. S3, S5; Tables S5, S6).
We identified a total of 11,720 fungal OTUs from the root tip

samples among the 39-plant species, revealing high variations in
root-associated fungal diversity and COMM (Fig. 1; Tables S1, S2,
S8). In addition, we found a marginal correlation between the
overall fungal community and the host PL (Mantel test: r= 0.062,
P= 0.056), implying that they might be decoupled. This result
confirmed, to our expectation, that the root-associated fungal
communities could be host-specific and may be independent of
phylogenetic relatedness between plants.

Host-dependent fungal associations
To test the host specificity, we defined core OTUs for each plant
species to obtain the representative root-associated fungal
communities. The number of core root-associated fungal OTUs
among the nine different cutoffs (i.e., detected frequency) ranged
from 683 to 269, with an average of 212 ± 14 to 135 ± 8 (mean ± s.
d.) per plant species (Fig. S6). Although the core fungal species
richness dramatically decreased when considering more fre-
quently detected OTUs, they represented, on average, 95% (at
cutoff= 0.5) to 86% (at cutoff= 0.9) of the total sequencing reads
per plant species (Fig. S6), indicating high representativeness of
plant root-associated fungal communities.
Based on the RAs of overall or core OTUs, we tested the

community-level host specificity by comparing the root-associated
fungal community of each target plant species against those of all
the other 38 plant species (PERMANOVA test). We defined the
fungal community as host-specific or host-dependent when it was
significantly (P < 0.05) different from those of 38 (i.e., 100%) or at
least 35 (i.e., >90%) compared plant species, respectively. Our
results indicated that the fungal communities of all 39-plant
species were host-dependent, with 29 of them (~74%) were host-
specific (Fig. 2a; Table S9). Since the root-associated fungal COMM
could change during the plant growth, we examined the host
specificity by considering plant developmental stages as well, and
still found such host-dependent differentiations of fungal com-
munities in ~75% of the plants (n= 97) at a certain developmental
stage (Fig. 2b; Table S10). Moreover, we observed that this host-
dependency tended to be stronger in larger trees (adults and
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juveniles), as the proportion of nonspecific profiles in adults
(n= 27), juveniles (n= 36), and saplings (n= 34) were 26%, 19%,
and 32%, respectively.
To test whether the nonrandom patterns of root-associated

fungal communities were caused by the soil environmental or local
fungal community differences across space, we further validated the
host specificity using the background soil environmental properties
and fungal communities (Tables S6, S7). Our results demonstrated
that plant species were not located at specific habitats with
significant differences in environmental properties and fungal
communities from the background soils (Fig. 2c; Table S11).
Moreover, the Mantel tests showed that the root-associated fungal
communities were not significantly (P > 0.05) related to the back-
ground soil environmental properties or fungal communities, even
though the environmental properties and bulk soil fungal commu-
nities were significantly correlated (r= 0.13, P= 0.001) (Table S12).
These results suggested that the host-dependent differentiation of
root-associated fungal communities largely depended on the

characteristics of the plant hosts, and not the soil environment.
The relatively stronger host dependency in larger trees further
offered a clue about the potential process of how plants gradually
form this specific association as they grow with diverse surrounding
fungal communities.

Differentiation of root-associated fungi and plant co-
occurrence
By applying Random Forest modeling, we found that the modified
RAs for core root-associated fungal OTUs showed significantly
higher (ANOVA with Turkey HSD test) prediction performance
among the predictor variables (Fig. 3), indicating higher classifica-
tion ability to assign a plant pair into a correct, observed co-
occurrence state (i.e., spatially aggregated or segregated). More-
over, our results revealed that such significantly higher prediction
accuracy by using the modified RAs was consistent for shared and
unique core fungal OTUs and across different developmental
stages of plants (Fig. 3; Table S13). However, we observed that
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Antidesma venosum
Lithocarpus haipinii
Lithocarpus litseifolius
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Toxicodendron succedaneum

Gentianales

Ericales

Saxifragales

Magnoliales

Laurales

Malpighiales

Fagales

Rosales

Aquifoliales

Fabales

Myrtales
Malvales

Sapindales

a                                                                  bPlant family    Plant species                     Community composition of root-associated fungi (order level)

Helotiales

Agaricales

Leotiomycetes 
incertae sedis

Chaetosphaeriales

Chaetothyriales

Trechisporales

Tremellales

Russulales

Hypocreales

Xyialelars

Eurotiales

Pleosporales

Sebacinales

Thelephorales

Boletales

Hysteriales

Capnodiales

Others

Fungal orders

Pezizomycotina 
incertae sedis

Unclassified

Fig. 1 Molecular phylogeny and community composition of root-associated fungi for the 39-plant species in this study. a The maximum
likelihood phylogenetic tree that was constructed for the selected 39-plant species using the sequences of four genes (i.e., rbcL,matK, ITS1, and
5.8S) that obtained from GenBank. b Mean relative abundances % of different root fungal orders that were associated with each plant species.
The most dominant fungal orders were affiliated with Helotiales (30.7%), Agaricales (9.5%), Leotiomycetes incertae sedis (8.1%),
Chaetosphaeriales (7.4%), Chaetothyriales (4.5%), Trechisporales (4.2%), Tremellales (2.8%), Russulales (2.6%), Hypocreales (1.9%), Xylariales
(1.6%), and Eurotiales (1.3%) collectively accounting for ~75% of the total sequencing reads.
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extremely constrained definition (e.g., cutoff= 0.9) of core fungal
species in the unique profile substantially decreased the predic-
tion performance (Table S13), implying the non-ignorable effects
from some potential “specialists” with relatively lower infection
rates. In general, our analysis indicated that the host-dependent
differentiation of root-associated fungal communities could
increase our ability to explain the spatial co-occurrence patterns.
We examined the functional differentiation of root-associated

fungi (based on the modified RAs of different functional guilds)
between the spatially aggregated and segregated plant pairs and
related it to the co-occurrence patterns across different plant
developmental stages. Among the 683 core fungal species, 244 of
them could be assigned to different functional guilds, accounting
for 26.6% of the total sequences. By exploring the putative
functional guilds including plant pathogen, ectomycorrhizal (EcM)
fungi, and saprotrophs, we found significant differences in the
modified RAs of the pathogens and EcM fungi between spatially
aggregated and segregated plant pairs only at their later
developmental stages (i.e., juveniles and adults) (Fig. 4a; Table S14).
Nevertheless, the modified RAs of saprotrophs remained similar
and showed no significant difference (Table S14). Statistically, the
shared pathogens had significantly higher modified RAs for the
pairs of plants species that were spatially segregated, while the
modified RAs of unique EcM fungi was significantly higher for
spatially aggregated plant pairs (Fig. 4b). These negative and

positive effects via accumulating pathogens and mutualists
implied two potential mechanisms underlying the plant
coexistence.

DISCUSSION
Our findings provide evidence that the established trees likely
harbor a distinctive consortium of fungi in roots under natural,
highly variable environments. This community-wide host depen-
dency is increasingly acknowledged in recent surveys of root-
associated fungal assemblage, such as those among tree species
in neotropical [16] and subtropical [36] forests, and Burmannia
plants with different trophic modes [37]. In addition, the patterns
of host dependency are observed in different fungal guilds (e.g.,
pathogenic and mycorrhizal fungi) [16, 36]. This host-dependent
association is probably due to the plant’s specialized traits and its
evolutionary history with the fungal partners [3], which helps to
explain the observed strong relationship linking the plant species
identity and diversity to the belowground fungal communities
[35, 38, 39]. In this study, we further expect host-dependent
recruitment of belowground fungal communities, which may lead
to predictable plant-plant interactions and reflect the observed
co-occurrence patterns of diverse plant species. Our results reveal
consistent trends that negative and positive effects via accumulat-
ing pathogens and mutualists can promote spatial segregation
and aggregation, respectively. While the differences in the
strength of these two relationships (see effect size in Fig. 4b)
provide some important clues that may help to disentangle the

0.00

0.25

0.50

0.75

1.00

SP
_o
ve
ra
ll

SP
_0
.5

SP
_0
.9

Pr
op

or
tio

n 
of

 d
iff

er
en

t c
at

eg
or

ie
s

[0,3][4,11][12,34][35,37]38
Host-dependentHost-specific

SP
.A
GE

_o
ve
ra
ll

SP
.A
GE

_0
.5

SP
.A
GE

_0
.9

SP
_S
OI
L

SP
_E
NV

a cb

Number of plant species [range] (PERMANOVA, P < 0.05)

Fig. 2 Host specificity of root-associated fungal community.
PERMANOVA tests were applied to examine the differences of
root-associated fungal communities between every pair of different
plant species based on the relative abundances of overall or core
OTUs (cutoffs of 0.5 and 0.9 are shown as examples). a For each
target plant species (SP, n= 39), comparisons were conducted
separately against all the other 38 plant species. Different categories
show the ranges of the number of plant species with significant (P <
0.05) difference. The fungal community profile for a given plant
species was defined as host-specific when it was significantly
different from those of all the other 38 (i.e., 100%) compared plant
species. Meanwhile, it was defined as host-dependent when it was
significantly different from those of at least 35 (i.e., >90%) compared
plant species (also see Table S9). b Host specificity was tested with
the same definition criteria for each plant species at their different
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potential primary mechanisms when considering the interactions
between plants at their different developmental stages (Fig. 5).
For the negative effects in the coexistence between hetero-

specific plants (Fig. 5a), the classic heterospecific negative density
dependence suggests that the pressure from generalist pathogens
or a stronger interspecific competition can result in a suppression
of establishment and growth of heterospecific individuals [40].
Although generalist fungal pathogens usually have differential
effects on plant fitness across the infected host species [1, 22], the
accumulation of these pathogenic generalists will probably reduce
the performance of their hosts and can cause the replacement of
inferior competitors [5]. As such, stronger negative effects will
impose on those interacting trees that could be infected with
more abundant shared pathogens and lead to a greater
competitive exclusion (Fig. 5b, left panel) and/or habitat
partitioning/species sorting (Fig. 5b, right panel). This mechanism
via the recruitment of generalist pathogens supports our
observations (Fig. 4b, Shared), providing a possible explanation
of the apparent spatial segregation between the light and dark
green trees in Fig. 5b at different developmental stages.
Alternatively, it is well documented that the EcM fungi benefit

host plants by providing substantial protection against pathogens
and enhancing their nutrient access and stress tolerance [3], and
commonly lead to monodominant plant communities through
positive feedbacks [41]. How these positive effects influencing the
heterospecific co-occurrence patterns may depend on the
strength of the intraspecific and heterospecific interactions. For
example, the light and dark green trees can harbor more shared,
‘generalist’ EcM fungi (Fig. 5c), and the strength of intraspecific
promotion is not stronger than the heterospecific one. In this case,
we may expect stronger net positive effects promote their
aggregation (Fig. 5d, upper panel) because the symbiotic
associations can enhance their growth performance and offer
them a safe environment from pathogens [11, 42], especially at
the early developmental stage. In contrast, weaker positive or
even net negative effects may be expected when the intraspecific
promotion is much stronger, which can lead to monodominance

and cause their segregation due to the increase of interspecific
competition (Fig. 5d, lower panel). Instead of supporting these
expectations, our results (Fig. 4b, Unique) highlight that hosting
more abundant unique, ‘specialist’ EcM fungi may facilitate the
spatial aggregation (e.g., orange tree in Fig. 5c, e), implying an
important strategy for driving the clustering, particularly between
early established trees and the heterospecific adults (Fig. 4b, Effect
size). Furthermore, our findings support the idea that increasing
biotic niche differentiation via partner specificity can help to
reduce interspecific competition relative to intraspecific competi-
tion and hence enhance coexistence [3, 43].
Our results also showed that the modified RAs of shared EcM

fungi were significantly higher for spatially aggregated adults
rather than segregated ones (Fig. 4b, Shared, EcM fungi_A-A). This
spatial aggregation between interspecific adults may result from a
net positive effect via accumulating shared EcM fungi as
mentioned above (i.e., Fig. 5d, upper panel). However, the
microbe-driven processes may not be sufficient to regulate the
survival of long-term co-occurring adults. In this case, we
considered that this pattern might be due to the lesser specific
belowground fungal linkages between plant species [44], which
may help redistribute carbon and nutrients among plants,
regulate competition [45], and thus maintain coexistence.
Incorporating belowground microbial communities into plant

population dynamics has been advocated for two decades
[46, 47]. Current trends in research continue to advance our
understanding of the theoretical foundation for how plant-
microbe interactions influence plant diversity [6, 48]. Moreover,
new FTs such as nutrient-acquisition strategies [9, 10], mycorrhizal
type [8, 11], and plant transcriptomics [49] have been identified to
explain how different plants respond to the changes in soil biota
or environmental properties and co-occur with one another. In
this study, our analyses support that the root-associated commu-
nities are host-dependent. Furthermore, our findings suggest that
distinguishing the differentiation of these fungal associations is
helpful in estimating the outcome of potential plant-soil feed-
backs and the field-based plant co-occurrence patterns.
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Nevertheless, the results from our observational study need to be
evaluated by comprehensive experiments with control settings.
Moreover, the host dependency of root-associated fungal com-
munities among more diverse species across more distinctive
habitats needs to be validated in the future. We also acknowledge
that the basis of the fungal functional interpretation relies on the
current database (e.g., FUNGuild), and the functionality of many
unassigned and multi-assigned OTUs is unclear or changes at
different conditions. Thus, empirical data are required to examine
the generality of the relationships observed here.
Notably, although some of the target plant species are likely

associated with arbuscular mycorrhizal (AM) fungi [14], the
communities of AM fungi are not well characterized in this study,
and their effects on the spatial relationships between plant
species remain unclear. Recent studies have reported that the
primers we used are unsuitable for amplifying AM fungi (from the
phylum Glomeromycota) [50]. We admit that our results cannot

provide a complete understanding of the roles of AM and EcM
fungi in mediating plant co-occurrence due to this possible PCR
bias. It is commonly recognized that AM plants experience more
negative soil feedback from their adults compared with EcM
plants [3, 8]. Thus, AM plants would be likely self-limiting due to
the enhance of intraspecific competition [8, 51]. As a result, this
negative plant-soil feedback in the AM system likely suppresses
superior competitors and alleviates interspecific competition,
promoting plant coexistence [3]. Nevertheless, how the pairwise
differentiation of AM fungal communities explains the spatial co-
occurrence patterns needs to be examined, and the new general
and AM fungi-specific primer sets help to improve the complete-
ness of fungal diversity [52–54].
In conclusion, we demonstrate that the root-associated fungal

community was host-dependent among 39-plant species in a 50-
ha subtropical forest plot. Discriminating the pairwise differentia-
tion of these fungal associations can significantly increase our
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ability to explain spatial co-occurrence patterns. Recent advances
in next‐generation sequencing unprecedentedly strengthen our
ability to recover the biodiversity in Earth mycobiome [2], and a
huge database of root-associated fungal communities is rapidly
accumulating. Given that the root fungal “fingerprinting” is a
putative host-dependent plant feature, incorporating it into the
plant diversity pattern studies can extend our understanding of
plant–plant interactions and will be useful in assessing the
invasion success of exotic plants in local species-rich communities.

DATA AVAILABILITY
The custom R codes underpinning the main analyses and the sample data files, as
well as the representative sequences of fungal OTUs and their abundances for root
tip and background soil samples are available in figshare (https://doi.org/10.6084/m9.
figshare.10084625.v4).
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