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Multivariate trait analysis reveals diatom plasticity constrained
to a reduced set of biological axes
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Trait-based approaches to phytoplankton ecology have gained traction in recent decades as phenotypic traits are incorporated into
ecological and biogeochemical models. Here, we use high-throughput phenotyping to explore both intra- and interspecific
constraints on trait combinations that are expressed in the cosmopolitan marine diatom genus Thalassiosira. We demonstrate that
within Thalassiosira, phenotypic diversity cannot be predicted from genotypic diversity, and moreover, plasticity can create highly
divergent phenotypes that are incongruent with taxonomic grouping. Significantly, multivariate phenotypes can be represented in
reduced dimensional space using principal component analysis with 77.7% of the variance captured by two orthogonal axes, here
termed a ‘trait-scape’. Furthermore, this trait-scape can be recovered with a reduced set of traits. Plastic responses to the new
environments expanded phenotypic trait values and the trait-scape, however, the overall pattern of response to the new
environments was similar between strains and many trait correlations remained constant. These findings demonstrate that trait-
scapes can be used to reveal common constraints on multi-trait plasticity in phytoplankton with divergent underlying phenotypes.
Understanding how to integrate trait correlational constraints and trade-offs into theoretical frameworks like biogeochemical
models will be critical to predict how microbial responses to environmental change will impact elemental cycling now and into the
future.

ISME Communications; https://doi.org/10.1038/s43705-021-00062-8

INTRODUCTION
Trait-based approaches to ecology focus on how an organism’s
physical, chemical, and physiological characteristics (traits) con-
tribute to its population size and dynamics [1]. Traits are often
used to simplify interactions between organisms and their
environment and the resulting impact on community and
ecosystem level function, with less focus on specific taxonomic
diversity, i.e., studying individual species separately [2]. These
approaches, originally developed in plant biology, have been
extended to many organisms, including fungi, invertebrates, fish,
and birds [3–6]. Seminal work in ecology has used relationships
between traits to understand fundamental ecological principles,
for example Metabolic Scaling Theory [7–9].
The application of trait-based approaches to phytoplankton

has gained traction in the last two decades [10–13]. Phyto-
plankton play crucial roles in global elemental cycles and are
often classified into functional groups (e.g. silicifiers, calcifiers,
nitrogen-fixers) based on traits that define their roles in global
elemental cycles, including carbon (C), phosphorus (P), nitrogen
(N), and silica (Si) cycles [14]. Using trait-based functional groups
simplifies the high taxonomic and morphological diversity of
phytoplankton and allows the incorporation of traits such as
growth, nutrient uptake, efficiency of light utilisation, and
temperature tolerances into biogeochemical and ecological
models [15–18].

These models utilise a large body of literature which seeks to
identify potential trade-offs between traits, where organisms
increase functionality or efficiency in one aspect of their
physiology at the cost of another [10, 19–21]. These trade-offs
are usually studied as pairwise comparisons, based on the
relationship between trait values, with negative correlations
indicating a potential trade-off. The observed correlative relation-
ships between traits often derive from more complex causal
dynamics. For example, a unimodal relationship between size
and growth rate is observed for marine microbes and used
to parameterize biogeochemical models [18, 22]. This
relationship between size and growth rate emerges due to a
trade-off between nutrient acquisition and maximum metabolic
rate [23], though other trade-offs also affect the size and growth
rate relationship [24], which highlights the need to consider more
than pairwise correlations. Beyond pairs of traits, there is also
evidence for three-way trait trade-offs, for example between
nitrogen and phosphorus nutrient uptake at low concentrations
and cell size [25].
Furthermore, trait-based models rely on fixed trait relationships

derived from interspecific variation [25–29]. As such, these models
do not capture the high level of trait variation both between and
within species of a functional group [30–33]. There is growing
evidence that substantial intraspecific variation has the potential
to play a key role in the evolutionary responses of species to

Received: 10 November 2020 Revised: 21 September 2021 Accepted: 27 September 2021

1Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia. 2Department of Biological Sciences, University of Southern California, Los Angeles, CA
90089-0371, USA. 3Institute of Coastal Ocean Dynamics, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany. 4Institute of Evolutionary Biology, University of Edinburgh,
Edinburgh EH9 3JF, UK. 5Sydney Institute of Marine Science, Mosman, NSW 2088, Australia. ✉email: phoebe.argyle@uts.edu.au

www.nature.com/ismecomms

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-021-00062-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-021-00062-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-021-00062-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43705-021-00062-8&domain=pdf
http://orcid.org/0000-0002-7933-7241
http://orcid.org/0000-0002-7933-7241
http://orcid.org/0000-0002-7933-7241
http://orcid.org/0000-0002-7933-7241
http://orcid.org/0000-0002-7933-7241
http://orcid.org/0000-0002-7408-9461
http://orcid.org/0000-0002-7408-9461
http://orcid.org/0000-0002-7408-9461
http://orcid.org/0000-0002-7408-9461
http://orcid.org/0000-0002-7408-9461
http://orcid.org/0000-0002-5145-2539
http://orcid.org/0000-0002-5145-2539
http://orcid.org/0000-0002-5145-2539
http://orcid.org/0000-0002-5145-2539
http://orcid.org/0000-0002-5145-2539
http://orcid.org/0000-0003-3856-4285
http://orcid.org/0000-0003-3856-4285
http://orcid.org/0000-0003-3856-4285
http://orcid.org/0000-0003-3856-4285
http://orcid.org/0000-0003-3856-4285
http://orcid.org/0000-0002-4963-0535
http://orcid.org/0000-0002-4963-0535
http://orcid.org/0000-0002-4963-0535
http://orcid.org/0000-0002-4963-0535
http://orcid.org/0000-0002-4963-0535
http://orcid.org/0000-0001-8750-3433
http://orcid.org/0000-0001-8750-3433
http://orcid.org/0000-0001-8750-3433
http://orcid.org/0000-0001-8750-3433
http://orcid.org/0000-0001-8750-3433
https://doi.org/10.1038/s43705-021-00062-8
mailto:phoebe.argyle@uts.edu.au
www.nature.com/ismecomms


environmental change [1, 31, 32, 34]. By not considering
phenotypic plasticity within a population or species, existing
biogeochemical models are lacking a critical mechanism under-
lying the adaptive response of phytoplankton to environmental
change and therefore may produce biased predictions of future
changes.
While the incorporation of phenotypic plasticity into biogeo-

chemical models is needed, this is a daunting task due to the
complexity of the problem. An improved understanding is needed
as to the breadth of intraspecific trait variation, correlations
between traits and their plastic responses, the degree of
phenotypic plasticity within phytoplankton functional groups,
and constraints on this plasticity. It is experimentally intractable to
rigorously test all possible trait combinations across many
phytoplankton lineages and under a range of environmental
conditions. Thus we need to develop an understanding of how
traits are interrelated through multi-dimensional trait-based
approaches. Due to trade-offs and correlations between traits, it
has been hypothesised that variability over many traits can be
captured in a reduced number of underlying axes [35]. Such a set
of reduced dimensionality trait-axes has been demonstrated for a
soil microalga Chlamydomonas [35] but how this pattern
generalizes to phytoplankton is yet to be investigated. If such a
set of reduced axes of variance can be defined, phenotypic
variation and incorporating the impact of this variability becomes
computationally tractable [34, 35].
In this study, we test the idea that when complex phenotypes

(>3 traits) are measured, traits co-vary and thus constrain the
variability of observed phenotypes. We used multivariate analyses
that emphasize the relationships between traits to examine
patterns in inter- and intraspecific phenotypic variability and
plasticity in the cosmopolitan diatom genus Thalassiosira. Diatoms
contribute significantly to C and Si cycling in the oceans, due to
their contribution to global primary productivity (~20%; [24])
and their deposition of frustules [27, 36]. We measured 9
functional traits in 13 strains representing 7 species. These traits
were chosen to cover basic physiological functions (e.g., light
utilisation efficiency) and we included several traits that are
directly relevant for biogeochemical function (e.g., population
growth, cell size).
We used principal component analysis (PCA) to create a two-

dimensional ‘trait-scape’ [34] that allows us to place complex
phenotypes on a reduced number of axes (dimensions) and to
uncover underlying patterns of variability between strains or
species. The majority of the variability between phenotypes was
described by two main orthogonal axes within the 2-dimensional
trait-scape. Due to covariance between the traits, we found that
the same trait-scape could be recovered using a subset of input
traits, highlighting that the underlying patterns of variation can be
uncovered without using exhaustive numbers of measurements.
The parameterization of multidimensional trait variation repre-
sents a significant challenge [27], and the use of PCA with a subset
of traits that are reasonably easy to measure is one method for
addressing this challenge.
Genetic/taxonomic differences between Thalassiosira strains

could not predict phenotypic diversity within the trait-scape, and
phenotypes resulting from plastic responses to two new growth
environments were more divergent than between-strain differ-
ences. However, consistent over-arching “strategies” were identi-
fied when strains were exposed to new environments, indicating
that changes in phenotype due to plastic responses are
constrained and follow a pattern.
These findings highlight the utility of multi-trait approaches for

observing patterns and constraints on both standing trait variation
and plastic responses to environmental change in phytoplankton
that in turn could be used to anticipate how phytoplankton traits
may shift in future climate scenarios.

MATERIALS AND METHODS
Culture maintenance and growth
Twelve strains of Thalassiosira spp. were obtained from the Provasoli-
Guillard National Centre of Marine Phytoplankton (NCMA, https://ncma.
bigelow.org/), and one strain from the Australian National Culture
Collection, representing 7 species in total (Supplementary Table 1).
Cultures were maintained in polystyrene tissue culture flasks in artificial
seawater with f/2 media [37] at 20 °C, with 60 µmolm−2s−1 of light on a
12:12 light cycle.
Three strains originally identified as Thalassiosira sp. in the NCMA

collection were further classified to the species level using sequencing of
the ITS2 gene region (Supplementary Table 1): CCMP1055 as T. auguste-
lineata (84.64% similarity; [38]) and CCMP2929 as T. weisflogii (98.37%
similarity to Strain 1587 used in our study; [39]). Strain CCMP1059 was
tentatively identified as Cyclotella striata (94.17% identity match to clone
ZX28-3-40; [40]) also from order Thalassiosirales, but this assignment
requires further investigation.

Experimental set up
Experimental cultures (200mL) were grown in 250mL polystyrene tissue
culture flasks in triplicate, at a starting concentration of 2500 cells ml−1. All
13 strains were grown in a “standard” environment (identical to maintenance
conditions) with 9 phenotypic traits measured to describe the initial trait-
scape. Five strains (1010, 1059, 2929, 3264, and 3367) were grown in two
additional environments in triplicate: a high temperature and light treatment
(HT: 30 °C, 200 µmol photons m−2s−1 of light, 12:12 light:dark), and a low
nutrient treatment (LN: f/400 media with an adjusted N:P ratio of 10:1
achieved by reducing the nitrate concentration from 4.4 to 1.8 µM, 60 µmol
photons m−2s−1 of light, 12:12 light:dark). Cultures for the two additional
treatments were inoculated with 10,000 cells ml−1 (LN) and 5,000 cells ml−1

(HT) in anticipation of limited growth.
Growth was tracked daily using in vivo fluorescence as a proxy for cell

density [41]. One mL aliquots of experimental cultures were measured for
chlorophyll-a fluorescence using a plate reader (TECAN Infinite M1000 Pro,
Männedorf, Switzerland) using 455/680 nm excitation/emission spectra.
Phenotypic traits were measured at mid-late exponential phase, assessed
by visually examining in vivo fluorescence growth curves. In the case of the
low nutrient treatment, where growth was limited to 3–5 days, cultures
were harvested in early stationary phase. Duration of growth for each
experiment is summarised in Supplementary Table 2.

Phenotypic trait measurement methods
Phenotypic traits were selected to capture different commonly measured
base physiological functions, and to include traits that are used in
biogeochemical models. We also selected traits that demonstrated
independence and orthogonality (i.e., not all co-varying), based on pilot
studies, in order to successfully define the multivariate trait-scape [42].

Growth rate. Growth rates for each time step were calculated from the
daily in vivo fluorescence measurements according to the calculation:

μ ¼ ln F2ð Þ � ln F1ð Þ
t2 � t1

Maximum growth rates were determined by the average growth over
2–4 consecutive steps depending on the duration of exponential growth.

Flow cytometry traits. For flow cytometry trait measures (growth rate, size,
chlorophyll a content, lipid content), 1 mL aliquots of experimental culture
were fixed with EM grade paraformaldehyde (0.8% final concentration,
Electron Microscopy Sciences, Ft Washington, PA) in 1.6 mL cryopreserva-
tion tubes (CryoPure, Sarstedt), frozen in liquid nitrogen, then stored at
−80 °C prior to analysis. All measures were performed using a Cytoflex LX
(Beckman Coulter, CA, USA).

Cell counts and size. Cell counts were done by gating the diatom
population using chlorophyll a (488 nm excitation, 690/50 nm detector)
and forward scatter channel thresholds. Cell size was estimated using
forward scatter values calibrated against spherical beads (2, 4, 6, 10, 15 µM
diameters; Invitrogen, CA). This resulted in a conversion equation of
equivalent spherical diameter (ESD) = (FSC+ 194636)/75775, which was
used to assess relative changes in cell size [43].
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Chlorophyll a content. Chlorophyll a (Chl-a) fluorescence of the gated
diatom population was quantified using 488 nm excitation, 690/50 nm
detection. A standard bead (Cytoflex Daily QC Fluorospheres; Beckman
Coulter) was used to calibrate the performance of the instrument and
ensure comparable measures across samples. Chlorophyll values were
divided by ESD to account for cell size differences.

Side scatter/granularity. Side scatter is an indicator of the internal
complexity of a cell or “granularity”. This trait is measured in tandem with
other flow cytometry measures and was included as a phenotypic trait. The
interpretation of this trait is not straight forward, but is independent of
other flow cytometry traits measured and has been used in other flow
cytometry studies of microalgae [44]. This trait was divided by ESD to
account for cell size differences.

Neutral lipids. Relative neutral lipid content was determined using the
fluorescent stain BODIPY™ 505/515 (Thermo Fisher, MA, USA) which is
commonly used to assess neutral lipid content in phytoplankton [45–47].
Background fluorescence (488 nm excitation, 525/40 nm detector) of
PFA-fixed cells was measured in tandem with the size, chlorophyll a, and
side scatter. After this, 10 µL of BODIPY stain (2 mgmL−1 in DMSO) was
added to each sample, resulting in a final BODIPY concentration of 2 μg
mL−1. Samples were incubated for 10 min in the dark before being read
again on the flow cytometer. Neutral lipid content was defined as the
difference in median fluorescence per cell between the pre- and post-
stained sample. This value was then divided by the ESD size to account
for size-related effects.

Photophysiological traits. Photophysiological measures were taken by
conducting a rapid light curve [48] with a water PAM (Water-PAM; Walz
GmbH, Effeltrich, Germany) using 1 mL of experimental culture diluted in
artificial seawater. The rapid light curve protocol exposes the culture to
8 steps of increasing irradiance for 10 seconds each, measuring the
photophysiological response at each step. Maximum electron transport
rate (ETRmax), Ik (half saturation irradience), and alpha (the photosyn-
thetic rate during the light-limited linear region) were calculated using
the regression fit function in the PAM WinControl software. Photo-
physiology measurements were taken between 4–5 h after the start of
the photoperiod.

Reactive oxygen species. The development of reactive oxygen species
(ROS) was measured using the fluorescent probe 2’,7’-dichlorodihydro-
fluorescein diacetate (H2DCFDA; Thermo Fisher, MA, USA) which has been
used in a number of phytoplankton studies [49–51]. Two 1mL aliquots of
experimental culture were transferred to a 48 well tissue culture plate; 2 µL
of stain (2.5 mgmL−1 H2DCFDA was made in DMSO) was added to one
aliquot, with the other acting as a blank. The plates were sealed (Breathe-
Easy, Diversified Biotech) and incubated in the dark at growth temperature
(20 or 30 °C) for 2 h. Incubation was done in the dark because of the effects
of light on the dye itself, therefore the effects of the excess light treatment
were not captured in this trait. Fluorescence of H2DCFDA was read using a
plate reader with 488 nm excitation 525 nm emission (TECAN Infinite
M1000 Pro, Männedorf, Switzerland). ROS concentration was estimated as
the difference in fluorescence units per cell between the stained and
unstained aliquots of each culture. This metric was also divided by ESD size
to account for size effects.

Taxonomic confirmation of strains
DNA from stock cultures (10mL) was extracted using a DNeasy PowerSoil
kit (QIAGEN Inc., CA, USA) and checked for quality with a NanopDrop™
2000 (ThermoFIsher Scientific, MA, USA), before amplification and
sequencing at the Australian Genome Research Facility (AGRF, Sydney,
Australia). PCR conditions and primers used were those developed by
Chappell et al. [52] for the ITS region: forward primer: 5ʹ-RCGAAYTG
CAGAACCTCG-3ʹ, reverse primer: 5ʹ-TACTYAATCTGAGATYCA-3ʹ.
Bioinformatics processing was conducted using Geneious Prime (Version

2020.0.5; Biomatters Ltd.). Strain sequences were compared to GenBank
using the BLAST function to confirm species identity. Nucleotide
sequences were aligned using the MUSCLE alignment [53], followed by
Bayesian inference analysis using MrBayes [54] to generate a phylogenetic
tree. The out-group for the tree was a strain of Chaetoceros atlanticus
isolate TPV2 1146 obtained from GenBank. Percentage similarity between
strains according to the alignment was used as a metric of genetic
relatedness.

Statistical analysis
We assessed the multivariate phenotypes for the Thalassiosira strains using
principal component analysis (PCA). The input variables were the 9
independent trait measurements made on each replicate culture (n= 36, 3
biological replicates per strain). Trait data was standardized (mean= 0, SD= 1)
for each trait prior to PCA analysis to account for differences in the units and
scale of measurements. The resulting PCA plot was defined as the ‘trait-scape’.
Hierarchical clustering analysis was performed on the 9-trait dataset

used to assess similarity in multivariate phenotypes between each
replicate for each strain (n= 3 per strain).
To compare genetic vs. phenotypic similarity, percentage similarity

between strains was correlated against the distance between strain
centroids (multivariate means) within the trait-scape. Distances between
multivariate means (centroids) were calculated using the equation:

distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔPC1:að Þ2 þ ΔPC2:bð Þ2
q

ΔPC1 is the difference in PC1 co-ordinates between the two strains, a is the
% variance explained by PC1, ΔPC2 is the difference in PC2 co-ordinates
between the two strains, b is the % variance explained by PC2.
To assess whether a trait-scape generated using fewer input traits

(4 rather than 9) was representative of the full, 9-trait plot, we conducted
PCA using 4 input traits, and then assessed whether the inter-strain
distances (distances between centroids) within the plot were correlated
using linear regression. This provided a quantitative assessment of whether
the strains were in the same relative positions to each other within the
trait-scape.

Covariation of traits
To compare the pairwise relationships between traits across the strains,
correlation matrices were made using data collected in the standard
environment, and for the HT and LN environments.

Phenotypic plasticity
The change in phenotypes in the new environments were assessed firstly
by conducting PCA on the full dataset, including trait data from the
13 strains grown in the standard environment, plus the 5 strains grown in
the two additional environments. This generated an “expanded trait-
scape”. In addition, correlation matrices were generated for the new
environments' trait dataset to assess differences in trait-trait relationships
between the ‘standard’ and “expanded” datasets.
Relative changes in trait values for each trait in the new environments

were calculated as follows:

Relative change

¼ trait value newenvironment� x trait value standard environment
x trait value standard environment

We used PCA to assess whether the relative changes in trait values were
consistent between strains in the two different environments. i.e., was the
relative change in whole phenotype consistent. If the changes were
consistent across strains, we expected to see clustering in the PCA based
on treatment.

Statistical software
Statistical analyses were performed in R [55], Matlab, and Microsoft Excel.
Hierarchical clustering analysis with multiscale bootstrap resampling (1000
replicates) on trait values from biological replicates was done with the
‘pvclust’ package in R [56] using Euclidean distance and the average
(UPGMA) method. Principal component analysis was used to generate the
multivariate trait-scape was done using the “vegan package” in R [57]. The
contributions of each trait to the PC axes (loadings) were extracted using
the “factoextra” package in R [58]. Trait correlation matrices were
generated using the “corrplot” package in R [59].

RESULTS
Defining the Thalassiosira trait-scape
To define the trait-scape for Thalassiosira, we measured nine traits
in 13 taxa (Supplementary Table 1) in a standard nutrient rich
environment. The principal component analysis of these 9 traits
showed that two orthogonal axes (the first two principal
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components) captured a total of 77.7% of the variation between
Thalassiosira strains (Fig. 1; Table 1). If trait values were completely
randomly distributed in the trait-scape, only 25% (=2/8) of trait
variation would be expected to be captured on two axes. This
suggests that there are multi-dimensional relationships between
the measured traits and that reduced dimensionality trait-axes can
be used to understand Thalassiosira phenotypes. Below we
identify the observed trait relationships, demonstrate the range
of phenotypes present amongst Thalassiosira strains, and highlight
the difference between inter- and intraspecific variations in trait
values.

Co-variance of traits across Thalassiosira strains
Strong, consistent relationships were observed between certain
traits across all 13 strains. Specifically, cell size, granularity, Chl-a,
and lipid content were all positively correlated with one another
and were all highly correlated with PC1, which accounted for
58.3% of the total variation (Fig. 2A, Pearson’s R2 > 0.87, P < 0.05;
Table 1). This indicates that these traits are the key explanatory
variables of differences between Thalassiosira strains investigated
in this study. Cell size in the standard environment ranged from
4.2 to 16.1 µm, with the smallest celled strains (<5 µm: 3367, 178,
and 998) showing higher growth rates and similar overall
phenotypes (Fig. 1 and Supplementary Figs. 1 and 2). However,
across all taxa, there was no significant correlation between
growth rate and size. In addition, growth rate did not contribute
strongly to either of the first two principal component (PC) axes.
This demonstrates that there are multiple combinations of the
traits across the 13 strains that produce similar growth rates
(Supplementary Fig. 2). As cell size increased (towards the right
side of the trait-scape), other aspects of the phenotypes showed
more variability between strains, indicated by increased dispersion
of strains on the PC2 axis (Fig. 1; PC2 coordinates ranged from
−2.70 to 2.55 when PC1 > 0, compared to −0.93 to 2.84 when PC1
< 0). PC2 primarily represents ROS production, ETRmax, and Ik
(Table 1). This indicates that, as size increases, other traits tend to
become more variable (less predictable).

Strains’ distribution within the trait-scape
The trait-scape defined by the two PC axes was not uniformly
occupied, with strains showing evidence of clustering (Figs. 1 and 3).

Strain 1000 was distinct from all other strains, having differing
photophysiology (higher ETRmax, alpha and Ik values), higher ROS
accumulation, and slower growth than other similar-sized strains.
This may indicate that this strain was experiencing more stress
than other strains under these conditions. Within the rest of
the trait-scape, there was one distinctive broader phenotypic
cluster that encompassed multiple species: the “small-celled”
strains (Figs. 1 and 3; strains 998, 3367 and 173; mean cell sizes
4.1–4.7 µm).

Fig. 1 The multivariate phenotypic trait-scape of Thalassiosira. The trait-scape was determined using a principal component analysis
generated using 9 input traits (growth rate, Ik, alpha, ETRmax, Chl-a, cell size, granularity, lipids, and ROS). Symbol colours represent different
strains grown in triplicate. Yellow ovals represent the four groups of input traits as determined through trait correlations and contributions to
the principal component axes.

Table 1. Summary of the principal component analyses for the
Thalassiosira trait-scape.

Original trait-scape Expanded trait-scape

PC1 PC2 PC3 PC1 PC2 PC3

Standard
deviation

2.29 1.32 0.86 1.97 1.46 1.28

Proportion of
variance

0.58 0.19 0.08 0.43 0.23 0.18

Cumulative
proportion

0.58 0.78 0.86 0.43 0.67 0.85

Trait contributions

Growth rate 6.54 3.18 70.28 5.35 2.02 29.09

Alpha 9.41 5.53 4.49 3.28 10.65 28.3

ETRmax 11.22 20 1.28 3.87 38.91 0.04

Ik 6.24 20.13 11.54 1.1 25.09 15.93

ROS 1.23 34.25 1.89 3.86 5.13 23.72

Cell size 15.41 5 6.75 23.21 0.29 2.11

Chlorophyll a 18.03 0.85 0.85 21.02 3.38 0.68

Lipids 15.56 5.47 0.6 15.29 11.59 0.08

Granularity 16.34 5.6 2.31 23.03 2.93 0.03

Relative contributions to the first three axes of the principal component
analyses of 9 phenotypic traits for 13 strains of Thalassiosira grown in the
standard environment (original trait-scape), then including the high
temperature/light and low nutrient conditions (expanded trait-scape).
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Genetics vs. phenotypic similarity between strains
Comparison of the ITS2 gene region showed that strains of the
same species shared the highest sequence similarity, as would
be expected (Supplementary Fig. 3). However, there was no
relationship between genetic relatedness and similarity in

phenotype, with the percentage ITS2 sequence similarity
being unrelated to proximity of strains in the trait-scape (R2 =
0.05, P > 0.05 Supplementary fig. 4). Hierarchical clustering also
showed that phenotypes were not discretely grouped by
genotype (Fig. 3).

Fig. 2 Correlation matrices of trait data for Thalassiosira strains grown under standard vs. stressful growth conditions. A 13 strains under
standard growth conditions (f/2 media, 20 °C, 60 µmol photons m−2s−1 light) and (B) 5 strains grown under high temperature/light (f/2 media,
30 °C, 200 µmol photons m−2s−1 light) and low nutrient (f/400 media with adjusted N:P ratio of 10:1, 20 °C, 60 µmol photons m−2s−1 light)
treatments. Displayed values are Pearson’s linear correlations between trait combinations with significance of P < 0.05.
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Recovery of the trait-scape with a reduced number of traits
A key aim of this study was to assess how complex multi-trait
phenotypes can be understood using reduced dimensionality axes.
Here we assess whether a similar phenotypic trait-scape can be
resolved using fewer traits. The PCA identified four orthogonal trait
‘groups’ within the trait-scape (Fig. 1 yellow circles). The two main
groups were the cell size-related traits and photosynthesis-related
traits which weighted strongly on PC1 and PC2, respectively (Fig. 1;
Table 1). ROS and growth rate were included as orthogonal,
independent traits due to their lack of correlation with the two main
trait groups (Fig. 2A). We were able to capture the same distribution
of phenotypes (trait-scape) using a reduced number of traits as the
full set of traits, (Fig. 4A), with the first two PC axes capturing 70.4%
of the variance between strains (Table 1). This demonstrates that a
reduced-input analysis for these traits can adequately represent the
similarity between strains observed in the higher resolution trait-
scape (Adjusted R2 = 0.81, P < 0.05; Supplementary Fig. 5), without
losing the ability to distinguish different taxa.
To test the robustness of this results, we repeated this analysis

with four input traits representing 3 of the 4 trait groups (i.e. no
cell size-related traits). This resulted in a trait-scape that less
accurately resembled the original trait-scape (Fig. 4B), with inter-
strain distances that were only weakly correlated with the
distances in the original trait-scape (Adjusted R2 = 0.30, P < 0.05;
Supplementary fig. 5). Although growth rate differences were not
important in distinguishing between strains, we kept growth rate
in our analysis because it determines population size and is often
used as a fitness proxy. We tested the removal of growth rate from
the trait-scape and found that three remaining trait groups
captured 61.9% and 21.4% of the variance on 2 axes (83.3% total).
It is important to note, that this analysis does not suggest that cell
size and photosynthetic traits are necessarily universal ‘master’
traits but rather that, for Thalassiosira, these are critical trait groups
necessary for understanding phenotypic diversity. Moreover,
robust reduced dimensionality phenotypic axes (trait-scape) can

be created with a curated set of traits thus facilitating
experimental and modelling studies.

Multivariate-trait plasticity
Interspecific relationships are often used to predict phenotypic
changes under different environmental conditions. Here we test
the robustness of this assumption. A subset of five strains
encompassing diverse phenotypes were selected and grown in
two new environments (high temperature and light; low nutrients;
Supplementary fig. 6). These environments were selected as they
are known to induce plastic responses (short-term change in at
least one trait value). The full suite of 9 traits were then quantified
in the new environment and the shift in phenotypes was assessed.
Both new environments resulted in trait combinations not

observed under standard replete conditions and increased the
range of measured trait values (Fig. 5). In the expanded Thalassiosira
trait-scape, the first two principal components captured 66.6% of the
phenotypic variation (Fig. 5). The expanded trait-scape contained
the same two primary trait groups and similar weightings of each
trait on the PC axes as the original trait-scape, with cell size-related
traits correlating the most to PC1, and the photophysiological traits
correlating to PC2 (Table 1). With the addition of more stressful
environments, ROS switched from contributing significantly to PC2
(34.25%) to explaining minimal variance on both PC1 (3.9%) and PC2
(5.1%) in the expanded trait-scape (Table 1). The inclusion of data
from the new environments did not significantly alter the observed
trait correlations (Fig. 2B), which is consistent with the idea that trait
correlations are relatively constrained for a given set of genotypes
over many environments, and therefore limit the number of possible
expressed phenotypes.
We utilized the trait-scape to assess the phenotypic movement

of each strain (phenotypic plasticity). For all strains, the
phenotypes resulting from plastic responses to the new environ-
ments were more separated from the ‘standard’ environment
along PC2 (Fig. 5). Differences along PC1 were less pronounced

Fig. 3 Hierarchical clustering of multivariate phenotypes for 13 Thalassiosira strains. Hierarchical clustering analysis of multivariate
phenotypes for each 13 Thalassiosira strains grown in the standard environment (n= 3). Labels are strain code followed by species and
replicate number. Black values indicate the approximately unbiased (AU) p value for non-selective inference from multiscale bootstrap
resampling (n= 10,000). Strain 1000 comprises its own cluster, with the other strains split into two other main clusters: one comprising small
cell strains (173, 3367, 998, and one replicate of 1001) and the other comprising all other strains. Smaller subgroups were also found within the
three larger groups, AU p values >95 indicate that these smaller clusters are strongly supported by the data.
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and not consistent in direction across strains or environments
(Fig. 5). This illustrates greater phenotypic plasticity in the
photophysiological traits (highly correlated with PC2), rather than
cell size-based traits amongst the taxa. In some instances, the
intra-species variability in the expanded trait-scape exceeded the
inter-species variability (distances between strains) from the
standard environment (Fig. 5). In other words, the range of
observed trait combinations in the new environments exceeded
the observed interspecific variability, even though the relation-
ships between the traits remained relatively stable.
Cell size and related traits in the new environments were all

positively correlated, as in the standard environment (all R2 ≥ 0.85,
P < 0.05; Fig. 2B). ROS was significantly correlated with cell size
traits but the relationships were not all strong (R2 ≤ 0.66, P < 0.05;
Fig. 2B). Growth rate was not strongly correlated with any other
trait, as in the standard environment, with the exception of a
negative relationship with alpha (Fig. 2B), however neither growth
rate nor alpha contributed significantly to the two main PC axes
(Table 1). Within the photophysiological traits, the strong
correlations between ETRmax and alpha, and ETRmax and Ik
observed in the original trait-scape were weakened in the new
environments (Fig. 2A and B).
The relative changes in trait values for each strain in the new

environments were analysed together using PCA (Fig. 6). Within

the PCA plot, strains are grouped according to environment,
indicating that the overall change in phenotype in response to the
new environments (i.e., the combination of changes in all of the
different traits) was conserved across all strains.
These two groups of responses could be classified as

“strategies”, changes in the multivariate phenotype which
encompass n-directional trade-offs and correlations between
individual traits. These observations show us that regardless of
the standing diversity in the standard conditions (Fig. 1), these
strains utilise the same strategies in response to environmental
change (Fig. 6), and that trait correlations constrain which
phenotypes are accessible as plastic responses. This analysis
shows that the relative changes in traits were grouped according
to the novel environment.

DISCUSSION
In this study, we used multivariate methods to define a trait-scape
for the marine diatom genus Thalassiosira. By reducing the
dimensionality of a 9 trait dataset to two orthogonal axes, we
demonstrate how this statistical framework can be used to examine
multi-trait phenotypes and changes to those phenotypes in new
environments. Our study shows that underlying variation between
phytoplankton phenotypes can be explained by a reduced number

Fig. 4 The multivariate phenotypic trait-scape of Thalassiosira generated with a reduced numbers of traits. The original trait-scape (from 9
input traits) was re-created using principal component analysis of (A) 4 input traits representing the four trait groups (growth rate, cell size,
ROS, ETRmax). B 4 input traits representing three out of the four trait groups, excluding cell size-related traits (growth rate, ROS, ETRmax, Ik).
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of principal component axes, and that those axes can be reproduced
using a reduced number of traits. Such reduced dimensionality
within species has been described in invertebrates [19], and other
microalgae [35], and suggests that, due to trade-offs, there are not
infinite numbers of possible trait combinations that organisms can
manifest. The result of this is that diatom trait-scapes are not
uniformly filled and certain areas represent physiologically impos-
sible trait combinations.
The implication of constraints in how trait-scapes are filled is

significant: constrained variation among phenotypes potentially
makes representing responses in biogeochemical and ecosystem
models more tractable. In principle, there are an infinite number of
trait combinations and trait-scapes that could be measured on a
large number of diverse phytoplankton taxa [10]. However, studies
of phytoplankton are generally interested in a fairly well constrained
list of traits that affect their roles in food webs, nutrient cycles, and
biogeochemistry. Our results indicate that numerous strains are
necessary to quantify underlying phenotypic diversity, but that
relatively few strains of Thalassiosia may be used to identify
divergent strategies in different environments. Furthermore, our
results suggest that among phytoplankton traits commonly used in
ecosystem models, a reduced number of key traits and their
relationships can explain overarching phenotypic responses to
environmental change, potentially allowing more informative
experiments to be designed for understanding such biological
responses. Designing such experiments requires initial consideration
of which traits to measure (based on orthogonality within the trait-
scape), as well as choosing a sufficient, but not exhaustive, number
of genotypes. By reducing the number of traits and genotypes,
experimental resources can be focussed on testing multi-trait
responses to different environments, which is essential for under-
standing the degree of plasticity within and between species.

Phenotype/Genotype relationships
For Thalassiosira, phenotypic diversity could not be predicted from
genotypic diversity or taxonomic classification, and plasticity

created divergent phenotypes that did not cluster according to
genetic similarity. This suggests that estimates of trait diversity
based on sequence variation are unlikely to be accurate for closely
related organisms (i.e., within species), as evidenced in freshwater
chlorophytes [60]. Trait-based ecology typically assumes intraspe-
cific variation to be lower than interspecific variation [1], but our
study adds to the growing body of evidence that inter and
intraspecific diversity plus diversity resulting from plasticity can be
substantial in phytoplankton [13, 35, 61–63]. Notably, phenotypic
plasticity is generally unaccounted for in species distribution and
biogeochemical models, even though it is recognised that
plasticity can significantly affect model estimates [64].
Although the uncoupling of genotype and phenotype indicates

a cautionary tale for making assumptions about any strain or
species’ phenotype based on genotype, the constraints demon-
strated in the trait-scape show that there are underlying rules of
phenotypic expression and plasticity that hold across genotypes.
This has the potential to simplify ecological modelling by
constraining the trait value combinations available within species
or broadly similar taxa, and can inform models of longer-term
(evolutionary) responses [65].

Multivariate trait trade-offs are more complex than 2 or 3
traits
To understand and model phytoplankton responses to environ-
mental change, we need to consider how complex phenotypes
vary in response to environmental perturbations. This requires a
multi-dimensional representation of traits, incorporating not only
pairwise, but multi-dimensional trade-offs within and between
species. However, there is a paucity of evidence of multi-
directional trade-offs in the phytoplankton, and an even greater
lack of empirical data, partially due to the daunting logistics of
carrying out the necessary experiments, as well as the challenges
of representing the results in a meaningful way.
Here we demonstrate that the constraints on the phenotype in

response to environmental change can be described in terms of

Fig. 5 The expanded multivariate phenotypic trait-scape of Thalassiosira. The principal component analysis was done using trait data from
the standard environment (13 strains) and the strain subset grown in two additional environments (5 strains). The 9 input traits were growth
rate, cell size, Chl-a, granularity, lipids, ROS, Ik, alpha, ETRmax. Black stars indicate phenotypes from the strains grown only in the standard
environment (n = 8), from the original trait-scape. Coloured points are the subset of 5 strains (shapes) grown in the standard environment
(blue), high temperature/light environment (red), and low nutrient environment (green).
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multivariate trade-offs (Fig. 5), that may not have been apparent
by looking at only two traits at a time. By using a “trait-scape”
approach we can assess multi-trait phenotypes simultaneously
rather than presenting multiple two-way correlations which could
miss critical underlying multi-trait relationships. Movement within
the trait-scape incorporates the n-dimensional intra-specific trade-
offs occurring between our 9 traits and represents holistic
“strategies” (Fig. 6) that may be conserved across functional
groups. Constraints on phenotypic shifts that can be expressed in
response to environmental change limit the number of overall
strategies available, even with different genetic starting points
[66, 67]. Our observations also suggest that trait-scapes defined
using ecologically important traits are not uniformly occupied and
that multi-directional trade-offs can be used to define the bounds
of accessible phenotypes for Thalassiosira. One direction for future
work would be to determine the limits of genetic distance over
which these apparent constraints hold.

Across-species vs. short-term physiological trade-offs are
different
Trait correlations observed in multiple strains or species, such as
cell size and growth rate when considered across diatoms,
dinoflagellates, cyanobacteria etc. [68], are generally interpreted
as fundamental trait trade-offs that are unlikely to evolve.
However, there is an important distinction to be made between
trade-offs seen across species/lineages, and constrained plastic
responses within a lineage but across environments [21]. Within a
population, these relationships may not follow wider trade-off
patterns, and instead represent a short-term physiological trade-
off. For example, in our study, Chl-a and lipid content were
positively correlated when viewed across all taxa (Fig. 7). In
contrast, within any one strain grown under low nutrients, cells
reduced their Chl-a content but increased lipid content, implying a
possible short-term trade-off between lipid and Chl-a synthesis
(Fig. 7). Under nutrient limitation or other stress, many microalgae
upregulate neutral lipid production and storage as a means to
store energy [69]; indeed Thalassiosira pseudonana cells can
modify their lipid composition and increase lipid stores within as
little as 24 h after a reduction in nitrogen availability [70].

Conversely, nutrient limitation can decrease chlorophyll content
of Thalassiosira in the presence of high CO2 [71].
The distinction between across-species and short-term physio-

logical trade-offs is a challenge for modelling applications as the
“rules” for how phytoplankton respond to short term changes may
not be reflected by trait correlations resulting from longer term
evolution. Our results suggest that further studies to explore short-
term physiological trade-offs through experimentation are
required to determine the limits and patterns of phenotypic
plasticity, which can influence both the speed and direction of
evolutionary processes [72].
While we kept our culturing processes consistent across all

strains to minimise any phenotypic variance due to cultivation
factors, assessing the contribution of evolutionary or culturing
history to phenotypic responses was beyond the scope of this
study. Our observation of Thalassiosira taxa in extended culture
show that vessel type and time in cultivation can affect trait values
[42] but confirm that the phenotypic plasticity as quantified in this
study was largely due to the environmental conditions imposed
on strains/species in our experiments.

How will diatoms fare in the future ocean?
Plastic and adaptive responses will play a key role in how diatoms
fare in response to climate change, as the frequency of extreme
events and overall variability in the oceanic environment increases
[73]. Diatoms are one of the most diverse groups of organisms in the
ocean with a large number of taxa [74], and high genetic diversity
within populations [75–77]. This diversity creates a challenge for
making predictions about how diatoms will respond to a changing
ocean. The trait-scapes and trait relationships presented in this study
provide a framework for generating and testing hypotheses about
constraints on the number of possible phenotypes at the genus,
family and potentially phytoplankton functional group level. The
genetic distance over which these constraints hold remains to be
tested, but we suggest that collapsing multiple traits onto a reduced
set of orthogonal axes could assist with predictions of future
phytoplankton communities either by direct inclusion of traits and
their correlations into models, or through consideration of plastic or
evolutionary trajectories within the trait-scape [34].

Fig. 6 Phenotype shifts of Thalassiosira strains grown in new environments. Principal component analysis of the relative trait changes
between the standard environment and the high temperature/light (red) and low nutrient (green) environments for the subset of five strains
(shapes). Black stars are the remaining strains grown only the standard environment (n= 8).
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