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Inside or out? Clonal thiotrophic symbiont populations occupy
deep-sea mussel bacteriocytes with pathways connecting to
the external environment
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Deep-sea Bathymodiolus mussels are generally thought to harbour chemosynthetic symbiotic bacteria in gill epithelial cells called
bacteriocytes. However, previously observed openings at the apical surface of bacteriocytes have not been conclusively explained
and investigated as to whether the Bathymodiolus symbiosis is intracellular or extracellular. In this study, we show that almost all the
membranous chambers encompassing symbionts in a single bacteriocyte of Bathymodiolus septemdierum are interconnected and
have pathways connecting to the external environment. Furthermore, the symbiont population colonising a single bacteriocyte is
mostly clonal. This study hypothesises on a novel model of cellular localization at the interface between extra- and intracellular
symbiosis, and the cellular-level process of symbiont acquisition in Bathymodiolus mussels.
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INTRODUCTION
Mussels of the bivalve family Mytilidae have provided insights into
microbial symbiosis and adaptations that arose during the
evolution of deep-sea chemosynthetic fauna. Deep-sea mussels
often dominate in reducing environments such as hydrothermal
vents, methane seeps, whale falls, and sunken wood, and have
symbiotic relationships with either or both thiotrophic and
methanotrophic bacteria that inhabit their gills [1, 2]. Additionally,
they exhibit two modes for the localisation of the symbionts:
extracellular and intracellular [1, 2]. Evolutionary scenarios for the
transition of symbiont locations from extracellular to intracellular
have been discussed previously, and deep-sea mussels belonging
to the genus Bathymodiolus could have evolved intracellular
symbiosis in gill cells called bacteriocytes [1–3]. Symbionts in the
vacuoles (symbiosomes) of Bathymodiolus bacteriocytes are
assumed to be acquired from the environment, and open-pit
structures in the cell membranes of the gill surface have been
considered as the sites for the endocytosis of free-living bacteria [4].
In contrast, similar openings in Bathymodiolus and several symbiotic
gastropod species have been interpreted as open connections to
the exterior seawater, illustrating a possible evolutionary pathway
from extra- to intracellular symbioses [5–7]. Thus, such incon-
sistencies in interpreting open-pit structures have existed for many
years and there is no consensus regarding the extra- or intracellular
nature of Bathymodiolus symbiosis.
To address this issue, we investigated the detailed structure of

bacteriocytes of Bathymodiolus septemdierum harbouring a species

of the thiotrophic symbiont including different strains with
differing metabolic capacities [8], with tomographic three-
dimensional analysis of the ultrastructure of membranous
symbiotic chambers. Additionally, we analysed the population
diversity of the symbionts in a single bacteriocyte.

RESULTS
In our transmission electron microscopy observations of B.
septemdierum gills, the symbiotic chambers at the apical surfaces
of bacteriocytes were occasionally open to the exterior environ-
ment and interconnected to other chambers located more basally
(Fig. 1A, B, and Supplementary Table S1). Additionally, we
observed complex passages in several bacteriocytes connecting
the symbiotic chambers and the environment at the apical end
(Fig. 1C, D). Furthermore, our tomographic three-dimensional
reconstruction of the bacteriocyte (cells 1–3) ultrastructure from
thin sections revealed that almost all chambers (>98.5% in
volume, Supplementary Table S2) were interconnected (Fig. 1E–H,
Supplementary Figs. S1, S2, and Supplementary videos), with

many openings to the environment at the apical surface (Fig. 1I,
Supplementary Fig. S2, and Supplementary Tables S1, S2).
Consistent with these observations, scanning electron microscopy
also revealed many openings (size average: 296.3 (standard
deviation, SD= 214.6; n= 30) nm × 214.7 (SD= 163.8; n= 30)
nm) at the apical surface of bacteriocytes of B. septemdierum
(Fig. 1J–M); however, these were not observed in a reference
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species, Bathymodiolus japonicus, which harbours a methano-
trophic symbiont (Supplementary Fig. S3 and Supplementary
Table S1).
Considering that almost all the symbiotic chambers were linked,

we suspected that symbionts within a single bacteriocyte are

clones. We conducted an amplicon sequencing experiment of two
single-copy symbiont genes, ribE and proB (Supplementary text
and Supplementary Tables S1, S3). More than two major amplicon
sequence variants (ASVs) for each gene were detected in each gill
tissue mass, whereas only one major ASV was dominating in each
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single bacteriocyte (Fig. 2, Supplementary Table S4, Supplemen-
tary Fig. S4), demonstrating that one bacteriocyte is occupied by
almost exclusively one bacterial strain.

DISCUSSION AND CONCLUSION
Our study provides the first evidence that almost all symbiotic
chambers in a single bacteriocyte of B. septemdierum are inter-
connected and have multiple pathways connecting to the external
environment, occasionally via complex passages. The ‘hollow’
structure (a large space surrounded by pseudopodium-like structures)
at the apical surface of gill cells in Adipicola pacifica has been
described as an intermediate state between extra- and intracellular
symbiosis in the deep-sea mussels [2]. However, the unique cell
morphology found in B. septemdierum has never been reported and
may reflect a novel type of intermediate stage between extra- and
intracellular symbiosis, namely, a state close to intracellularity but
having extracellular properties (Supplementary Fig. S5). The openings
of apical vacuoles have been reported mainly for the symbiosomes
enclosing thiotrophic bacteria and rarely for those enclosing
methanotrophs [4, 5], and in this study, they were not observed in

B. japonicus harbouring methanotrophic symbiont (Supplementary
Fig. S3). Bathymodiolus mussels such as B. septemdierum and other
species with thiotrophic symbionts may possess the morphological
properties of extracellular symbiosis while symbiosis with methano-
trophic bacteria is truly intracellular. The relationship between the
extracellular characteristics found in this study and the high degree of
genomic diversity in Bathymodiolus thiotrophic symbionts [9] will
require further investigation. In Bathymodiolus mussels, symbionts
may infect the newly formed gill filaments from the environment or
more likely via self-infection within a host individual throughout the
mussel’s life [9, 10]. The larger openings we observed may function to
release the symbiotic bacteria towards the adjacent gill filament.
Furthermore, the extended membrane network consisting of
interconnected chambers and complex passages in the bacteriocyte
may increase the surface area for host uptake of nutrients released by
the symbiont. The transfer of chemical substances and symbionts
through the apical openings and complex passages also needs to be
investigated in the future.
Fluorescence in situ hybridisation (FISH) analyses have suggested

that individual bacteriocytes are dominated by a single symbiont
strain [8, 11]. Our results demonstrated that the symbiont population

Fig. 1 Detailed structure of bacteriocytes of Bathymodiolus septemdierum. (A–D) Transmission electron microscopy images showing
openings of the symbiotic chambers at the apical surfaces of bacteriocytes (magenta arrowheads in A and B), linkage among several
chambers (green arrowheads in A and B), and the complex passages connecting the chambers and the external environment (yellow
arrowheads in C and D). Apical is at the top. (E–I) Tomographic three-dimensional reconstruction of bacteriocyte ultrastructure from thin
sections of cell 1 observed by scanning electron microscopy (SEM) as a representative showing that almost all symbiotic chambers are
interconnected (E–H), with many openings to the external environment at the apical surface (I). Each group of interconnected chambers is
labelled with a different colour (the interlinked chambers encompassing the greatest volume are labelled with magenta). (E–H) Views of a
single bacteriocyte from four directions, which are indicated at the bottom left of each panel. Because of the resolution of the serial sections
(80 nm), several linkages between chambers may have been missed. The nucleus and cytoplasm are labelled with yellow and white,
respectively, and made slightly transparent. (I) Apical surface of the 3D reconstructed bacteriocyte. Magenta spots indicate the openings of
the chambers. (J–M) SEM images showing many openings at the apical surface of a bacteriocyte of B. septemdierum. (K–M) Magnified images
of the cell surface in the areas indicated by green rectangles in (J). Note that the symbionts are observed through the openings (light-blue
arrowhead). Scale bars in (A–D and K–M) 1 µm; (I and J) 5 µm.
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Fig. 2 Percentage of amplicon sequence variants (ASVs) for each of three genes, 16 S rRNA, ribE, and proB, detected from gill tissue
masses or single bacteriocytes. Nucleotide diversities of the three genes were analysed for each mass of gill tissue from five Bathymodiolus
septemdierum individuals (indiv. 1–5, light green) and each single bacteriocyte from four individuals (indiv. 2–5, light magenta). Percentages of
ASV ≥ 10% are shown in each bubble. Very minor ASVs of a maximum of 1% or less throughout all samples were omitted from the figure, but
the data is available in Supplementary Fig. S4 and Supplementary Table S4.
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colonising a single bacteriocyte of B. septemdierum is mostly clonal.
The minor ASVs detected in each single bacteriocyte could be due to
experimental contamination, considering the dissection of the gills
and subsequent processes for cell collection, or could be attributed to
PCR or sequencing errors (Supplementary Fig. S4). However, we could
not completely exclude the possibility that the symbionts hosted in
these smaller, discontinued chambers are distinct but very low
abundant strains. A variety of symbiotic strains are known to exist in
the external environment and in the host individuals [8]. Considering
the clear boundaries of patchy staining under FISH analysis [8] and
the fact that the symbiont population colonising a single bacteriocyte
is almost clonal, it is unlikely that a single bacteriocyte is infected
multiple times. Rather, a single bacteriocyte may take up a single
symbiont cell only once at the early stage of gill filament formation.
The space enclosing the symbiont by the cell membrane may
continue to branch out along with proliferation of the symbiont, while
maintaining the extracellular connection, occasionally forming new
pathways to the exterior environment (Supplementary Fig. S5). Thus,
the first strain that colonizes the bacteriocyte would become the
dominating strain and prevents other strains from entering the
bacteriocyte. This model does not contradict the intermixing concept
of the symbiont population at the level of individual hosts [11].
Alternatively, multiple strains can colonise a single bacteriocyte, but
symbiont strains with better performance might proliferate more
successfully to become the major strain, and outcompete the
symbiont with lower performance. The latter may remain present in
low abundances in small, isolated chambers. However, since multiple
strains are distributed in a mosaic pattern along the gill filament [8],
microenvironmental diversity is unlikely to exert selection pressure on
the symbiont that affects bacteriocyte colonisation.
This study presents a novel morphology corresponding to an

intermediate symbiotic state between extracellular and intracellular
location, along with a hypothesis for cellular-level symbiont acquisi-
tion processes in Bathymodiolus mussels. Information from additional
species and taxa is required to test the generality of these hypotheses
for symbiont localisation and uptake into individual bacteriocytes.
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