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Ecological association studies often assume monotonicity such as between biodiversity and environmental properties although
there is growing evidence that nonmonotonic relations dominate in nature. Here, we apply machine-learning algorithms to reveal
the nonmonotonic association between microbial diversity and an anthropogenic-induced large-scale change, the browning of
freshwaters, along a longitudinal gradient covering 70 boreal lakes in Scandinavia. Measures of bacterial richness and evenness
(alpha-diversity) showed nonmonotonic trends in relation to environmental gradients, peaking at intermediate levels of browning.
Depending on the statistical methods, variables indicative for browning could explain 5% of the variance in bacterial community
composition (beta-diversity) when applying standard methods assuming monotonic relations and up to 45% with machine-
learning methods taking non-monotonicity into account. This non-monotonicity observed at the community level was explained by
the complex interchangeable nature of individual taxa responses as shown by a high degree of nonmonotonic responses of
individual bacterial sequence variants to browning. Furthermore, the nonmonotonic models provide the position of thresholds and
predict alternative bacterial diversity trajectories in boreal freshwater as a result of ongoing climate and land-use changes, which in
turn will affect entire ecosystem metabolism and likely greenhouse gas production.
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INTRODUCTION
For simplification, ecological associations such as between
biodiversity and environmental properties are often assumed to
be monotonic, i.e., either positive, negative, or neutral. But in
nature, nonmonotonic interactions are commonly seen at the
individual, population, community, and ecosystem levels. Most
nonmonotonic relations reported in the ecological literature are
periodic cycles in time (i.e., prey and predator relationship, ref. [1])
or humped-shaped curves when inferring for example relation-
ships between productivity and biodiversity [2–4]. Non-
monotonicity has been suggested to represent an important
driving force in ecological systems because environmental factors
are highly variable in both space and time, and organisms do not
interact with abiotic and biotic factors in a fixed way [5]. A
common feature of nonmonotonic functions is that they define
relationships with both increasing and decreasing sectors as well
as different stable states where the nature of the response can
change dramatically when an environmental factor (i.e., tempera-
ture) reaches a threshold (or ridge). Such thresholds are missed by
monotonic (linear) models commonly used in ecological data
interpretation and modeling. The assumption of monotonicity and
resulting over-simplification of biological complexity has been
criticized by many ecologists [6, 7].

Standard methods in ecology to perform classification and
regression tasks over complex and noisy systems include distance-
based regression (MRM), constrained ordinations (RDA and CCA),
generalized linear and additive models (GLM, GAM). Decision tree-
based machine-learning (regression trees, boosted regression trees,
and random forests) and neural networks can fulfill the same
objectives [8] and can perform better, especially in cases of non-
monotonicity and high complexity [9]. Machine-learning models in
microbial ecology literature can be divided into two broad
categories: (1) predicting community composition from environ-
mental variables [10] and (2) predicting environmental variables
from community composition [11]. Decision tree algorithms and
neural networks, however, have limitations like predicting multiple
variables at once for the former or evaluating the importance of
predictors for the latter. Thus, these methods require careful
consideration of how to feed biotic and abiotic data to a model if
one is to capture accurately the complexity of microbial ecosystems.
Decision trees are well-suited for identifying thresholds in biological
systems [12] while allowing one to examine individual trees to
understand how each variable in a model contributes to the whole
[13]. While neural networks do not easily allow one to examine the
contributions of predictors to the model, they are not limited in
their ability to capture continuous functions from the data.
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An intensively studied relationship in microbial ecology is the
link between microbial diversity and natural organic matter (NOM)
which represents a major energy source for heterotrophic bacteria
[14]. By far the largest NOM pool in aquatic environments is
dissolved organic matter (DOM) which is of a complex and
heterogeneous nature [15]. Subsets of the diverse DOM pool can
have a strong influence on light attenuation, metal speciation, and
bioavailability, while also acting as a pH buffer [16]. In recent
decades, an increase of DOM loadings to boreal surface waters has
been observed [17, 18]. This increase has been linked to a 30%
increase in precipitation due to climate change and a projected
15–20% increase in runoff [19]. Exacerbated by land-use change,
the increased supply of DOM to lakes and rivers [20] has direct and
indirect effects on the microbial loop with implications for
phenological events such as the timing of the spring phytoplank-
ton bloom [21] and fish spawning time. Also, increased levels of
chromophoric DOM will suppress primary production due to light
limitation [22], while providing substratum for heterotrophic
bacteria [14, 23], thereby promoting reduced production to
respiration ratios. Thus, overall changes to carbon processing by
heterotrophic bacterial communities can affect emissions of CO2

and CH4 from the boreal landscape and local water quality [24–26].
Complex interactions between heterotrophic bacteria and DOM

have been suggested to shape the apparent composition of both
of these key ecosystem components [27–31]. This coupling is
corroborated by incubation experiments under controlled labora-
tory conditions where it has been shown that the availability and
composition of organic substrates favor specific bacterial groups,
and in this way shape bacterial community composition (BCC) and
community metabolism [32–36]. Moreover, bacteria do not only
consume and degrade DOM but also produce and release an array
of autochthonous organic compounds during cell growth,
division, and death [37], thereby influencing the availability,
composition, and biogeochemical cycling of C in the biosphere
[38, 39]. While community adaptation (i.e., composition shifts) has
been found to precede bacterial degradation of specific carbon
substrates [40], the contribution of bacterial community shifts and
key bacterial players to the production and degradation of DOM is
unclear [5]. As a result of these multiple levels of interactions and
feedbacks, relationships between DOM and bacterial diversity are
expected to be nonmonotonic.
Our study is based on samples from 70 large and relatively deep

boreal lakes along a 750-km longitudinal gradient across southern
Scandinavia. The Scandinavian diversity gradient is complex and
not fully resolved as it coincides both with the main postglacial
dispersal routes for freshwater biota, as well as with major
changes in soil depth, altitude, and landscape productivity [41].
Previous molecular [41, 42] and non-molecular [43] studies have
described the diversity and community composition of pelagic
protists, aquatic fungi, zooplankton, and fish along a longitudinal
gradient in these lakes. Generally, there is a strong decline in
diversity across functional and taxonomic groups from east to
west. The survey covers a wide longitudinal range and broad
gradients in DOM quality and quantity as well as the nutrient
status of the systems allowing us to parse out the spatial vs. local
environmental effects on bacterial biodiversity.
Here, we aim to capture nonmonotonic features by using

modern statistical tools such as generalized additive-models,
maximal-information-based nonparametric-exploration (MINE),
marginal-(maximum)-likelihood-model-fitting, eXtreme-Gradient-
Boosting (XGBoost), and feed-forward-neural networks (FFNN).
We tested the hypothesis that threshold responses and alternative
trajectories exist in biodiversity responses across browning
gradients in freshwater lakes. Taking into account co-varying
factors such as nutrient status and other environmental abiotic
gradients, we trained XGBoost and FFNNs to predict the
interactions between DOM and bacterial community composition
in the studied systems so as to identify thresholds in community

composition along the studied DOM gradient. Ultimately, we
intend to interpolate our findings in light of ongoing environ-
mental change.

MATERIALS AND METHODS
Site description and sampling
Lakes were selected from the “Rebecca” [44] and “Nordic lake survey 1995”
[45] datasets on Norwegian and Swedish lakes to create a subset fulfilling
the following criteria: longitude 5–18 °E, latitude 58–62 °N, altitude <600m,
surface area > 1 km2, total phosphorus (TP) < 30 μg L−1, total organic
carbon (TOC) < 30mg L−1, and pH > 5. Acidic, eutrophic, and highly
dystrophic lakes were omitted. The final subset represents similarly sized
boreal lakes within a narrow latitudinal and altitudinal range, with the best
possible coverage and tentative orthogonality with respect to gradients of
TP, TOC, and longitudinal position. In particular, longitude reflects the
regional diversity gradient described in ref. [46], while TP and TOC
represent two major and contradictory effects on aquatic productivity [22].
Water temperature, pH, and conductivity were measured in situ, and
samples for nutrient analysis were collected as described in ref. [22]. There
is a strong relationship between snap-shot temperature measured with the
CTD and climatic average mean July air temperature, suggesting that
the longitudinal temperature gradient is not confounded by the sampling
scheme starting the survey in the west and moving eastward across
the gradient. At each site, a water sample was collected from the lake
epilimnion (0–5m) in the central part of each lake during the daytime
using an integrating water sampler (Hydro-BIOS, Germany). For DNA
extraction, up to 100mL of water was pre-screened in situ on 100-µm
mesh to remove large non-microbial cells and then filtered through 0.2-μm
pore size polycarbonate filters (25mm diameter; Poretics, Spectrum
Chemical Corp., NJ, USA) taken in three replicates. The filters were frozen
in liquid nitrogen in situ and subsequently stored at −20 °C in cryovials
until DNA extraction. The detailed sampling strategy and analytical
methods have been previously described [22, 41, 42].

Carbon characterization
TOC was measured by infrared CO2 detection after catalytic high-
temperature combustion (using either a Shimadzu TOC-VWP analyzer or
Phoenix 8000 TOC-TC analyzer). Particulate organic carbon (POC) was
measured on an elemental analyzer (Flash EA 1112 NC, Thermo Fisher
Scientific, Waltham, Massachusetts, USA) through rapid combustion of a
pre-combusted GF/C filter with particulates in pure oxygen, where carbon
was detected as CO2 by gas-chromatography. DOC was calculated as the
difference between TOC and POC. Carbon quality was assessed via
absorbance spectra. After lake water had been filtered through a Acrodisc
0.2-µm polyethersulfone membrane syringe filter (Pall Life Sciences), the
optical density of the filtrate (ODCDOM(λ)) was measured in a 50-mm glass
cuvette from 400 to 750 nm in steps of 1 nm. Absorption coefficient
spectra of chromophoric DOM (aCDOM(λ); m

−1) were calculated according
to ref. [47].
The absorbance measured at 400 nm (aCDOM) was used as a proxy for

aromaticity of chromophoric DOM (CDOM) after dividing by TOC
concentrations. Iron can bind to humic substances and form complexes
that may increase absorbance [48]. To account for this, a correction factor
developed for aCDOM using concentrations of dissolved iron Fe3+ was
applied.
Non-algal particulate matter (NAP) was assessed by the optical density

(ODNAP(λ)), as described in ref. [22]. Absorption coefficients (m−1) of total
particulate matter (ap(λ)), and NAP (aNAP(λ)), were calculated according to
ref. [47]. We used the algorithm of Bricaud and Stramski [49] to estimate
the path-length amplification factor (β). Finally, we calculated the
absorption coefficient spectra of phytoplankton pigments (aph(λ); m

−1)
as the difference between the total particulate and the NAP absorption
coefficient spectra.

DNA extraction, amplification, and Illumina HiSeq sequencing
of the V4 SSU
Total DNA was extracted from the filters using the PowerSoil DNA isolation kit
(MoBio Laboratories Inc., Carlsbad CA, USA) according to the manufacturer’s
instructions and quantified using Qubit 2.0 Fluorometer (Invitrogen). The
extracted DNA was sent to GATC Biotech (Konstanz, Germany) for amplification
and HTS amplicon sequencing (INVIEW Microbiome Profiling 2.0 package). A
set of universal primers was used to amplify the hypervariable regions V3–V5
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(~569 bp) of the 16S rRNA gene. Amplicon sequencing was done on an
Illumina HiSeq Rapid Run instrument using a paired-end 300 bp sequence run.
The raw reads with corresponding mapping files were deposited in SRA under
accession number PRJNA637765.

Bioinformatics
Raw sequence data were processed with CUTADAPT [50] to remove
primers and then analyzed using DADA2 [51]. Forward and reverse reads
were trimmed at 200 and 160 bp, respectively. Reads were denoised using
the DADA2 machine-learning algorithm. Since trimming resulted in no
overlap of the read pairs, forward and reverse reads were concatenated.
Quality filtering removed any paired reads with missing primers or
ambiguous base pairs as well as a Phred score below 20 somewhere in the
paired reads. Taxonomic annotation was performed against the SILVA 132
database [52] using the Naive Bayesian classifier [53].

Statistics
All downstream statistical analyses were performed in R version 3.6.0 [54]
using vegan [55], PHYLOSEQ [56], and MASS [57] for multivariate and
species richness analyses unless otherwise noted. Missing values in the
metadata were approximated using multiple imputation with fully
conditional specification (FCS) implemented by the MICE algorithm as
described in ref. [58]. CDOM variables used in this study included
absorption coefficients at 400 nm (aCDOM) and absorption spectral data
between 400 and 750 nm. The entire absorption spectral data were scaled,
and principal component analysis (PCA) was performed resulting in a PCA
model with principal component 1 (PC1) explaining over 88% of the
variance. As such PC1 scores can be used as an index to characterize the
CDOM variability among the samples. Partial least-square modeling was
performed with packages mdatools (function randtest) and plsdepot
(functions plsreg1 and plsreg2 with cross-validation) using the first six
principal components of the PCA from absorption data (Y variables) and
scaled environmental data (X variables).
The two technical replicates were excluded from further downstream

analyses as within replicate sequence variants were significantly more
similar than between-sample comparisons (data not shown). To calculate
diversity measures, the sequence variant table was rarefied to a common
sampling depth of 392,082 reads/sample, based on the sample with the
least number of reads. Species accumulation curves (SAC; calculated using
the analytical version of the specaccum function) were applied to assess
sampling effort in each lake. Rarefaction curves were constructed for each
lake using the rarecurve function in vegan. Alpha-diversity indices
(observed richness, Shannon, and Simpson diversity) were calculated for
each lake using the function diversity (R package vegan) and in addition
Faith’s phylogenetic diversity was calculated. Associations between alpha-
diversity indices and DOM descriptors were explored with generalized
additive models (GAMs) using R package mgcv.
Non-metric multidimensional scaling (NMDS) ordinations [59] from

multiple starting points (metaMDS function in vegan, try= 1000) were used
to describe patterns in bacterial community composition (based on
Hellinger-transformation and Bray–Curtis or on unweighted unifrac
distance measures) between lakes. Permutation-based significance tests
(n= 999) with the envfit function were used to fit spatial and environ-
mental gradient variables to the NMDS ordination. The local environment
was defined by the concentrations of total, particulate and dissolved CNP,
and other parameters (see Supplementary Table S1 for a complete list of
variables), while the spatial factors were represented by longitude, latitude,
and altitude. In addition, a redundancy analysis (RDA) was performed on
bacterial community composition (Hellinger-transformed) using scaled
environmental data.
To determine the relative role of DOM descriptors (aCDOM, PC1-CDOM and

TOC), local (all other environmental variables), and regional (spatial factors)
predictors on the distribution of bacterial communities along the biodiversity
gradient, variance partitioning analysis was used. Variation partitioning by
RDA (function varpart in vegan) [55] on Hellinger-transformed, normalized
abundance data were used to estimate the fractions of bacterial community
composition variation that could be explained independently by the local
environment divided into DOM and other parameters, spatial gradients
(latitude and longitude), or shared between them. Marginal (maximum)
likelihood model fitting was used to fit a smooth response surface of TOC and
aCDOM values over the limits of the biplot of the bacterial community
composition using the ordisurf function.
Machine-learning algorithms were used to identify beta-diversity

patterns along the CDOM and TOC concentration gradients. Regression

was performed with aCDOM and TOC values as inputs and BCC Bray–Curtis
distances as outputs using scikit-learn’s implementation of XGBoost and
random forest regressor (of the PyPi packages) as well as TensorFlow for
the FFNNs using backpropagation [60]. In short, data were split into
training and test sets comprising 80 and 20% of observations, respectively.
For the FFNN, the weights of hidden layers were initialized using Xavier´s
initialization [61], with ReLu activation and mean-squared error being used
as a cost function. For visualization of the models, the original meshgrid of
aCDOM and TOC values spanning the minimum–maximum range of said
gradient with a step size equal to the smallest pairwise aCDOM and TOC
differences was used. XGBoost stands for Extreme-Gradient Boosting and
represents a specific implementation of the Gradient Boosting method and
uses more accurate approximations to find the best (decision-)tree model.
In prediction problems involving unstructured data (images, text, etc.),
neural networks tend to outperform all other algorithms or frameworks.
However, when it comes to small-to-medium structured/tabular data as in
our case, decision tree-based algorithms are considered to be better
suited. XGBoost is exceptionally successful, particularly with structured
data since it computes second-order gradients, i.e., second partial
derivatives of the loss function (similar to Newton’s method), which
provides more information about the direction of gradients and how to
identify minima in the loss function. XGBoost uses the 2nd order derivative
as an approximation and advanced regularization, which improves model
generalization. The accuracy of the methods was compared using mean-
squared error (MSE) while the variance of raw data explained by the model
was computed with R2.
In addition, we performed ordinary least squares (OLS) regression by

singular value decomposition (SVD) using polynomials of aCDOM and TOC
values as inputs. An appropriate polynomial degree was chosen in light of
the bias-variance trade-off, where the error was minimal while bias and
variance curves intersected.
In the maximal information-based nonparametric exploration (MINE, ref.

[62]) analysis run with default settings, relationships with P values of <0.05
were recorded with a false discovery rate, as determined by Hochberg, of
<0.05 (q values). The chosen P value set the maximal-information
coefficient (MIC) cutoff to 0.3. The MIC is a statistical measure, similar to
R2 in general linear models, describing the goodness of fit between two
variables [62]. Various statistics can be used to characterize the relation-
ships identified by MIC, including measures of monotonicity, non-linearity,
closeness to be a function, and complexity of relationships. The Maximum
Asymmetry Score (MAS) measures the deviation from monotonicity. We
plotted the variability in MIC and MAS between amplicon sequence
variants (ASVs) and aCDOM or TOC with q values <0.05 and linked them with
the sign of the correlation coefficient (Spearman R).

RESULTS
The lake gradient through DOM quantity and quality
The sampled lakes spanned from the Norwegian coast of the North
Sea to the Swedish East Coast of the Baltic Sea and represent
summer conditions as samples were taken from July 20, 2011 to
August 16, 2011 (Fig. 1A). Besides varying in latitude (58–62 °N) and
temperature (9.9–21.4 °C), lakes varied in nutrient content with TOC
in the lakes ranging from 0.3 to 12.9 mg l−1 (median 6.5mg l−1), TP
from 0.5 to 27.5 µg l−1 (median 4.55 µg l−1), total organic nitrogen
(TON) from 87 to 1526 µg l−1 (median 298 µg l−1), and chlorophyll
a from 0.77 to 29.5 (median 2.7). Lake size varied from 1.09 to 140
km2 with a median of 3.4 km2 (Supplementary Table S1; ref. [22]).
The PCA revealed substantial differences in DOM quality along

the sampled lakes as assessed by absorption spectra (Fig. 1B). First,
the relative positioning of the sample scores was mainly a function
of PC1 which explained 88% of the variability. This component
was a function of TOC concentration and aCDOM as revealed by
Spearman rank-correlation analyses (R= 0.75; P < 0.0001 and R=
0.8; P < 0.0001, respectively). Other significantly correlated (P <
0.0001) environmental variables with CDOM (PC1) and aCDOM
included gas concentrations (O2, CO2, CH4), chlorophyll a, total
(TP), and particulate nutrient concentrations (PON, POC, and POP)
(see also Supplementary Fig. S1).
Furthermore, partial least squares (PLS) were applied to predict

CDOM (PC1-3) variability, (Y response variables) from lake water
chemistry and climate variables (X predictor variables). Variables (X
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or Y) situated close together on the PLS plot such as CO2, TOC, and
aCDOM can be interpreted as positively correlated with CDOM PC1,
while variables opposite to CDOM PC1 as negatively correlated,
such as O2 (Fig. 1C). Next, we performed a PLS using only CDOM
PC1 (Supplementary Fig. S2A) with internal cross-validation to test
the repeatability of the analysis by removing a random subset of
data (1/7th of the samples) to be used as the response dataset,
while parallel models were run on the reduced calibration dataset.
A comparison of predicted values from the calibration and
response datasets allowed computation of the predictive residual
sum of squares expressed as a Q2Y. Overall, the PLS model
performance was good with cumulative goodness of fit (R2Y,
explained variation) of 0.815, and the cumulative goodness of
prediction (or Q2Y, predicted variation) of 0.775 for the PLS model
with two components. This was also corroborated by comparing
original and predicted values (Supplementary Fig. S2B). As such
the PLS model corroborates the results of the multiple correlation
analysis (Supplementary Fig. S1) with CO2, TOC, and O2

concentrations representing environmental properties highly
related to CDOM characteristics expressed by CDOM PC1 and
aCDOM.

Overall bacterial community features and diversity
A total of 15,120 unique sequence variants (including 864 archaeal
and eukaryotic reads) were recovered from 25,574,631 high-
quality reads across 72 lakes. After removing non-bacterial reads,
an average of 764 (range= 354–1454, SD= 208) ASVs was
detected per sample and the mean number of reads per lake
was 352,572 (range= 234,930–502,704, SD= 57,780). A total of
174 ASVs were detected in more than 50 lakes with the mean
number of total reads per lake ranging from 219 to 5754 reads
and representing some of the most abundant sequence variants
in our dataset. Rarefaction curves of ASV richness (Supplementary
Fig. S3A) for each lake indicated that the total bacterial diversity
was almost entirely recovered in all samples since the rarefaction
curves approached asymptote and sampling saturation. Still,
region-wide species accumulation curves based on the progres-
sive or random addition of samples showed that the gamma
diversity in the studied area has not been fully recovered
(Supplementary Fig. S3B).
Various diversity indices were highly correlated in the present

dataset. For example, bacterial diversities calculated using
inverse Simpson, Shannon, Fisher, Faith’s phylogenetic diversity,
and ACE (abundance-based coverage estimators) diversity were
highly correlated: R > 0.46, P < 0.0005. For example, ACE richness

increased with TOC (R= 0.23, P < 0.05), CDOM PC1 (R= 0.26, P <
0.03), aph(λ); m

−1 (R= 0.25, P < 0.05) and aCDOM (R= 0.27, P <
0.025), but not POC (for more details see Supplementary Fig. S1).
Further assessment of the associations by GAMs revealed that
including non-monotonicity improved the models between alpha-
diversity (ACE richness and Shannon index), and organic matter
descriptors considerably (i.e., as indicated by AIC, GCV, R2 and
chisq; Supplementary Table S2). Resulting GAMs revealed a peak in
alpha-diversity (ACE richness and Shannon diversity) at intermedi-
ate browning, i.e., CDOM PC1 and aCDOM (Supplementary Fig. S4).
Such humped-shaped curves in association studies of alpha-
diversity have been observed widely as for example when inferring
relationships between productivity and biodiversity [2–4].

Spatial and environmental factors affecting bacterioplankton
community composition
Bacterial community dissimilarity as estimated by Bray–Curtis
distance increased significantly with geographic distance which,
despite a pronounced scatter and low coefficient (R2= 0.066),
exhibited significant distance-decay relationships (P < 0.0001).
Similarly, variance partitioning analysis revealed that the fraction
of the total community variation that could be explained solely by
spatial factors (longitude and latitude 1.2%) was small. In
comparison, the fraction that could be solely explained by local
environment conditions was 11.2% combined for CO2, TN, PO4,
and temperature, and 5.0% for TOC, CDOM, and aCDOM while with
shared effects of 20.4% and 13.1%, respectively (Fig. 2A).
Approximately 72% of the community variance along the sampled
lake gradient remained unexplained by the measured environ-
mental and spatial gradient indicators assuming monotonic
relationships.
The environmental properties showing a high co-variance with

bacterial community composition (Bray–Curtis distance) were
both spatial and environmental gradients including longitude
(R2= 0.247, P= 0.001), latitude (R2= 0.183, P= 0.001), tempera-
ture (R2= 0.341, P= 0.001), and concentrations of total nitrogen
(R2= 0.242, P= 0.001), total phosphorus (R2= 0.235, P= 0.001),
CO2 (R2= 0.174, P= 0.004) and PO4 (R2= 0.384, P= 0.001). As
revealed by RDA, the direction of maximal increase for the fitted
vectors representing longitude, temperature, and CO2 was similar
but orthogonal to the vectors reflecting a nutrient state (i.e., TN,
TP, and PO4 concentrations) (Fig. 2B). This can be interpreted that
there are two main directionalities driving bacterial community
composition in lakes, corresponding to nutrient status and
temperature.

Fig. 1 Physico-chemical properties of study sites.Map of sampling locations (A) with total organic carbon concentrations (mg L−1) in the lake
system indicated by point color. Principal component analysis (PCA) (B) for the quality of dissolved organic matter (DOM) as assessed by
absorbance spectra. Partial least-square (PLS) loading plot (C) revealing the covariation of the first three principal components for the quality of
dissolved organic matter (CDOM), which were taken from analysis in panel B (Y variables in orange), and geographical, physical, and chemical
lake characteristics as predictors (X variables in blue). The comparison of observed and model predictions of CDOM is shown in Supplementary
Fig. S2 corroborating the high predictive power of the PLS model (R2= 0.815 and Q2= 0.775) when using environmental properties.

L. Fontaine et al.

4

ISME Communications            (2021) 1:37 



Furthermore, when using phylogenetic distance (unifrac-based
dissimilarity) the fraction of the total community variation that
could be explained by spatial factors (longitude and latitude) was
11%, local environment conditions explained 21.9% (CO2, TN, PO4,
and temperature), and TOC, CDOM, and aCDOM 20% (Supplementary
Fig. S5A). High co-variance with unifrac-based community composi-
tion were both spatial and environmental gradients including
longitude (R2= 0.185, P= 0.003), latitude (R2= 0.151, P= 0.005),
temperature (R2= 0.344, P= 0.001), and concentrations of total
nitrogen (R2= 0.128, P= 0.012), total phosphorus (R2= 0.175, P=
0.005), CO2 (R

2= 0.146, P= 0.007), and PO4 (R
2= 0.178, P= 0.003).

Furthermore, the Canonical Analysis of Principal Coordinates (CAP)
on unifrac distances confirmed RDA results based on Bray–Curtis
distances that there are two main directionalities driving bacterial
community composition in lakes, corresponding to nutrient status
and temperature (Supplementary Fig. S5B).
Monotonic functions as used in RDA revealed short vectors for

TOC, aCDOM, and CDOM PC1 which can be interpreted that organic
matter is a poor predictor of bacterial community compositions in
lakes. However, there is no reason to assume that TOC, aCDOM, and
CDOM PC1 vary in a monotonic fashion across the RDA’s biplot
(Fig. 2B), which is a prerequisite to identify relationships in
unconstrained ordination. To reveal potential nonmonotonic
relations, we fitted a smooth response surface of TOC and aCDOM
values over the limits of the biplot using ordisurf function (i.e., for
aCDOM see Fig. 2C and for TOC Supplementary Fig. S6;
corresponding results from unifrac distances in Supplementary
Fig. S5C). The fitted surfaces are far from monotonic and revealed
that the relationships of aCDOM and TOC with the bacterial
community are significant (P < 0.001) and explained large parts of
the variability (aCDOM: adj. R

2= 0.3; deviance explained 41.8%; and
TOC: adj. R2= 0.30; deviance explained 36.5%) when performing
smoothness selection via marginal (maximum) likelihood model
fitting.
Similar beta-diversity patterns appeared along the aCDOM

gradient for both XGBoost, random forest and FFNN models
(Fig. 3A–C). The mean value of the response surface (i.e., 0.916 in
the XGBoost models for TOC and aCDOM) can be treated as the
baseline beta-diversity across all sites. Data points with values
below the mean present higher similarities between sites; likewise,
higher values represent lower similarity. Data points located on
the diagonal are not presented as they are pairwise distances of a
site to itself, thus assumed to be zero. To interpret the response
surfaces, one may begin by looking at a point bordering the
diagonal and then follow a line of points further up on the aCDOM

site 2 axis. A “ridge” indicates a aCDOM value next to the diagonal
to be a likely threshold from which the shift in bacterial
community composition is greater than average. In the same
manner, a “valley” indicates a aCDOM value next to the diagonal is
likely located on an interval of the aCDOM gradient along which
bacterial communities do not shift substantially. Following this
interpretation, aCDOM thresholds for high variation in BCC appear
around 0.3, 0.5, and 1–1.5 absorbance units, while communities
are more similar to others with higher aCDOM around 0.4, 0.6, and
1.6–2.25 absorbance units. In comparison, the linear model
captured the greater variation in beta-diversity pattern above 2
absorbance units on the aCDOM gradient (Supplementary Fig. S7),
but not the multiple ridges or valleys revealed by XGBoost,
random forest regression, and FFNN (Fig. 3A–C).
Similarly, model results revealed “ridges” along the TOC

gradient (Fig. 3D–F), indicative for thresholds at which shifts in
BCC are greater than average. These TOC thresholds for high
variation in BCC appear around 0.3, and 2–3 and 6.5 mgC L−1.
“Valleys” indicative for an interval of the TOC gradient where
bacterial communities do not shift substantially were predicted to
be around 1.5, 4–5, and 8mgC L−1. Overall, R2 values of the
XGBoost model predictions (R2TOC= 0.446; R2aCDOM= 0.315)
showed smaller differences between the observed data and the
fitted values, than the FFNN (R2TOC= 0.068; R2aCDOM= 0.014) and
the random forest (R2TOC= 0.414; R2aCDOM= 0.172) models.
Training the models with and without the duplicate samples did
not affect the models.

Association between DOM and bacterial taxonomic groups
Altogether, 29 bacterial phyla were detected resembling results in
line with the global synoptic meta-analysis of 16S rRNA gene
sequences from lake epilimnia [63] and Zwart et al. [64], showing
that four phyla (Proteobacteria, Actinobacteria, Bacteroidetes, and
Cyanobacteria) were recovered commonly across the sampled
freshwater ecosystems (Supplementary Fig. S8A). With regards to
the number of ASVs, Proteobacteria was the most diverse phylum
(4414 ASVs) followed by Bacteroidetes (1317 ASVs), while
Cyanobacteria and Actinobacteria had similar richness (784 and
652 ASVs, respectively) (Supplementary Fig. S8B). By further
resolving the taxonomy to the genus level, the most abundant
identified groups were alfIV-A (LD12) (6.0%), Aquincola (4.9%),
various acI (4.6%), Synechococcus (3.1%), Niveitalea (2.1%), and
Methyloferula (1.5%).
To explore relationships between ASVs and environmental proper-

ties, we used MINE [62]. While this nonparametric approach identifies

Fig. 2 Bacterial community composition along environmental gradients. Partitioning of the total variance in the bacterial community (given
by Bray–Curtis distances) (A) with environmental (Env.), organic matter properties (DOM), and spatial (Loc.) descriptors. Results from an
unconstrained redundancy analysis (B) showing the covariation between the composition of bacterial communities and environmental factors.
Arrows represent fitted gradient vectors for spatial (Lon—longitude) and environmental (Tem—water temperature, pH, CO2—carbon dioxide,
TOC—total organic carbon, TP—total phosphorus, TN—total nitrogen, TIC—total inorganic carbon, adom—aCDOM a proxy for aromaticity of
CDOM and pdom—absorption coefficient spectra of phytoplankton pigments) variables. Ordisurf (C) with aCDOM revealing the nonmonotonic
relationship with bacterial community composition. In Supplementary Fig. S5, results using unifrac distances are presented for comparison.
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relationships of ASVs with all measured environmental variables, we
will focus on the results from the analyses with aCDOM and TOC. MINE
identified 108 significant relationships (q value <0.05) with a MIC of
0.316–1 between single ASVs and TOC while 92 ASVs were identified
with significant relationships with aCDOM with a MIC of 0.316–1. The
maximum asymmetry score (MAS) ranged from around 0.05–0.58 for
aCDOM and 0.05–0.67 for TOC. MAS values below 0.05 indicate a
monotone relationship between ASVs and aCDOM or TOC (Fig. 4).
While purely monotone relationships were not detected, nonmono-
tonic responses dominated which are indicative of the existence of
thresholds in the response of ASVs along the sampled CDOM and
TOC gradients, similar to the model predictions of the entire bacterial
community responses.

DISCUSSION
We show that freshwater microbial diversity is likely impacted by
browning with implications for the functioning of lake ecosystems.
Such anthropogenic-induced changes in microbial diversity have
been reported in multiple studies [65, 66]. Here, the presence of
thresholds within nonmonotonic relationships was revealed using
machine-learning algorithms. Both alpha and beta-diversity were
poorly predicted by monotonic functions, as the variation explained
was scarcely exceeding 5% when using linear models, RDA, and
variation partitioning. The variation explained increased with models
taking deviations from monotonicity into account. For example, the
fraction of variance explained in beta-diversity increased up to 45%
when using XGBoost, 41% with random forest regressor, and 6.8%

with FFNN while 30% with marginal likelihood models. In addition, we
demonstrate that most relationships between bacterial taxa (ASVs),
and TOC concentrations and chromophoric properties of the water
were nonmonotonic.
A common feature of nonmonotonic functions is that they

define relationships with both increasing and decreasing sectors
as well as different stable states (“valleys”) where the nature of the
response can change suddenly when an environmental factor (i.e.,
browning) reaches a threshold (“ridge”). Results from the marginal
likelihood model fitting can be interpreted along these lines since
the model reveals distinct aCDOM and TOC types coinciding with
distinct environmental conditions and bacterial community
composition profiles. Such non-monotonicity in response to
DOM (a complex of substrates for microbial growth) can be
predicted from kinetics studies emphasizing that growth may not
be controlled by only a single compound but by two or more
compounds simultaneously and that kinetic properties of a
community might change due to adaptation of individual cells
or community composition to ever-changing environmental
conditions [67].
To capture further details and validate the findings of the

marginal likelihood model fitting such as thresholds and non-
monotonicity in bacterial community responses along the DOM
gradient, we applied machine-learning methods, in particular
FFNN, random forest, and XGBoost. A key finding revealed by
the machine-learning methods is the apparent presence of
multiple thresholds (“ridges”) along the aCDOM and TOC gradients
where bacterial community composition shifts, corroborating the

Fig. 3 Decision tree and neural network models for beta diversity along DOM gradients. Visualization of XGBoost (A, D), random forest
(B, E), and feed-forward neural network (C, F) predictions of bacterial community compositional changes (Bray–Curtis distances).
Compositional changes were predicted for a meshgrid of aCDOM (A–C) and TOC (D–F) values spanning the minimum–maximum range of the
gradient with a step size equal to the smallest pairwise aCDOM and TOC differences. The mean value of the response surface can be treated as
the baseline beta-diversity across all sites. Data points with values below the mean represent higher similarity between sites; likewise, higher
values represent lower similarity. To interpret the response surfaces, one may begin by looking at a point bordering the diagonal and then
follow a line of points further up on the aCDOM or TOC site 2 axis. Here, a “ridge” indicates a aCDOM or TOC value next to the diagonal to be a
likely threshold from which the shift in bacterial community composition is greater than average. In the same manner, a “valley” indicates a
aCDOM or TOC value next to the diagonal which is likely located on an interval of the aCDOM or TOC gradient along which bacterial
communities do not shift substantially.
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predictions of the marginal likelihood model fitting. If bacterial
community composition had been found to vary linearly along the
TOC and aCDOM gradients, they would have presented a pattern of
isolines parallel to the diagonal in Fig. 3; and there would have
been a linear relationship between BCC distances and aCDOM or
TOC differences between sites (Supplementary Fig. S7). The
observed thresholds (“ridges”) in TOC concentrations and aCDOM
values can be interpreted as “guardrails” of biodiversity along the
browning gradient. These “guardrails” guard alternative trajec-
tories at low browning which converge into a single almost
monotonic (linear) trajectory when TOC concentrations (above 10
mgC L−1) or chromophoric properties reach high levels (above
2.5 absorbance units). At low TOC and aCDOM, community patterns
seem to resemble alternative steady states persisting under equal
environmental conditions [68]. Furthermore, our results point to
alternative trajectories (dynamic regimes) in biodiversity separated
by “guardrails” which start at 0.3, 0.5, and 1–1.5 absorbance units
of aCDOM, respectively. For TOC, the separating “guardrails” are
predicted to start at around 0.5, and 2–3 and 6mgC L−1,
interpretable as boundaries with enforced resilience keeping
bacterial communities within different trajectories (“valleys”). This
resembles Lyapunov function hills or ridges between attractor
wells (the proverbial “marble in a cup” [68]) and emphasizes the
usefulness of machine-learning models in predicting nonmono-
tonic biodiversity responses across environmental gradients when
internal processes and external forcing mechanisms are unknown.
Predicting the entire ASV table prior to computing beta-

diversity indices was avoided because random forest and XGBoost
do not allow multi-target modeling. Ways around this are to use
single-target modeling for each desired output variable, multi-
regressor stacking, or regressor chains [69]. The issue with single-
target modeling for a multi-target problem is that dependencies
between targets are not taken into account. As for multi-regressor
stacking and regressor chains, while they take dependencies
between targets into account, the order of chaining matters and
optimizing order by permutational tests quickly gets out of hand
as the number of targets increases. These problems do not
happen with neural networks as they allow multi-target outputs.
In short, our approach of modeling beta-diversity as a single-
target problem holds the advantages of predicting a single value
in which the complexity of multi-target dependencies is contained
within. This prevents a loss in model performance for random
forest and XGBoost as well as eliminating the need for
computationally unfeasible optimization. Free from the constraint
of dataset size, it would be best to predict the whole microbial
community from the whole environmental data using neural
networks, but our dataset is too small to allow a satisfying

performance. Directly predicting beta-diversity yielded satisfactory
results with all three algorithms as is apparent in the similar beta-
diversity patterns along the aCDOM and TOC gradients. XGBoost
reflected the raw data more closely (greater R2) and was orders of
magnitude faster than the FFNN. This corroborates the previous
observation that decision tree-based algorithms such as XGBoost
outperform neural networks when small-to-medium structured/
tabular data is used, as in our case.
A potential explanation for the observed non-monotonicity

between browning and microbial diversity could be attributed to
other environmental parameters such as nutrients, temperature, and
geography. These parameters will turn up as noise in the machine-
learning models, and in addition the information of other measured
variables was well contained in absorption spectra (CDOM) as
indicated for instance by the PLS and correlation analysis. This
emphasizes the problem of covariation and interdependence as in
the case of TOC and CDOM with nutrients and other parameters, and
as such machine-learning models cannot be used to attribute
causality. Machine-learning methods are designed to optimize the
ability to predict an outcome on an external dataset (i.e., biodiversity
responses across browning gradients) using a training set to learn
patterns associated with an outcome and a test set to determine the
performance of the model.
A testable step in the causal chain to explain the apparent non-

monotonicity in the relationship between browning and biodi-
versity is the non-interchangeable nature of individual taxa
responses. Individual taxa responses can be direct and indirect
with opposite and non-additive strategies based on changes in
the environment. This is reflected by browning mostly leading to
nonmonotonic relationships as shown by the high number of
ASVs with high MAS (Fig. 4). The non-monotonicity in response to
environmental stimuli can be explained by organisms’ ability to
adopt opposite strategies along the stimuli´s gradient. In the case
of browning, terrestrially derived TOC provides a significant source
of C for heterotrophic bacteria [14, 70] and where different
fractions of this TOC are utilized with different efficiency [71]. The
different fractions are also utilized by different taxa, which, as
shown in our study, leads to different ASVs being present along
the browning gradient. These opposing positive and negative
effects on individual ASVs are only monotonic if they change in
the same order or scale so that their net effect will be additive.
However, if the positive and negative effects change in different
orders or scales, which is common in nature, their net effect will
not be additive, and the function will be nonmonotonic. This is
reflected in the high number of nonmonotonic relationships in the
co-occurrence patterns among ASVs (Supplementary Fig. S9).
Additional potential explanations for the apparent nonmonotonic

Fig. 4 MINE model for beta diversity along DOM gradients. Plots summarizing MINE statistics of the relationships between ASVs and aCDOM
(A), and ASVs and TOC (B). Depicted MINE statistics are MIC—coefficient, MAS—non-monotonicity. The color of the symbols indicates the
taxonomic affiliation of the ASV at the phylum level.
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responses of individual taxa are shifts in interaction behavior with
examples such as the Prisoner’s Dilemma [72] and opposing dual
effects between organisms.
As shown by previous studies, seasonality, water mixing, as well

as source and age of TOC, clearly offer different sources of energy
that may select for different microbial community members and
metabolic pathways at both short and long timescales. The
nonmonotonic responses in community composition, as observed
in our study, are likely also reflecting a trade-off between nutrients
associated with CDOM and the increasing light attenuation caused
by CDOM. Modest increases in TOC and CDOM have been shown
to block out short-wave UV radiation [73] and to limit
autochthonous production of TOC. Since browning is increasing
by processes associated with climate change [17, 19] and the
strong decline of atmospheric sulfur (S) deposition [18, 19], we
predict, by translating our model results based on spatial data into
a temporal context, that lake bacterioplankton diversity will
develop along different trajectories (“valleys”) guided by thresh-
olds (“ridges” or “guardrails”) at low browning (i.e., low TOC
concentrations and low chromophoric properties). Lakes with high
levels are predicted to follow a closely monotonic trajectory of
biodiversity change over time. Considering that browning is an
ongoing process, alternative trends of bacterial diversity in lakes
currently experiencing low TOC and CDOM levels are expected
while more uniform and monotonic trends are predicted in lakes
with high levels of browning (above 10mgC L−1). As such our
study provides some estimates on microbial biodiversity trends
that can result from climate change, although our spatial gradient
design centered on TOC needs to be complemented with long-
term time series data for validation.
To conclude, our results highlight the need to explore

nonmonotonic relationships common in biological systems which
might provide part of the explanation of contrasting results among
different studies, in addition to revealing the real complexity of
associations between biodiversity and environmental properties.
Most importantly, by using nonmonotonic functions and modeling
the position of thresholds, alternative trajectories and guardrails
can be revealed which are important for mitigation efforts and
management decisions to counteract environmental changes [65]
not only in freshwater microbiomes affected by browning.
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