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In shotgun metagenomic sequencing applications, low signal-to-noise ratios may complicate species-level differentiation of
genetically similar core species and impede high-confidence detection of rare species. However, core and rare species can take
pivotal roles in their habitats and should hence be studied as one entity to gain insights into the total potential of microbial
communities in terms of taxonomy and functionality. Here, we offer a solution towards increased species-level specificity,
decreased false discovery and omission rates of core and rare species in complex metagenomic samples by introducing the rare
species identifier (raspir) tool. The python software is based on discrete Fourier transforms and spectral comparisons of biological
and reference frequency signals obtained from real and ideal distributions of short DNA reads mapping towards circular reference
genomes. Simulation-based testing of raspir enabled the detection of rare species with genome coverages of less than 0.2%.
Species-level differentiation of rare Escherichia coli and Shigella spp., as well as the clear delineation between human Streptococcus
spp. was feasible with low false discovery (1.3%) and omission rates (13%). Publicly available human placenta sequencing data were
reanalysed with raspir. Raspir was unable to identify placental microbial communities, reinforcing the sterile womb paradigm.
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INTRODUCTION
In shotgun metagenomic sequencing, the total DNA, host and
microbial, is extracted from complex biological samples. Random
DNA sequencing with reference-based alignment enables the
taxonomic identification of bacteria in polymicrobial commu-
nities.1–3 However, bacteria can often not be discriminated on
species-level due to high average nucleotide identities and short
genetic sequences that are shared among microbial community
members or entries in the reference databases. Escherichia coli and
Shigella spp. for example, are clinically relevant pathogens with
distinctive phenotypes but highly similar genotypes. Genetically,
they can be assigned to the same species with 16S rRNA gene
sequence similarities of >99%.4–6 Human airway Streptococcus spp.
are also genetically closely related and their differentiation remains
challenging, e.g., Streptococcus pneumoniae, Streptococcus oralis and
Streptococcus mitis exhibit 16S rRNA gene sequence similarities of
99–100%.7 So true positive species may be identified by reference-
based mapping but misalignments towards homologous sequences
of database entries cause dozens to hundreds of false positive
hits.1,8 Furthermore, even a minimum of DNA contamination may
bias the taxonomic interpretation, particularly if the samples were
obtained from low-biomass environments.9–11 Currently, the pro-
blem of false positive species predictions due to misalignments and
contamination is slightly attenuated by defining abundance thresh-
olds, where 90–99.9% of the most abundant species (core species)
are investigated, whereas the 0.1–10% of the least abundant species

(rare species) are discarded.12–15 This reduces background noise but
comes at the expense of information loss on rare species, which can
provide the microbial community with genetic diversity and
functional flexibility as well as contribute to human health.14,16 In
brief, core and rare species take strategic roles in their habitats, but
species-level differentiation remains difficult for genetically similar
core and the majority of rare species.
Here, we introduce a python tool (rare species identifier, raspir) that

scans the within-species conservation of the global chromosomal
organisation by evaluating the distribution of raw reads mapping
towards circular reference genomes. Since gene order is well
conserved at the species-level and rapidly lost or extensively
clustered as phylogenetic distances increase, it provides a sensitive
measure for the differentiation of microbial species.17 So, on the
hand, if reads align to reference genomes of true positive species,
they are expected to spread across the entire genome, despite large
gaps in-between the reads in case of low-abundant taxa. On the
other hand, if reads are mapping to reference genomes of absent
species (false positives), which acquired genes of true positive
species, the reads are expected to cluster spatially in the reference
genome.17,18 Raspir hence distinguishes the uniform read distribu-
tion of true positives from the spatial cluster behaviour of false
positive species. In addition, structural variants evolve orders
of magnitude faster than nucleotide sequence variants and
can cause significant phenotypic variations between closely related
organisms.19,20 Focusing on genome organisation rather than
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sequence similarity alone, enables raspir to differentiate between
genomes with high sequence similarity but different phenotypic
behaviour. So, for all pairwise position combinations of short DNA
reads aligning to a circular genome, raspir measures the read
distances (in base pairs, bp) to generate position-domain signals
(Supplementary Text 1). Since raspir considers only the first base
position of a read, the tool can be approached for a wide range of
DNA insert sizes. Reference position-domain signals are also built
with the same number of reads, but with an ideal distribution of
reads across the genome (Supplementary Text 1). Biological and
reference distance vectors are separately decomposed using the
discrete Fourier transform algorithm of NumPy.21 Absolute values of
Fourier coefficients are used for signal comparisons. Bacterial species
are classified as true positives if the reference and biological signals
exhibit strong Pearson’s correlations (Correlation coefficient > 0.6, p
value < 0.05, standard error of estimates < 0.01) and low Euclidean
dissimilarity indices (EDI < 0.5).
The applicability of raspir was demonstrated by in-silico simulations

of airway microbial communities with Pseudomonas aeruginosa,
Rothia mucilaginosa, Streptococcus salivarius, Eubacterium sulci, Strep-
tococcus thermophilus, S. pneumoniae, S. mitis, Streptococcus equinus,
Staphylococcus aureus and E. coli. E. coli was included to evaluate the
ability of raspir to differentiate between E. coli and Shigella spp.
Therefore, we generated short (75 bp), single-end DNA reads with the
Illumina simulation tool ART (HiSeq 2500).22 The number of reads
obtained from core species remained constant but increased for rare
species during subsequent simulation runs (Supplementary Table 1).
Reads were trimmed,23 duplicates and low-complexity reads were
removed24 and the remainder reads were mapped towards a curated
reference database of completely sequenced genomes using BWA.25

Alignment data (.SAM format) were cleaned with SAMtools, coverage
information was obtained24 and the final files (.CSV format) were used
as input files for raspir. A step-by-step manual is publicly available (see
data availability section). For each run (with and without raspir), the

number of true positive, true negative, false positive and false
negative species was obtained to identify the clinimetric properties
specificity, sensitivity, false discovery rate and false omission rate
(Supplementary Table 2). Additionally, we downloaded publicly
available paired-end Illumina data (HiSeq 2500, 2 ×125 bp, SRA
repository: SRP141397) from blank swabs, maternal saliva and
placenta samples.26 The microbial raw reads were treated as
described above. The biological samples were reanalysed with and
without raspir.
During simulation-based testing, raspir reduced the background

noise in all runs significantly (Fig. 1). With just 100 short reads of 75 bp
lengths, all core and rare species of the mock community were
correctly identified as true positives. Considering the range of
genome sizes of the rare species in the mock community
(Supplementary Table 1), average genome coverages below 0.002
were sufficient for rare species prediction with high specificity and
sensitivity. While raspir correctly confirmed the presence of S.
salivarius, S. thermophilus, S. pneumoniae, S. mitis and S. equinus, false
positive Streptococcus spp. were discarded (Supplementary Fig. 1).
Raspir identified the true positive E. coli and dismissed true negative
Escherichia spp. and Shigella spp. (Supplementary Fig. 2). This is a
major improvement considering their genetic similarities. Without
raspir, Shigella spp., various Escherichia and Streptococcus spp. were
falsely predicted to be present (Fig. 1, Supplementary Figs. 1 and 2).
Across all simulation runs with twenty different seeds set for the
random read generator, we found that incorporating raspir into the
workflow let initially to a lower test sensitivity for rare species with
less than 100 raw reads (Fig. 2A), in contrast to the test specificity,
which remained on average by 98%. (Fig. 2B). In consideration of the
prevalence; however, raspir achieved a significant decline in both false
discovery (Fig. 2C) and false omission rates (Fig. 2D) by approximately
55% and 37% at all times, respectively.
Next, we approached publicly available real-world datasets to

illustrate the value of raspir for answering critical questions of

Fig. 1 Performance evaluation of raspir on species level based on a representative complete simulation run (seed 222). Bold row names
highlight the true positive species of the simulated mock community. The dark-green and light-green colours represent the true positive core
and rare species of the community, respectively. The orange colour visualises false positive species. While the read number of the core species
remained constant throughout all the runs, the x-axis corresponds to the increasing number of short reads (75 bp) that were generated for
rare species during the eight simulation runs.
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principal biological relevance. In recent years, it has been reported
that the healthy placenta harbours a distinct microbiome, suggesting
that the foetus comes into contact with commensal bacteria from
early on.27 However, several follow-up studies were unable to
reproduce a placenta-specific microbial signal from this low-biomass
environment, indicating that the heathy foetal environment is
sterile.26,28 This includes the study of Leiby et al., who applied
shotgun sequencing to human placenta samples, maternal saliva and
controls.26 While they recovered a small proportion of microbial reads
from placenta samples, the microbial community composition was
not distinguishable from negative controls. However, some placenta
samples contained more Vibrio bacteria than negative controls but

Vibrio spp. were artificially spiked into positive controls, indicating that
barcode misreading was responsible for the Vibrio detection.26 Our
reanalysis of these datasets with raspir confirmed the complete
absence of placental microbial communities (Supplementary Fig. 3),
reinforcing the sterile womb paradigm.26,28 Raspir solely recovered
the well-known laboratory contaminant Ralstonia pickettii from
placenta samples, which is commonly isolated from various
pharmaceutical reagents and equipment, including laboratory-based
purified water systems.29 Low-abundant R. pickettii was also detected
in all maternal saliva and negative controls by raspir, irrespectively of
the sample’s sequencing depths or the number of R. pickettii—
specific raw reads (Supplementary Fig. 4).

Fig. 2 Clinimetric properties of species-level prediction with raspir (red) and without raspir (black). A Average test sensitivities of 81.0%
and 99.0% were observed for simulation runs with raspir and without raspir, respectively. The test sensitivity was significantly higher without
raspir (Mann–Whitney–Wilcoxon, p value < 0.0001, effect size r= 0.43, confidence intervals = 0.28–0.57). However, the sensitivity was similar
for all simulation runs with at least 100 reads per rare species (Mann–Whitney–Wilcoxon, p value = 1). B Average test specificities of 99.2% and
0.8% were observed for simulation runs with raspir and without raspir, respectively. The specificity with raspir was hence significantly higher
(Mann–Whitney–Wilcoxon, p value < 0.0001, effect size r= 0.87, confidence intervals = 0.86–0.87). C Average false discovery rates of 1.3% and
56.7% were observed for simulation runs with raspir and without raspir, respectively. The false discovery rate of raspir was significantly lower
(Mann–Whitney–Wilcoxon, p value < 0.0001, effect size r= 0.87, confidence intervals= 0.87–0.88). D Average false omission rates of 12.9% and
50% were observed for simulation runs with raspir and without, respectively. The false omission rate was significantly lower with raspir
(Mann–Whitney–Wilcoxon, p value < 0.0001, effect size r= 0.92, confidence intervals = 0.91–0.94). The points and lines represent median
values, the error bars show the minimum and maximum values obtained during all simulations. The individual data points can be obtained
from Supplementary Table 2.
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We subsequently analysed the maternal saliva samples of the
study26 and compared the inter-patient weighted Jaccard dis-
tances30 in microbial community composition obtained without
raspir (black, Supplementary Fig. 5) with the intra-patient distances
obtained with versus without raspir (green, Supplementary Fig. 5).
For the core species (Supplementary Fig. 5A), inter-patient distances
of microbial community composition (black) were significantly larger
than intra-patient distances (green). Therefore, patient-specific
signatures of core microbial communities were reliably identified
with and without raspir. This is an encouraging outcome,
considering that most shotgun metagenomic sequencing studies
remove low-abundant taxa from downstream analyses. However, for
the rare species community (Supplementary Fig. 5B), significantly
higher dissimilarity scores were obtained for intra-patient (green)
compared to inter-patient (black) microbial communities, indicating
that raspir is particularly effective for investigating the rare species of
complex communities with high confidence.
In conclusion, raspir is based on discrete Fourier transforms of

read position signals and identifies core and rare species with low
false discovery and omission rates. The tool can be integrated into
standard workflows and may hence be a valuable addition to
metagenomic pipelines in future applications.

DATA AVAILABILITY
The manual, reference database and python code of raspir are available from https://
github.com/mmpust/raspir. R and bash scripts for the performance evaluation can be
obtained from https://github.com/mmpust/raspir_evaluation.
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