Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Free-form and multi-physical metamaterials with forward conformality-assisted tracing

Abstract

Transformation theory, active control and inverse design have been mainstream in creating free-form metamaterials. However, existing frameworks cannot simultaneously satisfy the requirements of isotropic, passive and forward design. Here we propose a forward conformality-assisted tracing method to address the geometric and single-physical-field constraints of conformal transformation. Using a conformal mesh composed of orthogonal streamlines and isotherms (or isothermal surfaces), this method quasi-analytically produces free-form metamaterials using only isotropic media. The geometric nature of this approach allows for universal regulation of both dissipative thermal fields and non-dissipative electromagnetic fields. We experimentally demonstrate free-form thermal cloaking in both two and three dimensions. Additionally, the multi-physical functionalities of our method, including optical cloaking, bending and thermo-electric transparency, confirm its broad applicability. Our method features improvements in efficiency, accuracy and adaptability over previous approaches. This study provides an effective method for designing complex metamaterials with arbitrary shapes across various physical domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamentals of the conformality-assisted tracing (CAT) method.
Fig. 2: Free-form diffusion metamaterials of two dimensions.
Fig. 3: Free-form diffusion metamaterials of three dimensions.
Fig. 4: Effects of ITR.
Fig. 5: Free-form multi-physical metamaterials.

Similar content being viewed by others

Data availability

Data for Figs. 24 are available at https://doi.org/10.5281/zenodo.11607658 (ref. 51). The simulated and measured data were generated by Comsol Multiphysics and an infrared camera. Source data are provided with this paper.

Code availability

Source programs are available at https://doi.org/10.5281/zenodo.11545157 (ref. 52).

References

  1. Yang, F. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).

    MathSciNet  Google Scholar 

  2. Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218–235 (2023).

    Google Scholar 

  3. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Google Scholar 

  4. Kadic, M., Milton, G. W., Van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).

    Google Scholar 

  5. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Google Scholar 

  6. Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

    Google Scholar 

  7. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    MathSciNet  Google Scholar 

  8. Fan, C., Gao, Y. & Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).

    Google Scholar 

  9. Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Google Scholar 

  10. Chang, Z., Zhou, X., Hu, J. & Hu, G. Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt. Express 18, 6089–6096 (2010).

    Google Scholar 

  11. Chang, Z., Liu, X. & Hu, G. Heat flow control by transformation method with grid generation method. Acta Mech. Solida Sin. 27, 454–460 (2014).

    Google Scholar 

  12. Miller, D. A. B. On perfect cloaking. Opt. Express 14, 12457–12466 (2006).

    Google Scholar 

  13. Selvanayagam, M. & Eleftheriades, G. V. Experimental demonstration of active electromagnetic cloaking. Phys. Rev. X 3, 041011 (2013).

    Google Scholar 

  14. Zhu, C., Bamidele, E. A., Shen, X., Zhu, G. & Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

    Google Scholar 

  15. Sha, W. et al. Topology optimization methods for thermal metamaterials: a review. Int. J. Heat Mass Transf. 227, 125588 (2024).

    Google Scholar 

  16. Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).

    Google Scholar 

  17. Lee, X. Y. et al. Fast inverse design of microstructures via generative invariance networks. Nat. Comput. Sci. 1, 229–238 (2021).

    Google Scholar 

  18. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    MathSciNet  Google Scholar 

  19. Xu, L. & Chen, H. Conformal transformation optics. Nat. Photon. 9, 15–23 (2015).

    Google Scholar 

  20. Dai, G., Yang, F., Wang, J., Xu, L. & Huang, J. Diffusive pseudo-conformal mapping: anisotropy-free transformation thermal media with perfect interface matching. Chaos Solitons Fract. 174, 113849 (2023).

    MathSciNet  Google Scholar 

  21. Landy, N. I. & Padilla, W. J. Guiding light with conformal transformations. Opt. Express 17, 14872–14879 (2009).

    Google Scholar 

  22. Ma, Y., Wang, N. & Ong, C. K. Application of inverse, strict conformal transformation to design waveguide devices. J. Opt. Soc. Am. A 27, 968–972 (2010).

    Google Scholar 

  23. Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).

    Google Scholar 

  24. Xu, H.-X. et al. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl. 10, 75 (2021).

    Google Scholar 

  25. Gu, X. & Yau, S. T. Computational Conformal Geometry (International Press Somerville, 2008).

  26. Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present and future. Rev. Mod. Phys. 94, 025002 (2022).

    MathSciNet  Google Scholar 

  27. Jin, P. et al. Tunable liquid-solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).

    MathSciNet  Google Scholar 

  28. Yang, S., Xu, L., Wang, R. & Huang, J. Full control of heat transfer in single-particle structural materials. Appl. Phys. Lett. 111, 121908 (2017).

    Google Scholar 

  29. Luo, J.-W., Chen, L., Wang, Z. H. & Tao, W. Q. Topology optimization of thermal cloak using the adjoint lattice Boltzmann method and the level-set method. Appl. Therm. Eng. 216, 119103 (2022).

    Google Scholar 

  30. Ji, Q. et al. Design of thermal cloaks with isotropic materials based on machine learning. Int. J. Heat Mass Transf. 189, 122716 (2022).

    Google Scholar 

  31. Xu, X., Gu, X. & Chen, S. Topology optimization of thermal cloaks in Euclidean spaces and manifolds using an extended level set method. Int. J. Heat Mass Transf. 202, 123720 (2023).

    Google Scholar 

  32. Fujii, G., Akimoto, Y. & Takahashi, M. Exploring optimal topology of thermal cloaks by CMA-ES. Appl. Phys. Lett. 112, 061108 (2018).

    Google Scholar 

  33. Sha, W. et al. Robustly printable freeform thermal metamaterials. Nat. Commun. 12, 7228 (2021).

    Google Scholar 

  34. Han, T. et al. Full-parameter omnidirectional thermal metadevices of anisotropic geometry. Adv. Mater. 30, 1804019 (2018).

    Google Scholar 

  35. Li, Y. et al. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18, 48–54 (2019).

    Google Scholar 

  36. Liu, Y. et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto Electron. Sci. 3, 230027 (2024).

    Google Scholar 

  37. Zhu, Z. et al. Arbitrary-shape transformation multiphysics cloak by topology optimization. Int. J. Heat Mass Transf. 222, 125205 (2024).

    Google Scholar 

  38. Zhou, Y. et al. Ultrathin electromagnetic-acoustic amphibious stealth coats. Adv. Opt. Mater. 8, 2000200 (2020).

    Google Scholar 

  39. Stedman, T. & Woods, L. M. Cloaking of thermoelectric transport. Sci. Rep. 7, 6988 (2017).

    Google Scholar 

  40. Ba, Q. et al. Conformal optical black hole for cavity. eLight 2, 19 (2022).

    Google Scholar 

  41. Chen, Q., Horsley, S. A. R., Fonseca, N. J. G., Tyc, T. & Quevedo-Teruel, O. Double-layer geodesic and gradient-index lenses. Nat. Commun. 13, 2354 (2022).

    Google Scholar 

  42. Chen, M. et al. Realizing the multifunctional metamaterial for fluid flow in a porous medium. Proc. Natl Acad. Sci. USA 119, e2207630119 (2022).

    MathSciNet  Google Scholar 

  43. Xu, L., Liu, J., Xu, G., Huang, J. & Qiu, C.-W. Giant, magnet-free and room-temperature Hall-like heat transfer. Proc. Natl Acad. Sci. USA 120, e2305755120 (2023).

    Google Scholar 

  44. Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).

    Google Scholar 

  45. Czajkowski, M., Coulais, C., Van Hecke, M. & Zeb Rocklin, D. Conformal elasticity of mechanism-based metamaterials. Nat. Commun. 13, 211 (2022).

    Google Scholar 

  46. Dai, A. & Ben Amar, M. Minimizing the elastic energy of growing leaves by conformal mapping. Phys. Rev. Lett. 129, 218101 (2022).

    MathSciNet  Google Scholar 

  47. Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190–1191 (2023).

    MathSciNet  Google Scholar 

  48. Yin, S., Galiffi, E. & Alù, A. Floquet metamaterials. eLight 2, 8 (2022).

    Google Scholar 

  49. Xu, L. et al. Thermal Willis coupling in spatiotemporal diffusive metamaterials. Phys. Rev. Lett. 129, 155901 (2022).

    Google Scholar 

  50. Dai, G. & Huang, J. Nonlinear thermal conductivity of periodic composites. Int. J. Heat Mass Transf. 147, 118917 (2020).

    Google Scholar 

  51. Xu, L. et al. CAT data. Zenodo (2024); https://doi.org/10.5281/zenodo.11607658

  52. Xu, L. et al. CAT v1.0.0. Zenodo (2024); https://doi.org/10.5281/zenodo.11545157

Download references

Acknowledgements

C.-W.Q. acknowledges financial support from the Singapore Ministry of Education under grant no. A-8000107-01-00. J.H. acknowledges financial support from the National Natural Science Foundation of China under grants nos. 12035004 and 12320101004 and from the Innovation Program of the Shanghai Municipal Education Commission under grant no. 2023ZKZD06. L.X. acknowledges financial support from the National Natural Science Foundation of China under grants nos. 12375040, 12088101 and U2330401. G.D. acknowledges financial support from the National Natural Science Foundation of China under grant no. 12305046. J.W. acknowledges financial support from the National Natural Science Foundation of China under grant no. 12205101.

Author information

Authors and Affiliations

Authors

Contributions

L.X., J.H. and C.-W.Q. conceived the project. L.X. performed theoretical derivations, computer simulations and experimental designs. G.D. helped with the method. F.Y. carried out experiments and analyzed the data. J.L. helped with experiments. Y.Z. helped with data plots. J.W. and G.X. participated in the discussion. J.H. and C.-W.Q. supervised the project. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Jiping Huang or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Shikui Chen and the other, anonymous, reviewer(s) for their contributions to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Discussion.

Supplementary Data 1

Data in Supplementary Figs. 3, 5–9.

Source data

Source Data Fig. 2

Data in Fig. 2.

Source Data Fig. 3

Data in Fig. 3.

Source Data Fig. 4

Data in Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Dai, G., Yang, F. et al. Free-form and multi-physical metamaterials with forward conformality-assisted tracing. Nat Comput Sci 4, 532–541 (2024). https://doi.org/10.1038/s43588-024-00660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-024-00660-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing