Abstract
Transformation theory, active control and inverse design have been mainstream in creating free-form metamaterials. However, existing frameworks cannot simultaneously satisfy the requirements of isotropic, passive and forward design. Here we propose a forward conformality-assisted tracing method to address the geometric and single-physical-field constraints of conformal transformation. Using a conformal mesh composed of orthogonal streamlines and isotherms (or isothermal surfaces), this method quasi-analytically produces free-form metamaterials using only isotropic media. The geometric nature of this approach allows for universal regulation of both dissipative thermal fields and non-dissipative electromagnetic fields. We experimentally demonstrate free-form thermal cloaking in both two and three dimensions. Additionally, the multi-physical functionalities of our method, including optical cloaking, bending and thermo-electric transparency, confirm its broad applicability. Our method features improvements in efficiency, accuracy and adaptability over previous approaches. This study provides an effective method for designing complex metamaterials with arbitrary shapes across various physical domains.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Data for Figs. 2–4 are available at https://doi.org/10.5281/zenodo.11607658 (ref. 51). The simulated and measured data were generated by Comsol Multiphysics and an infrared camera. Source data are provided with this paper.
Code availability
Source programs are available at https://doi.org/10.5281/zenodo.11545157 (ref. 52).
References
Yang, F. et al. Controlling mass and energy diffusion with metamaterials. Rev. Mod. Phys. 96, 015002 (2024).
Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218–235 (2023).
Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).
Kadic, M., Milton, G. W., Van Hecke, M. & Wegener, M. 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019).
Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).
Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
Fan, C., Gao, Y. & Huang, J. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008).
Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).
Chang, Z., Zhou, X., Hu, J. & Hu, G. Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries. Opt. Express 18, 6089–6096 (2010).
Chang, Z., Liu, X. & Hu, G. Heat flow control by transformation method with grid generation method. Acta Mech. Solida Sin. 27, 454–460 (2014).
Miller, D. A. B. On perfect cloaking. Opt. Express 14, 12457–12466 (2006).
Selvanayagam, M. & Eleftheriades, G. V. Experimental demonstration of active electromagnetic cloaking. Phys. Rev. X 3, 041011 (2013).
Zhu, C., Bamidele, E. A., Shen, X., Zhu, G. & Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).
Sha, W. et al. Topology optimization methods for thermal metamaterials: a review. Int. J. Heat Mass Transf. 227, 125588 (2024).
Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).
Lee, X. Y. et al. Fast inverse design of microstructures via generative invariance networks. Nat. Comput. Sci. 1, 229–238 (2021).
Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
Xu, L. & Chen, H. Conformal transformation optics. Nat. Photon. 9, 15–23 (2015).
Dai, G., Yang, F., Wang, J., Xu, L. & Huang, J. Diffusive pseudo-conformal mapping: anisotropy-free transformation thermal media with perfect interface matching. Chaos Solitons Fract. 174, 113849 (2023).
Landy, N. I. & Padilla, W. J. Guiding light with conformal transformations. Opt. Express 17, 14872–14879 (2009).
Ma, Y., Wang, N. & Ong, C. K. Application of inverse, strict conformal transformation to design waveguide devices. J. Opt. Soc. Am. A 27, 968–972 (2010).
Wu, K., Coquet, P., Wang, Q. J. & Genevet, P. Modelling of free-form conformal metasurfaces. Nat. Commun. 9, 3494 (2018).
Xu, H.-X. et al. Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl. 10, 75 (2021).
Gu, X. & Yau, S. T. Computational Conformal Geometry (International Press Somerville, 2008).
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present and future. Rev. Mod. Phys. 94, 025002 (2022).
Jin, P. et al. Tunable liquid-solid hybrid thermal metamaterials with a topology transition. Proc. Natl Acad. Sci. USA 120, e2217068120 (2023).
Yang, S., Xu, L., Wang, R. & Huang, J. Full control of heat transfer in single-particle structural materials. Appl. Phys. Lett. 111, 121908 (2017).
Luo, J.-W., Chen, L., Wang, Z. H. & Tao, W. Q. Topology optimization of thermal cloak using the adjoint lattice Boltzmann method and the level-set method. Appl. Therm. Eng. 216, 119103 (2022).
Ji, Q. et al. Design of thermal cloaks with isotropic materials based on machine learning. Int. J. Heat Mass Transf. 189, 122716 (2022).
Xu, X., Gu, X. & Chen, S. Topology optimization of thermal cloaks in Euclidean spaces and manifolds using an extended level set method. Int. J. Heat Mass Transf. 202, 123720 (2023).
Fujii, G., Akimoto, Y. & Takahashi, M. Exploring optimal topology of thermal cloaks by CMA-ES. Appl. Phys. Lett. 112, 061108 (2018).
Sha, W. et al. Robustly printable freeform thermal metamaterials. Nat. Commun. 12, 7228 (2021).
Han, T. et al. Full-parameter omnidirectional thermal metadevices of anisotropic geometry. Adv. Mater. 30, 1804019 (2018).
Li, Y. et al. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18, 48–54 (2019).
Liu, Y. et al. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium. Opto Electron. Sci. 3, 230027 (2024).
Zhu, Z. et al. Arbitrary-shape transformation multiphysics cloak by topology optimization. Int. J. Heat Mass Transf. 222, 125205 (2024).
Zhou, Y. et al. Ultrathin electromagnetic-acoustic amphibious stealth coats. Adv. Opt. Mater. 8, 2000200 (2020).
Stedman, T. & Woods, L. M. Cloaking of thermoelectric transport. Sci. Rep. 7, 6988 (2017).
Ba, Q. et al. Conformal optical black hole for cavity. eLight 2, 19 (2022).
Chen, Q., Horsley, S. A. R., Fonseca, N. J. G., Tyc, T. & Quevedo-Teruel, O. Double-layer geodesic and gradient-index lenses. Nat. Commun. 13, 2354 (2022).
Chen, M. et al. Realizing the multifunctional metamaterial for fluid flow in a porous medium. Proc. Natl Acad. Sci. USA 119, e2207630119 (2022).
Xu, L., Liu, J., Xu, G., Huang, J. & Qiu, C.-W. Giant, magnet-free and room-temperature Hall-like heat transfer. Proc. Natl Acad. Sci. USA 120, e2305755120 (2023).
Shen, X. et al. Achieving adjustable elasticity with non-affine to affine transition. Nat. Mater. 20, 1635–1642 (2021).
Czajkowski, M., Coulais, C., Van Hecke, M. & Zeb Rocklin, D. Conformal elasticity of mechanism-based metamaterials. Nat. Commun. 13, 211 (2022).
Dai, A. & Ben Amar, M. Minimizing the elastic energy of growing leaves by conformal mapping. Phys. Rev. Lett. 129, 218101 (2022).
Engheta, N. Four-dimensional optics using time-varying metamaterials. Science 379, 1190–1191 (2023).
Yin, S., Galiffi, E. & Alù, A. Floquet metamaterials. eLight 2, 8 (2022).
Xu, L. et al. Thermal Willis coupling in spatiotemporal diffusive metamaterials. Phys. Rev. Lett. 129, 155901 (2022).
Dai, G. & Huang, J. Nonlinear thermal conductivity of periodic composites. Int. J. Heat Mass Transf. 147, 118917 (2020).
Xu, L. et al. CAT data. Zenodo (2024); https://doi.org/10.5281/zenodo.11607658
Xu, L. et al. CAT v1.0.0. Zenodo (2024); https://doi.org/10.5281/zenodo.11545157
Acknowledgements
C.-W.Q. acknowledges financial support from the Singapore Ministry of Education under grant no. A-8000107-01-00. J.H. acknowledges financial support from the National Natural Science Foundation of China under grants nos. 12035004 and 12320101004 and from the Innovation Program of the Shanghai Municipal Education Commission under grant no. 2023ZKZD06. L.X. acknowledges financial support from the National Natural Science Foundation of China under grants nos. 12375040, 12088101 and U2330401. G.D. acknowledges financial support from the National Natural Science Foundation of China under grant no. 12305046. J.W. acknowledges financial support from the National Natural Science Foundation of China under grant no. 12205101.
Author information
Authors and Affiliations
Contributions
L.X., J.H. and C.-W.Q. conceived the project. L.X. performed theoretical derivations, computer simulations and experimental designs. G.D. helped with the method. F.Y. carried out experiments and analyzed the data. J.L. helped with experiments. Y.Z. helped with data plots. J.W. and G.X. participated in the discussion. J.H. and C.-W.Q. supervised the project. All authors contributed to the writing of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Computational Science thanks Shikui Chen and the other, anonymous, reviewer(s) for their contributions to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–11 and Discussion.
Supplementary Data 1
Data in Supplementary Figs. 3, 5–9.
Source data
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xu, L., Dai, G., Yang, F. et al. Free-form and multi-physical metamaterials with forward conformality-assisted tracing. Nat Comput Sci 4, 532–541 (2024). https://doi.org/10.1038/s43588-024-00660-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-024-00660-1
This article is cited by
-
Free-form metamaterials design with isotropic materials
Nature Computational Science (2024)
-
Topological thermal transport
Nature Reviews Physics (2024)