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SimuCell3D: three-dimensional simulation 
of tissue mechanics with cell polarization

Steve Runser    1,2, Roman Vetter1,2 & Dagmar Iber    1,2 

The three-dimensional (3D) organization of cells determines tissue function 
and integrity, and changes markedly in development and disease. Cell-based 
simulations have long been used to define the underlying mechanical 
principles. However, high computational costs have so far limited 
simulations to either simplified cell geometries or small tissue patches. 
Here, we present SimuCell3D, an efficient open-source program to simulate 
large tissues in three dimensions with subcellular resolution, growth, 
proliferation, extracellular matrix, fluid cavities, nuclei and non-uniform 
mechanical properties, as found in polarized epithelia. Spheroids, vesicles, 
sheets, tubes and other tissue geometries can readily be imported from 
microscopy images and simulated to infer biomechanical parameters. Doing 
so, we show that 3D cell shapes in layered and pseudostratified epithelia are 
largely governed by a competition between surface tension and intercellular 
adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue 
organization in development and disease at a great level of detail.

The acquisition and maintenance of proper morphology are crucial for 
the normal physiological functioning of a biological tissue. Their dis-
ruptions are associated with a range of pathological conditions, includ-
ing cancer and birth defects. The shape of tissues is determined by the 
dynamic positioning of their constituent cells, which can collectively 
deform or migrate to induce macroscopic changes in the tissue mor-
phologies1,2. These cellular behaviors are regulated by the mechanical 
properties of both cells and extracellular matrix (ECM)3, along with the 
distribution of stresses within tissues4. Therefore, understanding how 
tissues acquire and maintain their shapes requires a deep comprehen-
sion of the interplay between the stress distribution within them and 
the mechanical properties of their cells and ECM.

Various experimental methods have been developed to contribute 
to this understanding5–7—for example, micropipette aspiration8, atomic 
force microscopy9, optical stretcher10 and laser ablation11. Nonetheless, 
these experimental techniques are generally limited to the rare tissues 
directly accessible to probing, or to small tissue portions. In addition, 
even when all the factors influencing a tissue morphology have been 
experimentally identified, their synergy might remain unclear.

Recent advances in the fields of fluorescent microscopy, image 
processing and computation power now allow us to complement these 

direct measurements with in silico models, and thus to gain a more 
global understanding of the cellular dynamics underlying tissue mor-
phogenesis and homeostasis12–17. Among these numerical methods, 
cell-based models have become widely used in the fields of develop-
mental and cancer biology due to their high spatiotemporal resolution 
and accurate predictions. Cell-based models recreate virtual versions 
of tissues by representing cells as individual agents with their own 
mechanical properties and behavior. These models offer an in silico 
environment where the stress distribution and the mechanical proper-
ties of cells can be modulated to study their impact on tissue morphol-
ogy and function. Cell-based models can thus predict the tissue shape 
arising from experimentally measured cell properties or, conversely, 
in conjunction with parameter estimation methods, they can allow us 
to infer the cell properties that led to an imaged tissue morphology. 
The high level of spatiotemporal details of cell-based models, how-
ever, entails a substantial computational cost, which forces a trade-off 
between the number of cells they can simulate and the spatial resolu-
tion of their representation18. For this reason, cell-based models with 
varying levels of resolution have been developed to address different 
types of biological problem. For instance, center-based models are a 
class of cell-based models that represent cells as simple spheres, making 
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number of cells they can simulate. In addition, our program natively 
allows us to represent intra- and extracellular entities such as nuclei, 
lumens, ECM and non-uniform mechanical cell membrane properties, 
as found in polarized cells (Fig. 1a). By combining speed and versatil-
ity, SimuCell3D can simulate processes that had not been amenable to 
existing numerical methods.

Results
Biophysical model
SimuCell3D aims to simulate the morphodynamics of cellular tissues 
at a high spatial resolution with full account of complex cell shapes. 
The shapes and motion of the simulated cells are not constrained by 
the model representation, and their mechanical properties are based 
on the physical principles governing the dynamics of their biological 
counterparts. This unconstrained representation of the cells is achieved 
by modeling their surfaces with disjoint closed triangulated surfaces 
(Fig. 1b). The spatial resolution of these surfaces can be tuned by adjust-
ing the size of their triangles. To ensure that the simulations are initial-
ized at the desired resolution, a custom triangulation algorithm has 
been incorporated into SimuCell3D (Supplementary Fig. 1), allowing 
the use of geometries obtained from microscopy images as the starting 
point of the simulations. A local remeshing algorithm (Supplementary 
Fig. 2) preserves the mesh resolution and quality even under large 
cell deformations. Apart from viscous damping as well as repulsive 
and adhesive cell–cell contacts, the biomechanical state of each cell 
membrane is defined by the following energy potential (Fig. 1c):

U = KV (ln V
V0

− 1) + ka
2 ( A

A0
− 1)
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(γ + kb

2 (2H)2)dS. (1)

The first term is the energy associated with a net internal pressure, 
p = dW/dV = −K ln(V/V0), which arises from the volumetric strain of the 
cell cytoplasm, modeled as a slightly compressible fluid. W denotes 
work, V and V0 are the current and target cell volumes and K the cyto-
plasmic bulk modulus. Shrinkage or growth of cells can be achieved 
by evolving their target volumes in time. The second energy term 
allows each cell to actively regulate its membrane area A by penalizing 
deviations from a target value A0 with an effective isotropic membrane 
elasticity parameter ka. The first term in the surface integral, which 
runs over the cell surface ∂Ω, models the tension generated by the cell 
actomyosin cortex. γ is the isotropic cortical tension, analogous to the 
surface tension of fluid interfaces. The second integrand models the 
resistance of the cell cortex to bending55, with H denoting the local 
mean curvature of the cell membrane and kb its bending rigidity. γ and 
kb are field parameters that can vary along the cell surface according 
to cell polarity (Fig. 1b).

them suitable for phenomena where the abundance of cells is more 
crucial than their shape. These models have been used to gain deeper 
understanding of a wide range of phenomena, including, for instance, 
the development of tumors19 or the inflammation of tissues20.

Vertex models are another class of cell-based model that have been 
developed to study tissues in which cell shapes can be approximated 
by polygons in two dimensions21–25 or polyhedra in three dimensions26. 
This simplification allows them to represent each cell with only a few 
points, enabling them to simulate large tissues. Vertex models have 
been employed to study a wide range of phenomena, including the 
transition between solid-like and fluid-like tissue states27, as well as 
various morphogenetic processes such as the polarization of early 
embryos28, the formation of branched structures29 and the biased 
elongation of tissues30,31. However, their simplistic representation of 
tissues comes with the drawback that they cannot adequately represent 
cells with complex shapes. Furthermore, the highly restricted topology 
permissible for the mesh in vertex models substantially complicates 
the simulation of phenomena such as cell extrusion or tissue fusion. 
The mechanisms underlying these developmental events are among 
the fundamental open problems in morphogenesis.

To address the limitations of vertex models, a family of cell-based 
models sometimes referred to as deformable cell models (DCMs) has 
been developed. These models provide a more geometrically realistic 
representation of tissues by discretizing each cell membrane separately 
into a closed loop of connected points in two dimensions32–43 or a closed 
triangulated surface in three dimensions44–53. The complex shapes 
that cells can adopt in DCMs make these models particularly suited to 
simulate phenomena such as the development of early embryos54 or 
the cellular movements during wound healing45. However, the accuracy 
offered by these models comes at a staggering computational cost.  
To mitigate this computational cost, one 3D DCM implementation 
named CellSim3D50 constrains the cell geometries to spheroidal 
shapes. This approach is however not suited for the study of tissues 
with complex (non-polyhedral) cell shapes. The remaining 3D DCMs 
preserve a high geometrical resolution of the cell membranes but are 
limited by their computational efficiency. At best, they can simulate 
the growth of a tissue from one to a thousand cells in a week of com-
putation time45, precluding their use for large-scale computational 
studies. Additionally, the numerical stability of these models may be 
compromised when the simulated cells undergo large deformations. 
We review the features of available 3D DCMs in Table 1.

Here we present SimuCell3D, an efficient open-source DCM in 
three dimensions. Thanks to its efficient design, SimuCell3D can simu-
late tissues composed of dozens of thousands of cells with high spatial 
resolution. SimuCell3D overcomes the classical trade-off that has so 
far constrained cell-based models between their resolutions and the 

Table 1 | Comparison of SimuCell3D with existing 3D DCM models

Program name Pub. 
year

No. of cells after 1 d 
of computation

Adjustable 
spatial resolution

Automatic 
mesh 
remodeling

Cell divisions Cell 
polarization

Nuclei ECM Lumen OS Lic. Ref.

SimuCell3D 2024 125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ BSD-3 —

2023 unknown ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ — 51

2023 unknown ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ — 52

IAS 2022 4 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ CC 47

2020 <1,000 ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ — 45

CellSim3D 2018 75,000 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ GPLv2 50

2014 starting number ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ BSD-2 44

2013 starting number ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ — 53

The Surface 
Evolver

1992 starting number ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ — 49

Cell numbers are approximate. Pub., publication. Lic., license. OS, open source. Ref., reference. CC, Creative Commons. GPL, GNU General Public License. BSD, Berkeley Software Distribution.
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SimuCell3D offers two distinct contact models to simulate inter-
cellular interactions. The first model mediates interactions through 
local elastic contact forces, taking into account cell–cell adhesion 
and volumetric exclusion (Methods, equation (2), and Supplementary 
Fig. 3). Its two constitutive parameters, the adhesion strength ω and 
the repulsion strength ξ, are field quantities that can vary among cells 
or membrane regions. This contact model is somewhat dependent 
on mesh resolution (Supplementary Fig. 4), just as adhesion in biol-
ogy will depend on the adhesion protein density. The second contact 
model mechanically couples the nodes of adjacent cells and directly 
transfers forces generated on one cell surface to that of the neighboring 
cell. We validated this second model by reproducing the Young–Dupré 
relationship in cell doublets and triplets (Supplementary Fig. 5a,c). The 
resulting contact mechanics are independent of mesh resolution (Sup-
plementary Fig. 5a). All parameters related to intercellular interactions 
are summarized in Table 2.

SimuCell3D can simulate entities such as nuclei, lumens and ECMs 
by also representing them with closed triangulated surfaces similarly 
to the cell membranes. To model cell death, cells can be removed from 
the tissue if their volume drops below a minimum threshold Vmin. Con-
versely, if cell volumes exceed the maximal value Vmax, they undergo 
cytokinesis (Fig. 1d). The division plane can be randomly oriented or 
perpendicular to the longest cell axis (Hertwig’s rule). A cell division 
only takes a few microseconds of computation time, allowing the 

simulation of tissues with high cell division rates. To demonstrate the 
computational efficiency and stability of our program, we simulated 
the exponential growth of a tissue in an out-of-equilibrium regime with 
the growth rate pushed to the limit, starting from a single cell (Fig. 1e 
and Supplementary Video 1). The cells in this test are simulated without 
nuclei. Only one day of computation time is required to grow the tissue 
to 125,000 cells on an Intel Xeon W-2245 CPU (eight cores, 3.9 GHz) 
using 16 threads, for cells that possess 121 nodes and 238 triangular 
faces on average. The total time complexity of such a simulation is 
𝒪𝒪(N4/3

c ), where Nc is the number of cells in the tissue, which is equivalent 
to the scaling observed in two-dimensional simulations43. Under similar 
settings, we tested the performance of CellSim3D50 and Interacting 
Active Surfaces (IAS)47, two other cell-based 3D models offering low 
and high spatial resolution, respectively. CellSim3D generated a tissue 
of 75,000 cells in a day of computation time while IAS produced a tissue 
of 4 cells in the same amount of time. CellSim3D achieves performance 
comparable to that of our program by constraining the cell geometries 
to simple spherical shapes with a fixed number of nodes. SimuCell3D 
thus offers the performance of low-resolution models such as Cell-
Sim3D while possessing the flexibility and accuracy of high-resolution 
models such as IAS. SimuCell3D is parallelized with OpenMP. The paral-
lelization efficiency follows Amdahl’s law (Supplementary Fig. 6).  
To showcase the versatility of our program, we simulated various tissue 
topologies such as a vesicle, a bulk spheroid, a sheet and a tube, 
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Fig. 1 | Representation of cellular tissues in SimuCell3D. a Schematics of the 
features that cell-based models must possess to be applicable to a broad range of 
morphogenetic problems. b, Representation of cell membranes as closed 
triangulated surfaces with non-uniform material properties on the basis of cell 
polarity (colors). c, Summary of different forces acting on the triangulated cell 
membranes. d, Illustration of cell division perpendicular to a division plane 

(purple). e, Computational efficiency of different 3D cell-based models in an 
exponential-growth scenario. The dashed black line is a fitted power law T = aNα

c  
with coefficients a = 0.013 s and α = 1.33. f, Illustration of different tissue 
topologies and intra- or extracellular features that can be simulated with 
SimuCell3D. All surfaces can be non-convex.
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alongside several intra- or extracellular built-in features such as lumens, 
nuclei and ECM (Fig. 1f and Supplementary Video 2).

Cell membrane polarization
Cells form regions with distinct biochemical and mechanical properties 
along their cytoplasmic membranes. Correct establishment of this cell 
polarity is crucial to numerous developmental processes56. Its impair-
ment has also been linked to the onset of tumor formation57. SimuCell3D 
takes cell polarity into account by allowing the triangular faces to be 
of different types with distinct mechanical parameters γ, kb, ω and ξ. 
Two mechanisms are implemented to automatically identify different 
regions on the cell surfaces. In the first, lateral sides are inferred from 
the face contact information, leaving regions that are not in contact as 
either apical or basal. The second, more robust and versatile, algorithm 
is based on a spatial partitioning of the simulation domain into voxels 
representing one of four possible regions: cell boundaries, luminal, 
cytoplasmic and external (Fig. 2a–c). Voxels containing mesh nodes 
are marked as boundary voxels. The remaining unmarked voxels are 
clustered with the Hoshen–Kopelman algorithm58. The different voxel 
clusters thus created are then labeled as cytoplasmic, luminal or exter-
nal on the basis of their positions in the discretized simulation space. 
Then, each surface triangle probes its environment by casting a ray in 
the direction of its outward normal to detect which type of region it 
faces (Fig. 2d). The type of voxel the ray first passes through determines 
whether the mesh triangle is lateral (facing another cell), apical (facing 
an enclosed volume such as a lumen) or basal (facing the surrounding 
medium or ECM). Iteration over all mesh triangles thus tags the entire 
surface (Fig. 2e). We demonstrate the capabilities of this approach 
by reproducing in silico a monolayer prostate organoid whose cells 
exhibit apicobasal polarity (Fig. 2f). The cell surfaces were extracted 
from 3D microscopy images with Cellpose59 (Fig. 2g). SimuCell3D then 
reproduced the organoid with correct tissue polarity (Fig. 2h) without 
requiring any input on tissue orientation or topology by the user.

Application 1. Transition from monolayer to multilayer tissue
We now demonstrate how SimuCell3D can be used to gain insight into 
the cellular dynamics of biological tissues. As a first showcase, we inves-
tigate the relationship between biomechanical cell parameters and 
the internal structure of a tissue as a mono- or multilayer. Such a dif-
ference in cellular organization is particularly striking between differ-
ent types of epithelial tissue60. Strong evidence suggests that this 
variability is the result of an interplay between intracellular surface 
tension and intercellular adhesion61,62. In a tug of war with cortical ten-
sion, in which the actomyosin cortex tends to minimize the cell surface 
area, adhesion molecules between adjacent cells tend to increase it. 
We investigated this competition by numerically exploring the param-
eter space spanned by adhesion strength and surface tension. The 
simulations were initialized with a spherical monolayer vesicle consist-
ing of 432 columnar cells generated from a Voronoi tessellation of the 
sphere (Fig. 3a). All cells were initially in contact on their apical sides 
with a luminal region and on their basal sides with an ECM encasing 
the tissue. Note that no ECM located at the apical side of the cells nor 
any adhesion belt was considered in these simulations. The cells were 
grown at a uniform volumetric rate without division until they had 
doubled in size, while the luminal target volume was preserved. Despite 
cellular rearrangements caused by growth, we observed the mainte-
nance of the monolayer structure in simulations with low surface ten-
sion (Fig. 3b). Strong cortical tension, on the other hand, leads to 
stratification (Fig. 3c). We quantified the resulting number of cell lay-
ers by converting the tissue into a graph representing cell connectivity 
and computing the shortest path percolating from the lumen to the 
ECM (Fig. 3d). Parameter values were non-dimensionalized with 
l = 〈V(t = 0)〉1/3 as a characteristic length scale, and K as a characteristic 
energy density. Our exploration of the parameter space revealed that, 
under the prescribed conditions, the layering of the tissue is essentially 
regulated by the tension of the actomyosin cortex alone (Fig. 3e). An 
increase in the normalized surface tension γ̃ = γ/Kl  from 0.02 to 0.10 

Table 2 | Model parameters

Symbol Default dynamic Default overdamped Measured Unit Dimension Description Ref.

Cell volume parameters

ρ 1,000 1,000 1,045–1,099 kg m−3 M/L3 Mass density 77

K 2,500 2,500 2,250 Pa M/LT2 Bulk modulus 78

pmax 2,500 2,500 300–2,200 Pa M/LT2 Max. internal net pressure 79–81

Vmin 3.7 × 10−16 3.7 × 10−16 2.5–3.7 × 10−16 m3 L3 Min. volume (apoptosis) 64,82

Vmax 1.4 × 10−15 1.4 × 10−15 0.9–1.3 × 10−15 m3 L3 Max. volume (cell division) 64,82

g 10−11 10−11 0.1–1.8 × 10−20 m3 s−1 L3/T Volumetric growth rate 83,84

Cell surface parameters

γ 0.001 0.001 0.0005–0.0025 N m−1 M/T2 Surface tension 81,85,86

kb 2 × 10−18 2 × 10−18 1–2 × 10−18 J ML2/T2 Bending stiffness 87

ka 10−15 10−15 — J ML2/T2 Area elasticity modulus —

Q0 250 250 300 — — Target isoparametric ratio 64

ξ 109 109 — Pa m−1 M/L2T2 Repulsion strength —

ω 109 109 — Pa m−1 M/L2T2 Adhesion strength —

Hmax 5 × 106 5 × 106 — m−1 1/L Max. coupling curvature —

Numerical parameters

lmin 2 × 10−7 2 × 10−7 — m L Minimum edge length —

c 2 × 10−7 2 × 10−7 — m L Contact cutoff distance —

ζ 2.5 × 10−10 3 × 10−9 — kg s−1 M/T Viscous damping coefficient —

Δt 10−7 10−7 — s T Time step —

Default parameter values are given for the two types of equation of motion implemented in SimuCell3D (dynamic versus overdamped). In the parameter dimension, M represents mass, L 
length and T time. Default values produce a typical tissue growth scenario.
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was sufficient to break the monolayer arrangement and force the tissue 
into a stratified structure. Conversely, an increase by two orders of 
magnitude in the normalized adhesion strength ω̃ = ωl/K between the 
cells did not disrupt the monolayer integrity. As the cells lose their 
apicobasal connectivity at stronger surface tension, they adopt a more 
spherical shape that minimizes their surface area, as measured by their 
sphericity Ψ = π1/3(6V)2/3/A (Fig. 3f). These simulations highlight the 
potential of SimuCell3D to quantitatively address open questions in 
tissue development and cancer progression, the latter being linked to 
a loss of structural tissue integrity on the cellular level63.

Application 2. Formation and maintenance of 
pseudostratification in epithelia
Pseudostratified epithelia are single-layered epithelia that are easily 
mistaken as stratified when analyzed in two-dimensional sections 
because of the dispersion of their nuclei along the apical–basal axis64. 
Their ubiquity across different species during development65 suggests 
that the pseudostratified structure can confer an advantage over sim-
pler cellular arrangements, possibly linked to patterning precision66. 
How this structure is acquired and maintained under growth and mor-
phogenetic deformation is still largely unknown. In this second case 
study, we demonstrate how SimuCell3D may be used to gain mecha-
nistic insight into the elusive pseudostratification process. We initial-
ized simulations with a patch of 70 cells segmented from light-sheet 

microscopy images of the developing pseudostratified mouse lung 
epithelium64 (Fig. 4a). Among these 70 cells, the 21 interior cells were 
allowed to move freely while the rest on the periphery of the patch 
acted as static boundaries. The simulated cells all contained a nucleus 
(Fig. 4b, blue) and neither grew nor divided during the simulations, 
but deformed to minimize their potential energy, until static equilib-
rium was reached. We again examined the interplay between cell surface 
tension (γ̃c = γc/lcKc , subscript ‘c’ for cell) and adhesion strength 
(ω̃c = ωclc/Kc) (Fig. 4c,d). The normalized surface tension of the nuclei 
(γ̃n = γn/lnKn , subscript ‘n’ for nucleus) was kept constant at 0.24 in 
these simulations, and they were non-adhesive (ωn = 0). In the explored 
region of the parameter space, we observed two unphysiological mor-
phological cell regimes (I and II) with a continuous transition in 
between, along which an intermediate physiological range can be 
identified (Fig. 4c). In regime I, the cell shape is dominated by the effect 
of surface tension. Some of the cells segregated in response to the 
strong surface-area minimization tendency (Fig. 4c, left), facilitated 
by weak lateral adhesion. Cells in this regime reduced their lateral cell–
cell contact area fraction ϕ (Fig. 4d) and also possessed fewer neigh-
bors, as measured by their coordination number z (Fig. 4e). In regime 
II, the effect of adhesion dominates over surface tension, allowing 
neighboring cells to maximize their mutual contact areas (Fig. 4c, right; 
Fig. 4d) as well as their coordination number (Fig. 4e). In between these 
extremes, a balance between adhesion strength and cortical tension 
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yields physiological cell shapes corresponding to those imaged (Fig. 4c, 
middle). This morphological similarity can be exploited to infer the 
mechanical properties of in vivo pseudostratified cells (Fig. 4d,e). 
Moreover, besides informing on the mechanical state of cells, Simu-
Cell3D unveiled in this second case study the possibility that pseu-
dostratified tissues could be formed from cells with identical 
mechanical properties.

Subsequently, we used SimuCell3D to investigate the effect of 
mechanical properties of the nuclei on the pseudostratified cell organi-
zation (Fig. 4f,g). In these simulations, the cell surface tension γ̃c = 0.01 
and adhesion strength ω̃c = 0.97  were fixed. By varying the nuclear 
surface tension γ̃n, we were able to create nuclei rigid enough to deform 
the cell membranes (Fig. 4f). Cell deformation was measured by com-
paring the equilibrium cell shape in the presence of a nucleus versus 
that in its absence, quantified by the intersection over union: 
χ = 1 − IoU(Ω with nucleus, Ω without nucleus). We observe an increase 
of the average cell deformation 〈χ〉 with the nucleus surface tension γ̃n 
until the nuclei obtain spherical shapes at γ̃n ≈ 0.35. It then saturates 
at 〈χ〉 ≈ 0.13 as nuclear tension increases further. The average sphericity 
of the nuclei has been measured in the segmented geometries at 0.89, 
suggesting a low cortical stiffness of the nuclear envelopes relative to 
the cytoplasmic membranes.

SimuCell3D also allows us to directly modulate the shapes of nuclei 
or cells by concurrently varying their target isoperimetric ratios 
Q0,n = A3

0,n/V
2
0,n, and area elasticity moduli ka,n (Fig. 4g). Simultaneously 

increasing Q0,n and ka,n drives the equilibrium shapes of nuclei away 
from a sphere. Conversely, nuclei with small values of Q0,n and ka,n pos-
sess more spherical shapes. The ability to thus change the stiffness or 
shape of the nuclei opens up opportunities to study the dynamics of 
interkinetic nuclear migration67.

Discussion
SimuCell3D now permits the in-depth in silico investigation of the 
mechanical properties and behavior of cells to understand the mecha-
nisms that regulate tissue homeostasis and morphogenesis. While the 
current simulations were carried out with linear mechanical models, 
nonlinear material behavior (viscoelasticity, hyperelasticity) could 
readily be implemented to study its effect on morphogenesis. More-
over, besides nuclei, organelles and endocytosis could be easily rep-
resented. As such, processes such as interkinetic nuclear migration 
in pseudostratified epithelia could be simulated at unprecedented 
resolution to address open questions regarding the driving forces.

As we showed, SimuCell3D can be used to predict the global tissue 
morphologies that emerge from individual mechanical cell proper-
ties. Specifically, when the morphological features of the tissues are 
known, SimuCell3D can be used to infer the region of the mechanical 
parameter space in which the cells are located. Our exploration of the 
cellular parameter space in this study was mainly limited to the sub-
space spanned by cell cortical tension and adhesion strength. This sub-
space is insufficient to reproduce the wealth of morphogenetic events 
observed in vivo. In other contexts, exploration of higher-dimensional 
parameter spaces will undoubtedly be necessary. In these circum-
stances, SimuCell3D can be coupled with gradient-free parameter 
estimation techniques to accurately infer the cell properties that lead 
to the measured morphological tissue features.

SimuCell3D is readily extendable to accommodate more features 
in the future. Relevant possible extensions include subcellular compo-
nents such as adhesion belts, frictional forces, (which play an impor-
tant role in the morphogenesis of some tissues68) as implemented in 
pre-existing models45,52, tension fluctuations69 and reaction–diffu-
sion models to couple the biomechanical tissue model with chemical 
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Fig. 3 | Impact of biomechanical cell properties on tissue structure. a, Initial 
tissue geometry: a hollow spherical vesicle made up of 432 columnar epithelial 
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volume. On its basal side, the tissue was encased by a surface representing 
the ECM (red). b, Final monolayer conformation after epithelial volume 
doubling with weak cortical tension. c, Final multilayer conformation at strong 
cortical tension. d, Schematic cross-section through the epithelium with a cell 

connectivity graph on which the layer number N was determined. e, Impact of 
cell surface tension and adhesion strength on the average number of cell layers. 
Isolines represent support vector machine discriminants. Each data point 
corresponds to the final state of one numerical simulation. Simulations in which 
the whole tissue remained a monolayer (N ≡ 1) are shown as squares. f, Effect of 
cortical tension on cell shape, as measured by sphericity, and on the number of 
layers (colors). The dashed black curve is a fitted logistic function.
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signaling. In this way, chemical and mechanical symmetry-breaking 
mechanisms could be combined and their effects could be simulated 
at cellular resolution. Finally, the cell-based simulations could be com-
bined with continuum models to simulate the behavior of larger tissues 
at varying resolution, and to derive adequate material models for the 
continuum description from cell-based simulations.

Methods
Mesh operations
Local mesh adaptation. SimuCell3D geometrically represents cells 
by closed triangulated surfaces whose edge lengths l are maintained 
within the range [lmin, lmax] with a local mesh adaptation method. The 
minimum edge length lmin is a model parameter, whereas lmax = 3lmin, a 
value that works well in most practical applications, is automatically 
set. When the length of an edge exceeds lmax, the local mesh adaptation 
method splits it in two (Supplementary Fig. 2a), adding one node and 
two faces to the mesh. The two nodes constituting the divided edge 
transfer a third of their momentum to the newly created middle node 
to ensure momentum continuity. When an edge shrinks to a length 
below lmin, it is collapsed into a node whose new momentum is the sum 
of the merged nodes (Supplementary Fig. 2b). This merging process 
eliminates one node and two faces from the cell mesh. To prevent 
triangles with vanishing area, this operation is allowed only when the 
two nodes to be merged share exactly two other nodes among those 
connected to them through edges.

Triangular faces with high isoperimetric ratios can be a source of 
numerical instability. An edge swap operation prevents their formation. 
First, the quality score Sf = 36Af/√3P2

f  of each face f is computed,  
where Pf is its perimeter and Af its area. Undesirable faces with high 
isoperimetric ratios have scores tending to zero, whereas Sf = 1 for 
equilateral triangles. Faces with Sf < 0.3 are eliminated by an edge swap 
operation (Supplementary Fig. 2c) that locally reconnects mesh nodes, 
but leaves them otherwise unaffected.

Initial triangulation. A flexible triangulation algorithm ensures that 
simulations are initialized with meshes that respect the edge length 
bounds (Supplementary Fig. 1a). The procedure takes an initial geom-
etry of the tissue as input, with cell meshes that are not necessarily 
triangular yet, in the widely used VTK format70. The cell surfaces are 
then individually sampled with the Poisson disk sampling algorithm71 
(Supplementary Fig. 1b) with a minimal point separation of lmin. The 
ball pivoting algorithm72,73 then separately re-triangulates the surface 
of each cell on the basis of its Poisson point cloud (Supplementary 
Fig. 1c). The resulting meshes have l ≥ lmin, rarely exceeding lmax. Edges 
with l > lmax are removed before the simulation starts with the edge 
division operation described above.

Cell division. Cells are divided on the basis of a volume threshold, that 
is, if V > Vmax. They are bisected by a plane running through their cen-
troid, whose orientation can depend on the cell type. The orientation 
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is either random or perpendicular to the cell’s longest axis, as given by 
the eigenvector belonging to the smallest eigenvalue of its covariance 
matrix. During division, the cutting planes are re-triangulated in a man-
ner respecting the edge length bounds. On the untriangulated region 
of the daughter cells, points are first sampled with the Poisson point 
cloud algorithm71, and are then connected with the two-dimensional 
Delaunay triangulation algorithm. This method avoids a retriangula-
tion of the parts of the cell surface inherited from the mother cell.

Cell volume and area calculation
The cell volume is calculated with a three-dimensional variant of the 
shoelace formula:

V = 1
6

|||||||

∑
f∈ℳ

det
⎡
⎢
⎢
⎢
⎢
⎣

| | |

ri rj rk
| | |

⎤
⎥
⎥
⎥
⎥
⎦

|||||||

,

where ri, rj and rk are the nodal positions of face f (Fig. 1c). The summa-
tion runs over all the triangular faces of the cell mesh ℳ. The cell surface 
area is obtained by summing the areas of its faces:

A = ∑
f∈ℳ

Af = ∑
f∈ℳ

1
2
‖
‖nf

‖
‖ ,

where nf = (rj − ri) × (rk − ri) is the unnormalized outward normal of face f.

Time integration
SimuCell3D offers two modes of time propagation, solving either the 
dynamic or overdamped equations of motion for the nodal positions ri,

m ̈ri + ζ ̇ri = fi.

The nodal mass m is obtained from V and mass density ρ as m = ρV/Nn, 
where Nn is the total number of nodes in the cell mesh. fi is the nodal 
force vector (specified below) and ζ the viscous damping coefficient. 
The first mode resolves elastic oscillations, making it suited for phe-
nomena on short timescales. The nodal positions ri and linear momenta 
pi = mri are integrated with the semi-implicit Euler scheme:

pi ← pi + Δt (fi − ζpi/m) ,

ri ← ri + Δtpi/m,

where Δt is a fixed time increment. The second mode neglects inertial 
effects (m ̈ri = 0) and is therefore suitable for systems dominated by 
viscous relaxation toward a quasistatic equilibrium. The overdamped 
equations of motion are solved with the forward Euler scheme:

ri ← ri + Δt fi/ζ.

The simulations presented in Figs. 1, 3 and 4 were solved with 
the dynamic model. Simulation snapshots are written at regular time 
intervals in VTK format for post-processing and visualization in Para-
View (Kitware).

Nodal forces
The total conservative nodal forces fi derive from the cell potential 
energy (equation (1)) and the intercellular interaction model. They 
are given by the sum of the surface tension forces, fs,i, the membrane 
area elasticity forces, fm,i, pressure forces exerted by the cytoplasm, 
fp,i, the bending forces, fb,i, and contact forces due to adhesion and 
steric repulsion, fc,i:

fi = fs,i + fm,i + fp,i + fb,i + fc,i.

Each of these contributions is detailed in the following paragraphs.

Surface tension. The surface tension force is given by the negative 
gradient of the surface tension energy with respect to the nodal posi-
tion. Since the position of node i affects the areas of only the set of faces 
ℱi  sharing this node, it is given by

fs,i = − ∑
f∈ℱi

γf∇iAf,

where γf is the surface tension of face f. For triangles with nodes i, j, k 
oriented clockwise (Fig. 1c), the area gradient reads

∇iAf =
1
2 n̂f × (rk − rj),

where n̂f = nf/ ‖‖nf
‖
‖, is the normalized face normal vector.

Membrane area elasticity. Similarly, the membrane force is obtained 
by taking the gradient of the cell membrane area energy with respect 
to ri:

fm,i = − ka
A0

( A
A0

− 1) ∑
f∈ℱi

∇iAf.

A0 is coupled to V0 via A0 = 3√Q0V2
0, where Q0 is the target isoperimetric 

ratio of the cell, which can be set by the user. For a sphere, Q0 = 36π ≈ 113.

Pressure. The cell-internal net pressure generated by the cytoplasm 
reads

p = dW
dV

= −K ln V
V0

,

where W = −KV[ln(V/V0) − 1] is the work associated with a deviation of V 
from its reference value V0. To model cell growth, V0 can evolve over time 
according to prescribed growth laws, such as the linear form dV0/dt = g, 
where g is a constant volumetric growth rate that can vary from cell to 
cell. If desired, the pressure difference between the cell cytoplasm and 
the external medium can be capped at a predefined threshold pmax, that 
is, p ← min{p, pmax}. The pressure force exerted on a subset of the cell 
surface 𝒮𝒮 𝒮 ∂Ω (where Ω is the cell domain) is given by

fp,𝒮𝒮 = p∫
𝒮𝒮
n̂dS.

If the subset 𝒮𝒮 of the cell surface is planar, like the triangular faces f used 
to discretize the cell geometry, this simplifies to

fp, f = pAfn̂f.

The pressure force applied on each node of the cell mesh therefore 
follows as

fp,i =
1
3 ∑

f∈ℱi

fp,f.

Membrane bending. The contribution of bending to the cell potential 
energy can be approximated with the discrete bending energy74

Ub ≈ ∑
(i, j)

kb
‖
‖eij

‖
‖
2

Aij
(2 cos

θij

2 )
2

in which the sum runs over all pairs of nodes (i, j) of the surface  
mesh connected by an edge. Each edge connects two faces a, b that 
form a diamond region composed of four nodes i, j, k, l (Fig. 1c). 
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kb = (kb,a + kb,b)/2 is the average bending stiffness of the faces a and b, 
eij = rj − ri the vector pointing from node i to j, Aij = Aa + Ab the sum of the 
two face areas and θij the dihedral angle between the two faces:

θij = −sgn (n̂a ⋅ eil) arccos (−n̂a ⋅ n̂b) .

The sign of the dot product between the normal of face a (n̂a) and the 
vector eil is used to distinguish between concave and convex hinges. 
The bending forces resulting from this discrete bending energy can be 
calculated independently for each of the four nodes, q ∈ {i, j, k, l}, as

fb,q = 2kb
⎡
⎢
⎢
⎣

‖
‖eij

‖
‖
2

Aij
sinθij ∇qθij − (1 + cosθij)∇q

⎛
⎜
⎜
⎝

‖
‖eij

‖
‖
2

Aij

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦
.

For the gradients ∇qθij and ∇q(‖eij‖
2/Aij) we refer the interested reader 

to ref. 74. The total bending force at node i, fb,i, then follows as the sum 
of bending forces over all diamond regions involving that node.

Intercellular contacts. SimuCell3D offers two different contact mod-
els that vary in their methods of exchanging contact forces between 
adjacent cells, but in the current version it does not take friction into 
account. (For possible ways to include frictional effects, see for exam-
ple refs. 43,45.) The first model connects adjacent pairs of faces {fa, fb} 
with elastic springs, while the second tightly couples pairs of adjacent 
nodes {na, nb}.

The spring-based model applies contact forces on pairs of adjacent 
faces with a magnitude based on the signed distance dab = sgn (z ⋅ n̂a) ‖z‖ 
between the two mesh elements, where n̂a is the unit normal of face a 
and z is the shortest vector between the two mesh elements. A contact 
stress is then calculated with the piecewise expression

σab =

⎧⎪⎪
⎨⎪⎪
⎩

ξdab if dab ∈ [−c,0)

ωdab if dab ∈ [0, c/2)

ω(c − dab) if dab ∈ [c/2, c]

0 otherwise

. (2)

When two neighboring cells interpenetrate, dab is negative, and the 
contact stress is repulsive. On the other hand, when dab is positive, the 
contact stress is adhesive. In this regime, the contact model follows a 
bilinear traction–separation law (Supplementary Fig. 1). The contact 
stress σab thus obtained is translated into a force by integrating the 
contact stress over the contact surface area Aab:

fab = sgn (z ⋅ n̂a)Aabσab
z
‖z‖ .

Aab = min{Aa, Ab} if the contact forces are computed between pairs 
of faces {fa, fb}, whereas Aab = Aa if the contact forces are calculated 
between pairs of faces and vertices {fa, vb}. In the first case, the force 
is linearly distributed to the nodes of face a, {i, j, k}, and the nodes of 
face b, {l, m, n}:

fc,i = αafab, fc, j = βafab, fc,k = λafab,

fc,l = −αbfab, fc,m = −βbfab, fc,n = −λbfab.

(αa, βa, λa) and (αb, βb, λb) are the barycentric coordinates of the closest 
points of approach on faces a and b, respectively.

The second contact model eliminates the need for a finite ω by 
establishing a tight coupling between node pairs {na, nb} whose distance 
is smaller than the contact cutoff c. The two nodes are relocated to their 
average location (ra + rb)/2, and the forces and momenta acting on each 
node are transmitted to its partner such that both nodes subsequently 
follow the same dynamics: fi ← (fa + fb)/2 and pi ← (pa + pb)/2, i = a, b. 

To allow two adjacent cells to detach from each other, node pairs are 
coupled only if the local mean curvature of both cell surfaces lies below 
the threshold Hmax (Table 2). Coupled node pairs are redetermined in 
each time step, and each node is allowed to be coupled to no more 
than one other node.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated as part of this study are publicly available and 
can be downloaded at https://u.ethz.ch/7Taih (ref. 75). Source data are 
provided with this paper.

Code availability
SimuCell3D is open source and freely available as a public git repository 
at https://git.bsse.ethz.ch/iber/Publications/2024_runser_simucell3d 
under the three-clause BSD license76.
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