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Electron density-based GPT for optimization 
and suggestion of host–guest binders

Juan M. Parrilla-Gutiérrez1,2,4, Jarosław M. Granda    1,3,4, Jean-François Ayme1,4, 
Michał D. Bajczyk1, Liam Wilbraham1 & Leroy Cronin    1 

Here we present a machine learning model trained on electron density for 
the production of host–guest binders. These are read out as simplified 
molecular-input line-entry system (SMILES) format with >98% accuracy, 
enabling a complete characterization of the molecules in two dimensions. 
Our model generates three-dimensional representations of the electron 
density and electrostatic potentials of host–guest systems using a 
variational autoencoder, and then utilizes these representations to 
optimize the generation of guests via gradient descent. Finally the guests 
are converted to SMILES using a transformer. The successful practical 
application of our model to established molecular host systems, cucurbit[n]
uril and metal–organic cages, resulted in the discovery of 9 previously 
validated guests for CB[6] and 7 unreported guests (with association 
constant Ka ranging from 13.5 M−1 to 5,470 M−1) and the discovery of 4 
unreported guests for [Pd214]4+ (with Ka ranging from 44 M−1 to 529 M−1).

The chemical space of synthetically accessible molecules is vast1. Navi-
gating this space efficiently requires computational-based screening 
techniques such as deep learning2 to fast track the discovery of com-
pounds of interest3,4. The use of algorithms for chemical discovery, 
however, requires the translation of molecular structures into digital 
representations that are usable by a computer5, and the development of 
algorithms operating on these representations to generate new molecu-
lar structures6. Strings of characters, such as the simplified molecular-
input line-entry system (SMILES), where molecules are represented in 
‘words’—for example, ‘C1C=C1’ (cyclopropene)—are among the most 
widespread digital representations of molecules. Using state-of-the-
art natural language processing, these representations are directly 
compatible with artificial intelligence techniques, such as recurrent 
neural networks7 or the transformer model8,9. As artificial intelligence 
performs better using continuous data, SMILES strings have also been 
converted into continuous latent representations10. Furthermore, 
molecules have been digitized into graphs compatible with modern 
graph neural networks11–13, or as three-dimensional (3D) shapes—by 
extending a volume around the sparse atoms using a wave function14, 
or by using density functional theory to generate an electron density15,16 

treated as a 3D volume17. In this regard, it is important to note that the 
Hohenberg–Kohn theorems state that the energy of an atomic system 
is unambiguously determined by the electron density of the system. 
In addition, the electron density delivers the lowest energy if and only 
if the input density is the true ground-state density18.

The representation of molecules as 3D volumes has the advantage 
of enabling the application of the latest artificial intelligence tech-
niques, such as convolutional neural networks19. So far, most applica-
tions of 3D volumes as molecular descriptors are focused on predicting 
properties20, or de novo drug design21. However, the utilization of a 3D 
volume as molecular descriptors is currently hindered by the absence 
of an efficient method to correlate these volumes with clear molecu-
lar structures. Over the past 40 years, host–guest systems have been 
increasingly studied due to the propensity of molecular containers—
hollow organic molecules or hollow supramolecular architectures—to 
alter the chemical and physical properties of molecules by sequestering 
them from the bulk phase in their cavities22. Host–guest systems have 
found a wide range of applications, from catalysis23,24 to biomedical 
engineering25,26, materials science27 and the stabilization of reactive 
molecules28. Cucurbit[n]urils and metal–organic cages are among the 
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capturing all necessary information required to describe molecules in 
a format that is more easily understood by expert chemists. Following 
the in silico generation of potential guest molecules for CB[6] and 
[Pd214]4+, an in vitro workflow was put in place to experimentally test 
the most promising candidates.

The following describes the experimental process used (Fig. 1b). 
(1) The guests generated by our in silico workflow for CB[6] and for 
[Pd214]4+ (Fig. 1b) were triaged by an expert chemist for experimental 
testing. Promising guests for testing were selected based on their 
structural resemblance with known guests for CB[6] or [Pd214]4+, the 
intuition of the expert chemist and their commercial availability.  

most successful designs of molecular containers. Cucurbit[n]urils are 
donut-shaped molecules composed of n glycoluril units connected via 
methylene bridges. They are characterized by a hydrophobic central 
cavity gated by two sets of dipolar carbonyl moieties, enabling them to 
bind neutral and cationic species29,30. Metal–organic cages are discrete 
hollowed 3D structures generated by the self-assembly of polytopic 
ligands around metal cations22,31–33. Lantern-shaped cages are a notable 
example of such containers. They are assembled via the coordination of 
four ditopic ‘banana-shaped’ ligands around two Pd(II) ions34, creating 
an (often hydrophobic) cavity capable of binding charged or neutral 
aromatic guests in various organic solvents35,36. Although host–guest 
chemistry has had notable achievements, the discovery of unreported 
guests for existing systems or the optimization of new host–guest 
systems remains a laborious and costly iterative process, impeding 
the pace of scientific advancement.

Here we demonstrate that representing host molecules as 3D 
volumes (that is, as electron density decorated with electrostatic 
potential) enables the computer-aided discovery of guests for this 
host without having any knowledge of the host–guest system besides 
the chemical structure of the host (Fig. 1). In doing so, we establish that 
a transformer model can be trained to efficiently convert 3D volume 
molecular descriptors into SMILES representations, generating defined 
molecular structures that are usable in real-world applications by an 
expert chemist. We also establish that molecules can be efficiently 
represented as 3D volumes by decorating their electron densities with 
electrostatic potential data37 and that these two features are sufficient 
to inform the discovery of guest molecules for a host by optimizing the 
volumetric shape and charge interactions between their 3D descrip-
tors using an autoregressive sampling scheme38. We experimentally 
verified our workflow by generating both literature-validated and 
unreported guests for two well-known and studied host–guest systems: 
a cucurbit[n]uril and a metal–organic cage.

Results
Rational and workflow overview
The computer-aided discovery of experimentally validated guests 
for the cucurbituril CB[6] and for the metal–organic cage [Pd214]4+ 
(1 refers to 1,3-bis(pyridin-3-ylethynyl)benzene) required a two-tier 
workflow (Fig. 1). First, an in silico workflow was devised to generate vir-
tual libraries of potential guest molecules for these two hosts (Fig. 1a).  
Then an in vitro workflow was put in place, which involved the selection 
of the most promising guest candidates from these virtual libraries 
by an expert chemist for experimental testing (Fig. 1b). The in silico 
generation of guest molecules for CB[6] and [Pd214]4+ was achieved 
through the workflow depicted in Fig. 1a, which consisted of the fol-
lowing steps. (1) A training set of 3D electron density volumes was 
derived from the molecules in the publicly available QM9 dataset—a 
chemical space containing over 130,000 small molecules with up to 9 
heavy atoms (C, O, N and F). Then a ‘molecule generator’ was created 
by modeling this training set of 3D electron density volumes using a 
variational autoencoder (VAE; Fig. 1a), thus allowing for the generation 
of 3D electron density volumes beyond those derived from the QM9 
dataset39. This VAE molecule generator operates by encoding 3D elec-
tron density volumes into a one-dimensional (1D) latent space and then 
generating 3D electron density volumes corresponding to molecules 
by decoding from this 1D latent space. Interestingly, this approach 
only generated chemically plausible molecules. (2) Our VAE molecule 
generator and a gradient-descent optimization algorithm were used 
to generate a library of guest molecules—in the form of 3D electron 
density volumes—for a given host molecule. Guest molecules were gen-
erated by minimizing the overlap between the host and guest electron 
densities while optimizing their electrostatic interactions. (3) As it can 
be challenging for human operators to convert 3D electron density 
volumes into chemically interpretable structures, a transformer model 
was trained to translate these volumes into SMILES representations, 
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Fig. 1 | Discovering novel guest molecules through electron density 
volumetric representation. a, The QM9 chemical space (with C, O, N and F 
referring to carbon, oxygen, nitrogen and fluorine, respectively) was used to 
train our VAE. Once trained, the latent space created by the VAE (a 1D space) 
could be navigated, and the 3D structural information of a target molecule 
was reconstructed using the VAE decoder (molecule generator). Navigating 
the latent space created, the 3D structural information of a target molecule 
(molecule generator) was reconstructed using the VAE. Given a target host, 
gradient descent was used to discover guests that maximize the electrostatic 
interactions with the host, while minimizing electron density overlap. The 
3D volumes of the candidate guests were translated into SMILEs, giving the 
full chemical information required for their synthesis. b, The potential guest 
molecules generated by the optimization algorithm for cucurbituril CB[6] and 
metal–organic cage [Pd214]4+ were selected by an expert chemist for experimental 
testing based on their structural resemblance with known guests and, second, 
their commercial availability. The Ka of the guest molecules selected for CB[6] or 
[Pd214]4+ was quantified by direct 1H NMR titration.
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(2) The affinity of the guests selected for CB[6] or [Pd214]4+ was quanti-
fied by direct 1H NMR titration. Notably, the guests generated in silico 
contained a mixture of molecules previously known to bind to the host 
(or closely related) and molecules defying the intuition of the expert.

Modeling and sampling the QM9 chemical space
The QM9 dataset was chosen as a subset of the chemical space for this 
study. Among different properties, the QM9 dataset provides for each 
molecule its XYZ coordinates and its SMILES representation. The data 
pre-processing started by converting each QM9 molecule from its 
XYZ coordinates into a 3D grid representing its isosurfaces as electron 
densities at each location (Supplementary Sections 1.1, 1.2 and 1.3). 
The electron density grid of each molecule was used to calculate its 
3D electrostatic potential using quantum methods (Fig. 2a). Once the 
electron density grid was generated for each molecule, it was used to 
train a VAE (Fig. 2b and Supplementary Sections 1.4 and 1.5). Using a 
VAE for this task guarantees four key features: (1) a molecule encoder, 
generating a unique 1D latent representation of any molecule’s elec-
tron density fitting inside the 3D tensor defined earlier, (2) a molecule 
similarity check so that similar molecules are encoded using similar 

latent vectors, (3) a molecule generator, generating a 3D electron 
density tensor from any 1D latent representation, and (4) a chemical 
plausibility check, guaranteeing that any molecule generated from 
the latent vector is chemically plausible. A fully convolutional neural 
(FCN) network was then used to generate the electrostatic potential 
volume from the corresponding electron density volume (Fig. 2c and 
Supplementary Section 1.6).

Translating electron densities into SMILES
A transformer model was used to translate the 3D electron density 
tensors generated into SMILES describing the molecules fitting the 
closest to these volumes (Fig. 3 and Supplementary Sections 1.10, 1.11 
and 1.12), thus enabling the identification of clear molecular targets 
exploitable by chemists from the abstract 3D tensor generated. The 
inner workings of our transformer model followed the standard imple-
mentation9 (Fig. 3a). Our focus was placed on designing embedding 
layers to transform the 3D electron densities into 1D latent sequences. 
The transformer’s encoder received as input 3D tensors such as the ones 
shown in Fig. 2a, and the transformer’s decoder received tokenized 
SMILES sequences. While the decoder’s input used a standard ‘token 
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Fig. 2 | Sampling the QM9 chemical space using a VAE. a, Conversion of the 
QM9 dataset (DB) in XYZ format (XYZ values are shown solely for representation 
purposes) to electron densities and electrostatic potentials using quantum 
mechanical methods and density calculators. xTB refers to the Semiempirical 
Extended Tight-Binding Program Package software; e refers to partial charges 
on each atom. b, Training a VAE to model the QM9 chemical space. The encoder 
side of the VAE was used to encode molecules into their 1D latent representations, 

while the decoder side of the VAE was used to generate molecules given 1D latent 
vectors. Molecules were generated into a 3D tensor of 64 units (voxels) per side. 
µ, σ and z refer to mean, standard deviation and latent space, respectively.  
c, Utilizing an FCN network to calculate the electrostatic potential of a molecule 
given its electron density. tanh → log refers to the fact that each element in the 
input tensor was put through a tanh operation followed by a log operation.  
CNN, convolutional neural network.
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embedding layer’, the embedding layer from the encoder had to trans-
form 3D molecules into two-dimensional (2D) attention matrices so 
that it could be operated with the decoder’s attention matrices. To 
do so, the input 3D data first had to be transformed and expanded 

into four dimensions (Tensorflow’s 3D convolution layer requires the 
input data to be four-dimensional (4D)) before these 4D data were 
transformed into 2D.

The transformation from 3D to 4D was achieved using two dif-
ferent strategies. Initially, electron density 3D tensors were simply 
expanded into four dimensions (Fig. 2a). Later, to facilitate the trans-
lation from 3D tensor to SMILES, electron density 3D tensors were 
decorated with their related electrostatic potentials (Fig. 3b) before 
being expanded into four dimensions. The transformation of the 4D 
tensors into 2 dimensions, was achieved using convolutions with filters 
set to 1 to squeeze out these dimensions. Using the test set as reference, 
and using decorated electron density, our transformer model perfectly 
predicted its SMILES representations with a 98.125% accuracy (Fig. 3c). 
Individual tokens were predicted with a 99.114% accuracy. Setting the 
decoder to choose the next token using probability-based sampling 
could be used to find molecules with a similar pocket to a target mol-
ecule (Fig. 3d). The transformer’s decoder could also be isolated to be 
a purely generative model like GPT (Fig. 3e).

Discovering and optimizing guests for a given host molecule
Our VAE, FCN and transformer model were implemented to enable 
the generation of guest molecules solely knowing the electron data of 
a target host (Figs. 4 and 5). This task was tackled as an optimization 
problem (Supplementary Section 2). Given a host, gradient descent 
was used to find guests using a combination of three fitness functions 
(Fig. 4a): (1) the molecular size of the molecule should be maximized; 
(2) the overlapping between the electron densities of a host and a guest 
should be minimized (for a guest to fit inside the host’s cavity their 
electron densities cannot overlap); and (3) the electrostatic interactions 
between a host and a guest should be maximized (their electrostatic 
potentials should be inversely aligned to increase their possible bind-
ing—the positive regions of the host should be near negative regions 
of the guest, and vice versa).

Before starting the optimization pipeline, a random population 
of guests had to be created (Fig. 4b). To do so, we initially generated 
random latent vectors, used the VAE molecule decoder to generate 
the corresponding 3D molecules, and then used the FCN to calculate 
their electrostatic potentials. Our optimization pipeline operates as 
follows: (1) given a latent representation, the VAE is used to obtain its 
corresponding 3D volume tensor, (2) from this tensor, the FCN is used 
to calculate the electrostatic potential (if required), (3) then in the 3D 
space, the fitness value the molecule is calculated against the target 
fitness function (for example, how much they overlap), and (4) the 
fitness value obtained informs the modification of the latent vector 
using a gradient descent.

The size of the molecules was optimized first, guaranteeing that 
some overlap exists between the host and the guest (Fig. 5a). For CB[6], 
this step was not needed, because the initial random guests already 
overlap with it; however, for [Pd214]4+, this step was required as the 
initial random guests were smaller than the cavity of the cage. Next, 
the overlapping between host and guest was optimized (minimized) 
while optimizing (maximizing) their electrostatic interactions (Fig. 5b).  
As these two optimization functions aimed to do opposite things—one 
tried to decrease the size of the molecule, while the other tried to 
increase it—they were combined into a single function where the ratio 
between them could be chosen. These two steps were iterated until the 
fitness values plateaued, after which the resulting optimized guests 
were translated into SMILES using our transformer model (Fig. 5c).

Quantitative study of the host–guest recognition
Study of the cucurbituril CB[6] system. With its cavity of 3.9 Å in 
diameter at its narrowest, CB[6] (Fig. 6a) is the most common of the 
cucurbiturils30. In aqueous formic acid (HCO2H/H2O 1:1, v/v), it has 
been shown to only weakly associate with aliphatic alcohols, acids and 
nitriles40 but to form strong 1:1 inclusion complexes with derivatives of 
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primary and secondary ammonium salts29. In the former, the formation 
of the host–guest complex is (mainly) driven by hydrophobic effects 
(notably, via the liberation of ‘high-energy water’ molecules) whereas 
in the latter both hydrophobic effects and ion–dipole interactions 
(between the ammonium cation and the carbonyl groups of the CB[6]) 
play a role30. The importance of both electronic and steric considera-
tions in the binding of guests with CB[6] and the fact that most known 
guests associating with CB[6] are smaller than ten heavy atoms make 
this cucurbituril an appropriate choice for testing our optimization 
algorithm.

Our algorithm generated nine previously known guests for CB[6], 
validating our approach. The affinity of CB[6] for G1–G9 (guests 1 to 9) 
was previously reported in the literature, with association constant 
(Ka) values ranging from 18 M−1 to 105 M−1 in HCO2H/H2O 1:1 v/v (Fig. 6a). 
Our algorithm also identified seven potential new guests for CB[6], 
which our expert chemist deemed worthy of experimental testing. The 
affinity of CB[6] for these new guests was evaluated via direct 1H NMR 
titration in HCO2H/H2O 1:1 v/v (Supplementary Section 3.3). In all seven 
cases, a single set of signals was observed for the host–guest system, 
indicating that the system is in fast exchange on the NMR timescale. 
Upon complexation, the resonance of the aliphatic chains of the guest 
molecules were shifted upfield, indicating their encapsulation within 
the CB[6] cavity. The association constants of G10–G16 with CB[6] were 
found to follow previously established trends29, spanning from 13.5 M−1 
to 5,470 M−1 (Fig. 6a). Linear secondary amines G10 and G11 gave two 
of the highest association constants measured, with G10 having the 
highest association constant due to its longer alkane chain29. Branched 
alkylamine G12–G16 bound moderately with CB[6]. The monometh-
ylation of the amine of G13 had little influence on its interaction with 
CB[6] as both G12 and G13 had similar Ka. Despite ethyl-substituted 
n-alkylamine reportedly being unable to form inclusion complexes 
with CB[6]29, G14 was found to be bound moderately by CB[6].

Study of cage [Pd214](BArF)4 system. Compared with CB[6], [Pd214]4+ 
(Fig. 6b) allowed us to test our optimization algorithm in more demand-
ing circumstances: (1) the bigger cavity size of [Pd214]4+ means that 
most known binders of the cage are bigger than ten heavy atoms and 
(2) binding neutral guests in organic solvents is inherently more chal-
lenging than binding charged guests in water (neutral guests have 
to compete with the anions associated with the cationic cage for its 

cavity and solvophobic effects are less favorable in organic solvents 
than in water)36. For our study, the non-coordinating anion tetrakis[3,5-
bis(trifluoromethyl)phenyl]borate (BArF) was selected as a counteran-
ion for the cage to maximize the availability of the inner cavity of the 
cage to charge-neutral guests by minimizing ion pairing36.

For [Pd214]4+, the optimization algorithm generated only unknown 
guest molecules (Fig. 6b). Compared with CB[6], featuring a cavity with 
a diameter of approximately 3.9 Å (ref. 30), [Pd214]4+ has a notably larger 
cavity, measuring approximately 6 Å in width and 10 Å in depth35. This 
increased cavity size led our model to generate larger guest molecules, 
resulting in very few of them being commercially available, thereby 
limiting the pool of molecules available for experimental testing. 
The strength of binding between four potential unreported guests 
and the [Pd214](BArF)4 was tested via direct 1H NMR titration in CD2Cl2 
(Supplementary Section 3.4). In all cases, the host–guest system was 
in fast exchange on the NMR timescale. Upon addition of the guests to 
the cage, a unique set of signals was observed by 1H NMR spectroscopy. 
This set of signals differed substantially from a mere superimposition 
of the spectra of the individual species. Notably, the signals from the 
cage showed a downfield shift, providing compelling evidence of the 
successful encapsulation of the guest molecule within the cage. In all 
four cases (Fig. 6b), the affinity of the guest for [Pd214](BArF)4 was in line 
with the lower range of affinities previously reported for ‘small-sized 
neutral guests’ in CD2Cl2 (that is, guest formed of ten heavy atoms or 
fewer, such as G19)36. The lack of ‘strong binders’ in the molecules tested 
could be attributed to the fact that the cavity size of [Pd214](BArF)4 
pushes the limits of our model and workflow capabilities: (1) as previ-
ously highlighted, the scarcity of commercially available options within 
the dataset generated by our model hampered the quality of the guest 
tested, and (2) all known strong binders for [Pd214]4+ feature an aromatic 
core substituted by two donor groups para to each other35,36. Apart from 
G17, this structural feature inherently increases the size of the molecule 
beyond the ten-heavy-atoms limit of our model. Such size constraint 
on the molecules generated by our model stems from the utilization 
of QM9 for its training, making it unlikely to generate molecules that 
exceed ten heavy atoms in size. Importantly, G21–G24 demonstrate that 
the optimization algorithm was capable of generating guests with (1) 
the right hydrogen-bond acceptor groups (the cage having no affinity 
for fully hydrocarbon guests, such as p-xylene or naphthalene)35 and (2) 
the right rigidity (the cage having no affinity for flexible guests, such 
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Fig. 4 | Optimizing guests for a target host via gradient descent. a, Targeting 
of multiple fitness functions for optimizing host–guest interactions: maximize 
the size of the guest, minimize its overlapping with the host and maximize its 
electrostatic interactions. In the right panel, areas in red represent areas with 
positive electrostatic potential while areas in blue represent areas with negative 

electrostatic potential. b, Initial population of guests generated through random 
sampling. Using random sampling, a 1D vector in the latent space was generated. 
Via the VAE, a 3D electron density could be reconstructed from this 1D vector. 
From this 3D electron density, and using the FCN, its electrostatic potentials were 
calculated.
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as 1,4-dicyanobutane or 1,6-dicyanohexane)35,36. The lack of molecules 
containing two donor groups generated by the optimization algorithm 
could be (in part) attributed to the molecule size limitation imposed 
by the use of QM9 to train the algorithm (most known guests with two 
donor groups being ten heavy atoms or bigger, such as G18).

Discussion
While our research focused on using SMILES notation to repre-
sent molecules, we also tested other similar formats, such as Self- 
referencing Embedded Strings (SELFIES)41 (Supplementary Sections 
2.3.10 and 2.3.11). Even though SELFIES has the advantage of being a 
100% robust molecular string representation, it did not improve our 
results. Although the QM9 dataset contained molecules of perfect 
size to be guests of a host such as CB[6], a limitation we encountered  
during this research is that the metal–organic cage [Pd214]4+ had a  
bigger cavity, requiring bigger guest molecules. We overcame this 
limitation by adding a function that increased the size of the molecules 
as much as possible, but in future research we aim to use a dataset that 

contains bigger molecules, such as the GDB-17 dataset42. Later, we aim 
to embed the selection of new ligands into the generative process43,44, 
with the objective of synthesizing the molecules autonomously on an 
automated synthetic platform, such as a Chemputer robot45, closing 
the loop between optimization and testing, creating a cyber-physical 
closed loop system.

Methods
Source code libraries
The source code developed in this research was written using Python 
3.9. The machine learning models were written using Tensorflow. Most 
of the development and testing was done using Tensorflow 2.7. In later 
stages, we updated our code Tensorflow to version 2.10. We have tested 
our code with the latest version available at the moment of writing this 
paper (2.13), but this version did not work with some of our scripts. We 
used Conda to create and handle the Python environment. Within our 
source code, two Conda environments are provided: one for Tensorflow 
2.7 and one for Tensorflow 2.10. See Supplementary Sections 1.1 and 1.2.
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Fig. 5 | Optimization pipeline and generation of SMILES representations of 
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electrostatic potential. In the electrostatic potential tensor, areas in red 
represent areas with positive electrostatic potential while areas in blue represent 
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obtain the SMILES representation of the guest generated.
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Generating the training dataset
This research used the publicly available QM9 dataset from ref. 38. This 
dataset contains 133,885 molecules of up to 9 heavy atoms (carbon, 
oxygen, nitrogen and fluorine). For each molecule, this dataset con-
tained different data entries. This research focused on their SMILES 
representations and the XYZ information. Within our source code, we 
have prepared a script that downloaded the dataset, generated the 
electron densities and electrostatic potentials for all the molecules 
present, and saved them into a Tensorflow’s TFRecord file (of size 
240 Gb). This command can be executed as ‘$ python bin/dataset/
generate_dataset.py QM9’.

This command started by downloading the dataset and extracting 
the XYZ information for each molecule. It then arranged the molecules 
so that their geometric centers were at the beginning of the coordinate 
system. Then it used the ‘xtb tool’ (https://github.com/grimme-lab/xtb) 
to generate a ‘molden’ file for each molecule, and finally it used ORBKIT 
(https://orbkit.github.io/) to calculate their corresponding electron 
densities. This electron densities were calculated for cubes of side 
64 units, each unit corresponding to a step size of 0.5 Å. To calculate 
the electrostatic potentials, the ‘-esp’ flag was sent to ‘xtb’. This would 
return a sparse representation. This sparse representation was placed 
into an empty cube of sides with 64 units, and the sparse points were 
dilated to fill a bigger volume. See Supplementary Section 1.3.

Converting electron densities to SMILES using a transformer 
model
Our implementation of the transformer architecture followed the 
standard one as reported by ref. 9. Our encoder, decoder and token 
embedding followed the standard implementations. The main differ-
ence was the embedding layer which inputted the data to the encoder. 
We called this embedding layer ‘molecule embedding’. The aim of this 
embedding layer was to take as input a 3D tensor representing the 
electron density of a molecule and outputting a 2D matrix that would 
operate in the decoder with its 2D attention matrix.

To achieve this transformation from 3D to 2D, first the 3D data were 
expanded to 4D so that 3D convolutions could be applied. To transform 
the 4D tensors into 2D, we tested two different strategies.

The first strategy started with 3D convolutions, setting the number 
of filters to 1, dropping the dimension with size 1 after the convolution 
had been done, and then repeating this process with 2D convolutions 
and 1D convolutions until the data were 2D. As an example, if the initial 
4D was (64, 64, 64, 64), setting the number of filters to 1 would output 
(1, 64, 64, 64) and then dropping the first dimension would output (64, 
64, 64). If this process is repeated, we would first obtain (1, 64, 64), and 
then dropping the first dimension we would obtain 2D data (64, 64).

The second strategy used again 3D convolutions, but their strides 
were of different sizes depending on the dimension. These convolu-
tions were applied until two of the dimensions had a size of 1, and then 
dropping them, thus getting again 2D data. As an example, if the initial 
4D data were (64, 64, 64, 64) and the strides of the 3D convolutions 
were (1, 2, 2), keeping the number of filters to 64, an initial convolution 
would output (64, 64, 32, 32). We can repeat these convolutions with 
these strides until it outputs (64, 64, 1, 1), and then dropping the two 
single unit dimensions, to obtain (64, 64).

Both strategies produced similar results.
To train the transformer, pairs of (electron density, SMILES) were 

provided. Note that the electron density could also be the electrostatic 
potential or decorated electron densities. The electron densities were 
inputted to the encoder, while the decoder aimed to output the cor-
rect SMILES sequence. Once trained, a newer electron density could 
be inputted to the encoder, while the decoder would receive a start 
token and output (generate) the corresponding SMILES sequence. See 
Supplementary Sections 1.4 to 1.12.

Fitness functions used during the optimization process
The different optimization experiments used a combination of the 
following fitness functions with different objectives.

•	 To maximize the size of the molecule.
•	 To minimize the overlapping between host and guest electron 

densities.
•	 To maximize the interactions between host and guest electro-

static potentials.

To perform one step toward maximizing the size of the molecule, 
the following steps were performed.

 (1) Given an input latent vector, the VAE decoder was used to 
reconstruct the 3D shapes of the molecules.

 (2) Tensorflow’s ‘tf.reduce_sum’ took as input the 3D shape and 
calculated a single value representing the whole 3D electron 
density by adding together the electron density at each location 
(within the 64, 64, 64 tensor). This value was used to define the 
fitness of each molecule.

 (3) Tensorflow’s ‘tf.gradients’ calculated the changes needed to 
increase the fitness of the molecule. This function took as input 
two parameters: (1) the fitness as just described in the previous 
point, and (2) the input latent vector. This function (tf.gradi-
ents) returned a tensor, which explained how to modify the 
latent vectors to maximize their fitness values.
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guests for [Pd214]4+. a, Structures and log Ka values for guest molecules generated 
by the optimization algorithm for CB[6] and the structure of CB[6]. Association 
constants were measured in HCO2H/H2O 1:1 v/v. The association constants 
between CB[6] and guests 1 to 9 (G1–G9) in HCO2H/H2O 1:1 v/v were previously 
reported in the literature29. b, Left: structures and log Ka values for guest 
molecules previously reported in the literature for [Pd214](BArF)4; association 
constants were measured in CD2Cl2 (ref. 36; these four guests were not generated 
by our model). Middle: the structure of [Pd214]4+

. Right: structures and log Ka 
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To perform one step towards minimizing the overlapping between 
host and guest electron densities, the sequence of operations was 
similar to the previous list of operations. The main difference is that 
in the second step, tf.reduce_sum took as input the product between 
host and guest. As in this case we wanted to minimize the overlapping, 
the tensor returned from tf.gradient (in step 3) was subtracted from 
the latent vectors.

To perform one step toward maximizing the overlapping between 
host and guest electrostatic potentials, the list of operations was similar 
to the previous one. The main difference is that now, in the first step, 
once the VAE generated the electron densities, these electron densi-
ties went through the model that generated electrostatic potentials 
from electron densities (Supplementary Section 1.6). As in this case 
we wanted to minimize the overlapping, the tensor returned from 
tf.gradient was subtracted from the latent vectors. For full information, 
see Supplementary Section 2.1.

To perform a full optimization process, a combination of the previ-
ous three fitness functions was used through gradient descent. During 
each iteration, the latent vectors were modified with the gradient ten-
sor outputted in the third step as discussed before. For full information, 
see Supplementary Section 2.2.

Benchmarking the generated SMILES libraries
To benchmark the quality of the molecules generated, nine different 
sets of molecules were compared (Supplementary Section 4). These 9 
sets of 40,000 random latent vectors were generated using a uniform 
distribution with bounds going from 0.5 up to 50. These latent vec-
tors were then inputted into the VAE decoder to reconstruct their 3D 
electron densities and electrostatic potentials that were, subsequently, 
inputted into the transformer model to obtain their SMILES representa-
tions. Due to the degeneracy of the SMILES representations generated 
by our methodology, it was inevitable that duplicate molecules would 
be obtained. While most of the generated molecules appeared only 
once or twice, a small fraction of molecules appeared as much as several 
thousand times, potentially reducing the size of the sets by a quarter 
after removal of the duplicates. The overall quality of those sets was 
very high, and almost all SMILES were valid and chemically reasonable 
(that is, passing structural filters used by popular generators such as 
MolGen). Around 80% of the molecules were new compared with the 
training set. Similarity measurements, assessing the similarity between 
molecules on a scale from zero (different) to one (identical) inside the 
set of molecules generated (internal) or against the molecules in the 
training set (external), indicated that the molecules generated were 
internally diverse and divergent form from the training molecules.

Cucurbituril CB[6] guest binding titrations
The association constant Ka between CB[6] and various amines was 
determined through 1H NMR titration in deuterium oxide (D2O)/for-
mic acid-d2 1:1, v/v. For each titration, a solution of CB[6] with a guest 
amine was titrated into a solution of the amine, thus maintaining the 
concentration of the amine constant throughout the titration.

In all CB[6]–amine systems, a single set of signals was observed 
in the 1H NMR spectra of the host–guest system, indicating that the 
system is in fast exchange on the NMR timescale. For each CB[6]–amine 
system, the peak position of a characteristic 1H NMR signal of the amine 
was plotted against the concentration of CB[6]. A global nonlinear 
curve fitting function was then used to fit the data in Origin 2020 to a 
1:1 binding model developed by ref. 46.

Cage [Pd214](BArF)4 guest binding titrations
The association constant Ka between [Pd214](BArF)4 and various guest 
molecules was determined through 1H NMR titration in dichlorometh-
ane-d2 (CD2Cl2). For each titration, a solution of [Pd214](BArF)4 with the 
studied guest was titrated into a solution of [Pd214](BArF)4, thus main-
taining the concentration of the cage constant throughout the titration.

In all cage–guest systems, a single set of signals was observed in the 
1H NMR spectra of the host–guest system, indicating that the system is 
in fast exchange on the NMR timescale. For each cage–guest system, 
the peak position of a characteristic 1H NMR signal of the pyridine rings 
of the cage was plotted against the concentration of the guest. A global 
nonlinear curve fitting function was then used to fit the data in Origin 
2020 to the 1:1 binding model developed by ref. 46.

Data availability
The dataset used to train the models described in this research is the 
QM9 dataset. This is a publicly available dataset, downloadable from 
ref. 39. All the data generated through this research are available in the 
Supplementary Information files. We have also made all the data asso-
ciated with this work available on Zenodo at https://doi.org/10.5281/
zenodo.10530598 (ref. 47). The NMR data used to produce Fig. 6 are 
available on Zenodo (https://doi.org/10.5281/zenodo.10530598)47 and 
instructions to obtain the binding data is given above in the binding 
titration sections.

Code availability
Source code is publicly available at https://github.com/cron-
ingp/electrondensity2 and on Zenodo (https://doi.org/10.5281/
zenodo.10530598)47.
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