
Nature Computational Science | Volume 3 | November 2023 | 946–956 946

nature computational science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Predictive analyses of regulatory sequences 
with EUGENe

Adam Klie    1,2, David Laub1,2, James V. Talwar1,2, Hayden Stites3, Tobias Jores    4, 
Joe J. Solvason1,2,5, Emma K. Farley1,2,5 & Hannah Carter    1,2 

Deep learning has become a popular tool to study cis-regulatory function. 
Yet efforts to design software for deep-learning analyses in regulatory 
genomics that are findable, accessible, interoperable and reusable (FAIR) 
have fallen short of fully meeting these criteria. Here we present elucidating 
the utility of genomic elements with neural nets (EUGENe), a FAIR toolkit 
for the analysis of genomic sequences with deep learning. EUGENe consists 
of a set of modules and subpackages for executing the key functionality 
of a genomics deep learning workflow: (1) extracting, transforming and 
loading sequence data from many common file formats; (2) instantiating, 
initializing and training diverse model architectures; and (3) evaluating 
and interpreting model behavior. We designed EUGENe as a simple, flexible 
and extensible interface for streamlining and customizing end-to-end 
deep-learning sequence analyses, and illustrate these principles through 
application of the toolkit to three predictive modeling tasks. We hope that 
EUGENe represents a springboard towards a collaborative ecosystem for 
deep-learning applications in genomics research.

Cracking the cis-regulatory code that governs gene expression remains 
a fundamental challenge in genomics research. Efforts to annotate the 
genome with functional genomics data1 have powered machine learning 
methods that aim to learn biologically relevant sequence features by 
directly predicting these readouts. Deep learning has become espe-
cially popular in this space, and has been successfully applied to tasks 
such as DNA and RNA protein binding motif detection2–6, chromatin 
state prediction7–18, transcriptional activity prediction10,19–22 and 3D 
contact prediction23–26. Complementary models have recently been 
developed to predict data from massively parallel reporter assays that 
directly test the gene regulatory potential of selected sequences27–29. 
Most encouragingly, many of these multilayered models go beyond 
state of the art predictive performance to generate expressive repre-
sentations of the underlying sequence that can be interpreted to better 
understand the cis-regulatory code16,27,30.

Despite these advances, executing a deep-learning workflow in 
genomics remains a considerable challenge. Although model training 
has been substantially simplified by dedicated deep-learning libraries 

such as PyTorch31 and Tensorflow32, nuances specific to genomics data 
create an especially high learning curve for performing analyses in 
this space. On top of this, the heterogeneity in implementations of 
most code associated with publications greatly hinders extensibility 
and reproducibility. These conditions often make the development of 
genomics deep-learning workflows painfully slow even for experienced 
deep-learning researchers, and potentially inaccessible to many others.

Accordingly, the genomics deep-learning community has assem-
bled software packages33–37 that aim to address one or more of these 
challenges. However, each toolkit on its own does not offer both end-
to-end functionality and simplicity, and there remains a general lack 
of interoperability between packages. For instance, Kipoi36 increases 
the accessibility of trained models and published architectures, but 
does not provide a comprehensive framework for an end-to-end deep-
learning workflow. Selene34 implements a library based in PyTorch 
for applying the full deep-learning workflow to new or existing mod-
els, but offers a limited programmatic interface, requires the use of 
complex configuration files, and has limited functionality for model 

Received: 12 January 2023

Accepted: 27 September 2023

Published online: 16 November 2023

 Check for updates

1Department of Medicine, University of California San Diego, La Jolla, CA, USA. 2Bioinformatics and Systems Biology Program, University of California San 
Diego, La Jolla, CA, USA. 3Daniel Hand High School, Madison, CT, USA. 4Department of Genome Sciences, University of Washington, Seattle, WA, USA. 
5Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.  e-mail: hkcarter@ucsd.edu

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-023-00544-w
http://orcid.org/0000-0002-7600-3086
http://orcid.org/0000-0002-1804-7187
http://orcid.org/0000-0002-1729-2463
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-023-00544-w&domain=pdf
mailto:hkcarter@ucsd.edu


Nature Computational Science | Volume 3 | November 2023 | 946–956 947

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

validation and interpretation of deep-learning solutions in regulatory 
genomics. We have listed several common deep learning for regulatory 
genomics tasks that can be implemented in an end-to-end fashion with 
EUGENe (Supplementary Table 1). We next describe three in detail, 
highlighting the core aspects of the workflow on different data types 
and training tasks. A more detailed description of the workflow is 
provided in the Methods.

We first used EUGENe to analyze published data from an assay of 
plant promoters29 (Fig. 2a). Jores et al. selected promoter sequences 
from −165 to +5-bp relative to the annotated transcription start site 
for protein-coding and microRNA genes of Arabidopsis thaliana, Zea 
mays (maize) and Sorghum bicolor29. A total of 79,838 170-bp promoters 
were used to transiently transform two separate plant systems, tobacco 
leaves and maize protoplasts. Regulatory activity was quantified using 
a variant of the self-transcribing active regulatory region sequencing 
(STARR-seq) assay39 in each system. The resulting data provides two 
activity scores that can serve as single task regression targets for train-
ing EUGENe models.

We implemented both the custom BiConv1D layer40 and convolu-
tional neural network (CNN) architecture ( Jores21CNN) described by 
Jores and colleagues29, and then trained separate Jores21CNN architec-
tures for predicting tobacco leaf (leaf models) and maize protoplast 
(protoplast models) activity scores. We benchmarked these models 
against built-in CNN and Hybrid architectures with matched hyperpa-
rameters, as well as a DeepSTARR architecture27 (Supplementary Data 1).  
As described in the work by Jores et al. (see Methods), we initialized 
78 filters of the first convolutional layer of all models with position 
weight matrices (PWMs) of plant transcription factors (n = 72) and core 
promoter elements (n = 6)29. In both systems, performance metrics 
for the most predictive models were comparable with those reported 
by Jores and co-workers (Fig. 2b and Supplementary Fig. 1a). We also 
trained models on activity scores from both leaves and protoplasts 
(combined models) and noted a marked drop in performance (Sup-
plementary Fig. 1b), underscoring differences in the way the leaf and 
maize systems interact with the same set of promoters29.

We next applied several of EUGENe’s interpretation functions to 
the trained models to determine the sequence features each used to 
predict plant promoter activity. First, we used a filter visualization 
approach11 to generate position frequency matrix (PFM) representa-
tions for each of the first convolutional layer’s filters and used the 
TomTom41 tool to annotate them. We queried the PFMs against the 78 
motifs used to initialize the convolutional layers, both to determine 
whether the initialized filters retained their motifs and to see whether 
randomly initialized filters learned them de novo. For the leaf and 
protoplast models, many of the learned filters were annotated to the 
TATA box binding motif and other core promoter elements (Fig. 2c,d). 
Only ten learned filters from the combined model were assigned a 
significant annotation (adjusted P-value < 0.05) by TomTom (Fig. 2d 
and Supplementary Fig. 1c), consistent with the observed performance 
drop in this system (Supplementary Fig. 1a). We next applied the Deep-
LIFT method42 to determine the individual nucleotide contributions 
for each test set sequence prediction. For many of the sequences with 
the highest observed activity scores, the TATA box motifs were often 
the lone salient feature identified (Fig. 2e and Supplementary Fig. 1d).  
In fact, when only a TATA box motif was inserted into every possi-
ble position in each of the 310 selected promoters, we observed an 
147% average increase in predicted activity across insertion positions 
and sequence contexts for the leaf model (Fig. 2f and Supplementary  
Fig. 1e). Finally, we performed ten rounds of in silico evolution on the 
same set of 310 promoters as described in Jores et al. Almost all of the 
starting promoters showed a notable increase in predicted activity 
after just three mutations (Fig. 2g and Supplementary Fig. 1f). These 
results showcase a representative example of the way EUGENe’s inter-
pretation suite can be used to identify the key features that a model 
uses to make predictions.

interpretation. Janggu35, one of the more comprehensive packages, 
provides extensive functionality for data loading and for training 
models, but offers limited support for PyTorch and limited functional-
ity for model interpretation.

There is generally a need for an end-to-end toolkit in this space that 
follows findable, accessible, interoperable and reusable (FAIR) data and 
software principles38, and that is inherently designed to be simple and 
extensible. To address this need, we have developed elucidating the 
utility of genomic elements with neural nets (EUGENe), a FAIR toolkit 
for the analysis of sequence-based datasets.

A standard EUGENe workflow consists of three main stages out-
lined in Fig. 1: extracting, transforming and loading (ETL) data from 
common file formats (Fig. 1a); instantiating, initializing and training 
(IIT) neural network architectures (Fig. 1b); and evaluating and inter-
preting (EI) learned model behavior on held-out data (Fig. 1c). The 
major goal of EUGENe is to streamline the end-to-end execution of 
these three stages to promote the effective design, implementation, 

Model
zoo

YAML
file

API

b

a

GPU

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

c

A�inity
TFBS

0

1

At
tr
ib
ut
io
n

0.75 0.91 0.31 0.15

0 5 10 15
0

1

2

Bi
ts

0

1

2

Bi
ts

Filter7

0 5 10 15

Filter13

Fig. 1 | EUGENe workflow for predictive analyses of regulatory sequences. 
a–c, The EUGENe workflow can be broken up into three primary stages: 
data extraction, transformation and loading (ETL) (a); model instantiation, 
initialization and training (IIT) (b); and model evaluation and interpretation 
(EI) (c). The ETL stage (a) begins with using the SeqData subpackage to create 
Dask-enhanced XArray datasets backed by Zarr stores. Data transformation 
is handled by the SeqPro subpackage, after which data can be loaded into 
graphical processing units (GPUs). In the subsequent IIT stage (b), model 
architectures (such as the example shown in the schematic) are instantiated from 
configuration files (in YAML format), from the EUGENe application programming 
interface (API), or from Kipoi. EUGENe then uses PyTorch Lightning for training 
these architectures. The subpackage SeqExplainer (which is backed by the 
Captum package) is used for model interpretation in the EI stage (c). Common 
visualizations produced by SeqExplainer include the logos depicted for an 
example input sequence (top) or for convolutional filters (bottom).

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 948

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

To illustrate EUGENe’s versatility for different inputs and predic-
tion tasks, we next applied it to analyze RNA binding protein (RBP) 
specificity data previously introduced by Ray et al.43 and analyzed 
through deep learning by Alipanahi and colleagues2. In the latter work, 
they trained 244 CNN models (DeepBind models) that each predicted 
the binding patterns of a single RBP on a set of 241,357 RNA probes 
(Extended Data Fig. 1a). The full probe set was designed to capture all 
possible RNA 9-mers at least 16 times and was split into two balanced 
subsets (sets A and B) for training and validation, respectively (see 
Methods)43. Each RBP was incubated with a molecular excess of probes 
from each subset (in separate experiments) and subsequently recov-
ered by affinity purification. The RNAs associated with each RBP were 
then quantified by microarray and subsequent bioinformatic analysis44. 
This yielded a vector of continuous binding intensity values for each 
RBP across the probe set that can be used for prediction.

To prepare for training, we first implemented a flexible DeepBind 
architecture in EUGENe (see Methods) and then trained 244 single task 
models by using a nearly identical training procedure to Alipanahi  
et al.2 (Supplementary Data 2). Along with these single task models, 
we also randomly initialized and trained a multitask model (Supple-
mentary Data 2) to predict 233 RBP specificities (that is, a 233-dimen-
sional vector) in a single forward pass, excluding 11 RBPs due to a high 
proportion of missing values across probes in the training set. We also 
loaded 89 existing Kipoi36 models trained on a subset of human RBPs 
in the dataset.

Performance on Set B for all deep-learning models was on par 
with Set B’s correlation to Set A (Extended Data Fig. 1b and Supple-
mentary Fig. 2a) and both single task and multitask models trained 
with EUGENe showed comparable performance to Kipoi and DeepBind 
models (Extended Data Fig. 1b,c and Supplementary Fig. 2a,b). The 
reason for the poor observed performance of certain Kipoi models is 
not immediately clear, but could relate to differences in sequence or 
target preprocessing before evaluation. Although the ability to load 
these pretrained models from Kipoi is very useful for benchmarking, 
implementing and retraining models is often necessary for fair perfor-
mance comparisons. EUGENe supports both loading and retraining 
models, allowing users to more quickly design and execute quality 
benchmarking experiments.

We next applied EUGENe’s interpretation suite to our trained mod-
els, first using the filter visualization approach outlined by Alipanahi  
et al.2 to generate PFMs for convolutional filters. We again used Tom-
Tom to identify filters annotated with canonical RBP motifs43 in both the 
best-performing single-task models and the multitask model (Extended 
Data Fig. 1d and Supplementary Fig. 2c), and found that the number of 
multitask filters annotated to an RBP was correlated with predictive 
performance for that RBP (Extended Data Fig. 1d, bottom). We also 

calculated attributions for all Set B sequences using the InputXGradi-
ent method42 and observed that canonical motifs were learned by both 
single- and multitask models (Extended Data Fig. 1e and Supplementary 
Fig. 2d). Finally, we used EUGENe’s sequence evolution functionality to 
evolve ten random sequences using the single task HNRNPA1L2 model 
and visualized the attributions for these sequences before and after five 
rounds of evolution (Extended Data Fig. 1f). Several of the mutations 
that most increased the predicted score were those that generated 
canonical binding motifs for the protein. We repeated this for two 
other RBPs (Pcbp2 and NCU02404) and observed that each model 
prioritizes mutations that create canonical binding motifs specific to 
the RBP they were trained on (Supplementary Fig. 2e). These results 
show that EUGENe simplifies the extraction of salient features from 
models trained within the same workflow.

As our final use case, we applied EUGENe to the classification of 
JunD binding as described by Kopp and colleagues35. This task uses 
ChIP-seq data from ENCODE1 to generate input sequences and bina-
rized classification labels for each sequence (Extended Data Fig. 2a). We 
used EUGENe to first build a deep-learning-ready dataset for this pre-
diction task (see Methods) and then implemented the CNN architecture 
described by Kopp et al. (Kopp21CNN). We benchmarked classification 
performance against built-in fully connected networks (FCNs), CNNs 
and Hybrid models with matched hyperparameters (Supplementary 
Data 3). All built-in models were configured to incorporate informa-
tion from both the forward and reverse strand (double-stranded or 
‘ds’ models).

We trained models using the same procedure described by Kopp 
et al. (see Methods)35. Due to the unbalanced nature of the dataset, 
we focused on evaluating models with the area under the precision 
recall curve (AUPRC). For our Kopp21CNNs, we were able to achieve 
comparable performances on held-out chromosome 3 sequences to 
those reported by Kopp et al. for one-hot encoded sequences (Extended 
Data Fig. 2b,c). The dsFCN—the only model without any convolutional 
layers—immediately overfit the data after a single training epoch and 
was not predictive of binding (Extended Data Fig. 2c). The dsCNN 
models, however, achieved higher mean AUPRCs than the dsHybrid 
models, and much higher AUPRCs than the Kopp21CNN architectures.

We next applied EUGENe’s interpretation tools to ask whether our 
best models were learning sequence features relevant to JunD binding 
to make predictions. We first generated attributions for the forward 
and reverse complement strands of all test set sequences using the 
GradientSHAP45 method, and visualized the most highly predicted 
sequences as sequence logos (Extended Data Fig. 2d and Supplemen-
tary Fig. 3a). We observed that the most important nucleotides often 
highlighted consensus or near-consensus JunD motifs, and that these 
motifs were often attributed similarly on both the forward and reverse 

Fig. 2 | STARR-seq plant promoter activity prediction. a, jores21 use case 
schematic. We trained EUGENe models to predict the regulatory activity of 
79,838 plant promoters quantified by plant STARR-seq in tobacco and maize. 
GFP, green fluorescent protein. pA, poly-adenylation site b, Performance 
comparison of four convolution-based architectures on predicting promoter 
activity in tobacco leaves (left) and maize protoplasts (right). The box plots show 
distributions of R2 values on held-out test data for each architecture across n = 5 
independent experiments (random initializations). The boxes show medians 
along with low and high quartiles. Whiskers extend to the furthest datapoint 
within 1.5-times the interquartile range. More extreme points are marked as 
outliers. A two-sided Mann–Whitney U test was used to determine P-values, 
which were adjusted using the Benjamini–Hochberg method (*, adjusted 
P-value < 0.05; ns, not significant). Test statistics and adjusted P-values for the 
leaf models (left) were: CNN–Hybrid (u = 15, adjusted P-value = 0.10), CNN–
DeepSTARR (u = 24, adjusted P-value = 0.17), CNN–Jores21CNN (u = 12, adjusted 
P-value = 1.0), Hybrid–DeepSTARR (u = 17, adjusted P-value = 1.0), Hybrid–
Jores21CNN (u = 22, adjusted P-value = 1.0), DeepSTARR–Jores21CNN (u = 14, 
adjusted P-value = 0.84). Test statistics and adjusted P-values for the  
protoplast models (right) were: CNN–Hybrid (u = 15, adjusted P-value = 0.03), 

CNN–DeepSTARR (u = 24, adjusted P-value = 0.01), CNN–Jores21CNN (u = 12, 
adjusted P-value = 0.01), Hybrid–DeepSTARR (u = 17, adjusted P-value = 0.01), 
Hybrid–Jores21CNN (u = 22, adjusted P-value = 0.01), DeepSTARR–Jores21CNN 
(u = 14, adjusted P-value = 0.01). c, A hand-selected set of convolutional filters 
visualized as PWM logos that had significant annotations (adjusted P-value 
< 0.05) to known core promoter elements and transcription factor binding 
clusters in plants. d, Histogram showing the number of learned filters assigned 
to core promoter elements and transcription factor binding clusters by TomTom 
with bolded annotations corresponding to the logos in c. e, Sequence logo 
visualizations of feature importance scores calculated using the DeepLIFT 
algorithm on the highest predicted test set sequence in the Hybrid leaf (top) and 
Jores21CNN protoplast (bottom) models. f, Model scores for n = 310 sequences 
implanted with a 16 bp sequence containing a consensus TATA box motif, a 
shuffled version of the same sequence, an all-zeros sequence and a random 
sequence (all 16 bp in length). Mean model scores with 95% confidence intervals 
are shown. g, Model scores for the same set of n = 310 promoters at different 
rounds of evolution compared against baseline predictions (evolution round 0). 
The best Hybrid leaf model was used to generate panels c, d, f and g (protoplast 
model results are shown in Supplementary Fig. 1).

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 949

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

strands (Extended Data Fig. 2d and Supplementary Fig. 3a); however, 
there were instances in which salient motifs were highlighted on one 
strand but not the other (Extended Data Fig. 2d), indicating the utility 
of incorporating information from both strands for prediction. We 
next generated PFM representations for all ten filters of each convolu-
tional model (excluding dsFCNs) and annotated them using TomTom 
against the HOCOMOCO FULL v.11 database46 (Extended Data Fig. 2e 
and Supplementary Fig. 3b). Among the top hits, we found several 
filters annotated with motifs such as JunD and CTCF (Extended Data 
Fig. 2e and Supplementary Fig. 3b). Finally, we performed an in silico 
experiment with the best overall model, in which we slid a consensus 

JunD motif across each position of a set of ten randomly generated 
sequences and predicted binding (Extended Data Fig. 2f). We observed 
that the simple inclusion of the consensus binding site led to a consid-
erable jump in predicted output with some position specificity. These 
results once again showcase that EUGENe’s interpretation methods can 
help explain model predictions, in this case for DNA protein binding 
from a genome-wide assay.

There are numerous opportunities for future development of 
EUGENe, but we see a few as high priority. EUGENe is primarily designed 
to work on nucleotide sequence input (DNA and RNA), but currently 
does not have dedicated functions for handling protein sequence or 

a

e

c

d

b

g

0

0.1

D
ee

pL
ift

0

0.5

D
ee

pL
ift

f

0.67

0.65

0.63

0.61

0

1

2

Bi
ts

0

1

2

Bi
ts

0

1

2

Bi
ts

0

1

2

Bi
ts

0

1

2
Bi

ts

0

1

2

Bi
ts

Filter 232: TATA

Filter 103: TCP

Filter 140: ERF

0 5 10

0 5 10

0 5 10

0 5 10

0 5 10

0 5 10

Filter 210:MADS/AP2

Filter 148: B3

Filter 107: TATA

CNN

Hyb
rid

DeepSTA
RR

R2

Jo
res2

1C
NN

CNN

Hyb
rid

DeepSTA
RR

Jo
res2

1C
NN

0.68

0.69

0.70

0.71
All pairwise ns All pairwise *

TA
TA

Yp
at

ch
ER

F
C

2H
2

In
r

M
A

D
S/

A
P2

BB
R-

BP
C

G
eB

P
TC

P
BR

Eu B3 TC
T

E2
F/

D
P

0

10

20

30

40

N
um

be
r o

f f
ilt

er
s

−3

−2

−1

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160

Position

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Consensus TATA
Shu�led TATA
Zero
Random

Evolution round

M
od

el
 s

co
re

0 3 5 10

M
od

el
 s

co
re

Tobacco
leaves

Maize
protoplasts

Promoter
(input)

Barcode Enrichment
(target)

0.2

79,838 synthesized 170 bp
promoters

GFP

GFP

pA site

pA site

pA site

pA site

35S
enhancer Promoters Barcodes

GFP

GFP 1.2

–0.9

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 950

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

multimodal inputs. Furthermore, as assays move from bulk to single-
cell resolution, it will be important to develop functionality for han-
dling single-cell data that allows users to easily ask questions about 
cell-type-specific regulatory syntax. Finally, we plan on expanding 
EUGENe’s dataset and model library to encompass a larger portion of 
those available in the field.

The heterogeneity in data types and methods that exist in deep 
learning for regulatory genomics and the rapid pace with which the 
field advances makes maintaining FAIR software in this space a major 
challenge. One of the tasks in Supplementary Table 1, for instance, 
involves a recently developed and highly specific data formatting 
and preprocessing pipeline47. The use of bespoke methods for data 
preprocessing, as well as for model interpretation, is quite common 
in the field, and is often necessary to train accurate models that avoid 
common machine learning pitfalls48. For example, some workflows 
may require complex implementations of train and test set splitting to 
protect against information leakage49. We see substantial value in con-
tinuing to extend EUGENe into spaces such as these, and have designed 
the toolkit to allow for easy integration of this type of functionality. 
To continue to make bespoke methods and workflows accessible, we 
intend to encourage community development of EUGENe through 
tutorials, workshops and a dedicated user group.

As large consortia (such as ENCODE Phase 4 and Impact of 
Genomic Variation on Function) and individual groups continue to 
generate functional genomics data at both the bulk and single-cell 
level, the need for a standardized deep-learning analysis ecosystem 
to investigate complex relationships in this data becomes even more 
pressing. We believe that EUGENe represents a positive step in the direc-
tion of such an ecosystem and will empower computational scientists 
to rapidly expand their knowledge, develop and share methods and 
models, and answer important questions about the genome and how 
it encodes function.

Methods
The EUGENe workflow
Data extraction, transformation and loading with SeqData. The 
EUGENe workflow begins with extracting data from on-disk formats. 
Although standardized file formats exist in regulatory genomics, their 
complexity can make creating model-ready datasets non-trivial. To 
address this in EUGENe, we created the standalone subpackage, Seq-
Data50, which flexibly and efficiently reads data from a variety of file 
formats, including CSV/TSV (tabular), FASTA, BED, BAM and BigWig 
(Extended Data Fig. 3a, top). The versatility of SeqData enables the 
generation of many custom datasets from combinations of these file 
types, including several commonly used in regulatory genomics. These 
include: (1) datasets derived from combinations of tabular and FASTA 
files that are suitable for single- and multitask regression and classifi-
cation (for example, DeepSTARR27); (2) datasets from genomic coor-
dinates defined in BED files suitable for multitask binary classification 
(such as DeepSEA7 or Sei15); and (3) datasets from multiple BigWigs 
and BED files suitable for binned or base-pair resolution regression 
(for example, Basenji10 and BPNet30, respectively). EUGENe also sup-
plies a growing collection of hand-curated datasets available via the 
SeqDatasets subpackage51 (Supplementary Data 4) that can be down-
loaded and subsequently loaded into a workflow via a single function 
call (Extended Data Fig. 3a, bottom).

By default, SeqData reads files from disk as XArray datasets52 
backed by Zarr stores53 (Fig. 1a). We chose to use XArray and Zarr as 
they are scalable, capable of handling high-dimensional data, and 
have been previously used in a variety of bioinformatics domains54–56.  
Furthermore, Zarr stores can be loaded out-of-core thanks to function-
ality offered by XArray and Dask57, allowing for processing and training 
of large-scale datasets (Supplementary Fig. 4a). As is standard in deep 
learning, training in EUGENe is always performed by loading data into 
GPU memory in batches (when a GPU is available), but is slowed by using 

the out-of-core functionality on the CPU (Supplementary Fig. 4b). Thus, 
the decision on whether to first load the dataset into CPU memory 
before training should balance the available resources and dataset size. 
Certain datasets, such as those used to train Enformer21 or Basenji10, 
will probably require this out-of-core functionality; however, we have 
found that many useful and large datasets can entirely fit into memory 
on machines with less than 32 GB of RAM (Supplementary Data 5).

Once created, an array of functions can be called directly on these 
XArray datasets to perform common preprocessing steps. EUGENe 
includes a baseline set of functions for train and test set splitting (for 
example, by chromosome, fraction or homology58) and target normali-
zation (for example, binning, Z-score, clamping and so on) (Extended 
Data Fig. 3b, left). Sequence preprocessing is handled by the SeqPro 
subpackage59, which includes Numba-accelerated60 padding and one-
hot encoding of DNA and RNA sequences (Extended Data Fig. 3b, right), 
as well as jittering and k-mer frequency-preserving shuffling61. EUGENe 
also fully supports data visualization through the Matplotlib62 and 
Seaborn63 libraries (Extended Data Fig. 3c) and conversion of XArray 
datasets to formats ingestible by deep-learning frameworks in a highly 
flexible manner (Extended Data Fig. 3d). Finally, XArray datasets can 
easily be converted to more familiar Python data structures (NumPy 
arrays, Pandas DataFrames and so on) and back to allow the user to 
access the functionality of these libraries.

Model training with PyTorch and PyTorch Lightning. Designing and 
training neural networks for regulatory genomics requires a compre-
hensive library of architecture building blocks. EUGENe builds on the 
PyTorch library of neural network layers by adding several useful layers 
such as inception and residual layers. Furthermore, EUGENe provides 
flexible functions for instantiating common ‘blocks’ and ‘towers’ that 
are composed of heterogeneous sets of layers arranged in a predefined 
or adaptable order. For instance, a convolutional block (Conv1DBlock 
in EUGENe) often comprises convolutional, normalization, activation 
and dropout layers in different orderings depending on the model and 
task (Extended Data Fig. 3e, top). On top of this, EUGENe’s library sup-
ports customizable fully connected (FCN), convolutional (CNN), recur-
rent (RNN) and Hybrid (a combination of the three, shown in Fig. 1b)  
architectures that can be instantiated from single function calls or 
configuration files (Extended Data Fig. 3e, bottom, and Supplemen-
tary Data 6, basic architectures). We have also constructed several 
published architectures that represent specific configurations of these 
basic architectures, and made them accessible to users through single 
function calls (Supplementary Data 6). Users looking to use their own 
custom architectures can also do so, as EUGENe only requires that an 
architecture be defined by its layers ('init' function) and how inputs are 
propagated through those layers (forward function; Supplementary 
Fig. 5a). In summary, model architectures can be instantiated from the 
application programming interface (API), built from scratch using our 
library, or imported from external repositories or packages. We provide 
a detailed tutorial on instantiating architectures via these different 
mechanisms in EUGENe’s tutorials repository64.

Once instantiated, architectures can be initialized with param-
eters sampled from standard initialization distributions (Extended 
Data Fig. 3f, top), or in the special case of convolutional filters, initial-
ized with known motifs8,16 (Extended Data Fig. 3f, bottom). EUGENe 
can then be used to fit initialized architectures to datasets (with 
the option to perform hyperparameter optimization through the  
RayTune package65), and to assess performance and generalizability 
on held-out test data (Extended Data Fig. 3g). For training, EUGENe 
uses the PyTorch Lightning framework66 and programmatic objects 
called LightningModules. Each EUGENe LightningModule delineates 
the architecture types it can train and standardizes boilerplate tasks 
for those architectures (for example, optimizer configuration, metric 
logging and so on). For instance, the primary LightningModule in 
EUGENe, termed SequenceModule (Extended Data Fig. 3h), anticipates 

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 951

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

training an architecture that takes in a single tensor (typically one-hot 
encoded DNA sequences) and delivers a single tensor output. We have 
also implemented a ProfileModule for BPNet-style30 training, in which 
models produce multiple tensor outputs (or ‘heads’), accept optional 
control inputs and use multiple loss functions67. Using LightningMod-
ules in this manner requires only minor code modifications to allow for 
the reuse of the same architectures in different training schemes and 
tasks (Supplementary Fig. 5b) and for the fine-tuning of pretrained 
models (Supplementary Fig. 5c). We plan on continuing to develop the 
library of LightningModules for different training schemes, including 
adversarial learning68, generative modeling69, language modeling70 
and more.

Model interpretation with SeqExplainer. Interpreting models is 
of critical importance in regulatory genomics71–73, but is often made 
challenging by the complexity of neural networks and methods for 
their interpretation. To address this in EUGENe, we created a stan-
dalone subpackage called SeqExplainer that makes various post-hoc 
interpretation strategies accessible to most PyTorch models trained 
on one-hot encoded genomic sequences74. SeqExplainer currently 
provides functionality for filter interpretation, attribution analysis, 
in silico experimentation and sequence generation. Each strategy is 
briefly detailed below.

The interpretation of learned convolutional filters, commonly 
employed for model architectures that begin with a convolutional 
layer, involves using the set of sequences that activate a given filter 
(maximally activating subsequences) to generate a PFM (Extended 
Data Fig. 3i). The PFM can then be converted to a PWM, visualized as 
a sequence logo, and annotated with tools such as TomTom41, using 
databases of known motifs such as JASPAR75 or HOCOMOCO46. Filter 
interpretation in this manner does have limitations. TomTom can be 
inaccurate when annotating motifs from learned filters18,76 and this 
analysis does not specify the importance of each filter for model predic-
tions76. Despite these limitations, filter interpretation can be useful for 
hypothesis generation and for further exploration of how architecture 
affects learned representations76–78.

Attribution analysis involves using the trained model to score 
every nucleotide of the input on how it influences the downstream 
prediction for that sequence (Extended Data Fig. 3j). In SeqExplainer 
and EUGENe, we currently implement several common attribution 
approaches. These include standard in silico saturation mutagenesis, 
InputXGradient42, DeepLIFT42 and GradientSHAP45, with the last three 
using functionality from the Captum package79. Attributions can also 
be used to validate that the model has learned representations that 
resemble motifs. Unlike the filter interpretability approach described 
above, attributions are directly linked to model predictions, and can 
naturally be extended to model the effects of single-nucleotide poly-
morphisms; however, attributions represent a ‘local’, often noisy80,81 
interpretation of a single sequence, and can require clustering into 
‘global’ attributions for cleaner interpretation. In SeqExplainer we 
offer wrappers for running the popular TF-MoDISco algorithm82 to 
accomplish this.

Attribution analysis, although very useful, stops short of quan-
tifying the effect of whole motifs on model predictions. To get at the 
quantitative effects of such patterns, EUGENe offers a wide range of 
functionality for conducting in silico experiments with motifs of inter-
est27,30, also known as global importance analyses (GIAs)5. As the space 
of possible GIAs is essentially infinite, and the type of GIA used is often 
dependent on the data, model and biological question being asked, 
we provide the building blocks for GIAs in SeqExplainer, including 
functionality for generating background sequences and introducing 
perturbations (for example, mutations, motif embedding, motif occlu-
sion and so on) to those sequences (Extended Data Fig. 3k). EUGENe 
currently offers high-level functions for streamlining positional impor-
tance analysis (Extended Data Fig. 3l) and distance-dependent motif 

cooperativity analysis, and we anticipate adding many more common 
GIAs to EUGENe in the future.

The last class of interpretability methods currently offered in 
EUGENe uses trained models to guide sequence evolution. We imple-
ment the simplest form of this approach that iteratively evolves a 
sequence by greedily inserting the mutation with the largest predicted 
impact at each iteration. Starting with an initial sequence (for exam-
ple random, shuffled and so on), this strategy can be used to evolve 
synthetic functional sequences69 (Extended Data Fig. 3m). This style 
of analysis is a promising direction for further research, and can also 
be used for validating that the model has learned representations that 
resemble motifs.

Analysis of plant promoter data
Data acquisition and preprocessing. Plant promoter assay data 
were obtained from the GitHub repository associated with the work 
by Jores and co-workers29. These included two identical libraries for 
a set of 79,838 plant promoters synthesized with an upstream viral 
35 S enhancer and downstream barcode tagged GFP reporter gene 
(Fig. 2a). The libraries were designed to include 10–20 constructs 
with distinct barcodes for each promoter. These libraries were used 
to transiently transform both tobacco leaves and maize protoplasts 
and promoter activities were assayed using plant STARR-seq39. Per-
barcode activity was calculated as the ratio of RNA barcode frequency 
to DNA barcode frequency and the median of these ratios was then 
used to aggregate across barcodes assigned to the same promoter. 
These aggregated scores were then normalized by the median value 
for a control construct and were log transformed to calculate a per-
promoter ‘enrichment’ score. We downloaded these enrichment 
scores83 for both libraries as separate datasets which we could use 
as training targets. We used the identical 90/10 training and test split 
used in Jores et al. (the dataset could be downloaded with set labels). 
The training set was further split into 90/10 train and validation sets. 
All sequences were one-hot encoded using a channel for each letter 
of the DNA alphabet (‘ACGT’).

Model initialization and training. We implemented the Jores21CNN 
architecture by translating the Keras code in the associated GitHub 
repository into PyTorch and integrating it into our library. We bench-
marked this architecture against built-in CNN, Hybrid and DeepSTARR 
architectures in EUGENe with the hyperparameters described in Sup-
plementary Data 1. In each convolutional layer, the Jores21CNN first 
applies a set of filters to the input as is standard for convolutional 
models, but also applies the reverse complements of the filters (as 
opposed to the reverse complement of the sequences) to each input in 
an effort to capture information from both strands40. As this still only 
requires a single strand as input into the models, we opted to bench-
mark against only single-stranded versions of built-in CNN and Hybrid 
models. Following instantiation, we initialized 78 filters in the first 
convolutional layer of each model using PWMs derived from core pro-
moter elements and transcription factor binding clusters downloaded 
from the GitHub repository84 associated with the publication. All of the 
other parameters were initialized by sampling from the Kaiming normal 
distribution85. We trained models for a maximum of 25 epochs with a 
batch size of 128 and used the Adam optimizer with an initial learning 
rate of 0.001. We also included a learning rate scheduler that modified 
the learning rate during training with a patience of two epochs. We 
used mean squared error as our objective function and stopped train-
ing early if the validation set error did not decrease after five epochs.

Model evaluation and interpretation. Models were primarily evalu-
ated using the percentage of variance explained (R2) on predictions 
for the test set. We repeated the above training procedure across five 
independent random initializations and evaluated R2 scores across 
these trials. For PWM visualization, we used the approach described 

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 952

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

by Minnoye and colleagues11. Briefly, for each filter in the first convo-
lutional layer, we calculated activations for all subsequences (of the 
same length as the filter) within the test set sequences. We then took the 
top-100 subsequences corresponding to the top-100 activations (maxi-
mally activating subsequences) and generated a PFM. For visualizing 
filters as sequence logos, we converted PFMs to PWMs using a uniform 
background nucleotide frequency. We calculated attributions for all 
test set sequences using the DeepLIFT method42. To perform the feature 
implantation approach, we downloaded the 16 bp PFM containing the 
consensus TATA box motif from the Jores et al. GitHub repository and 
one-hot encoded it by taking the highest probability nucleotide at each 
position. We also downloaded the set of 310 promoters86 used by Jores 
et al. for in silico evolution. We then implanted the TATA box contain-
ing sequence at every possible position of each of the 310 promoter 
sequences and used selected high-performing models (one each from 
leaf, protoplast and combined) to make predictions. We compared 
this to predicted scores generated with the same feature implantation 
approach using a shuffled version of the 16 bp sequence containing 
the TATA box motif, a random 16 bp one-hot encoded sequence, and a 
16 bp all zeros input. We performed the in silico evolution experiments 
on the same set of 310 promoter sequences29. In each round, we first 
used in silico saturation mutagenesis to identify the mutation that 
increased the model score by the largest positive value (delta score). 
We then introduced this mutation into the sequence and repeated this 
for ten iterations.

Analysis of RNA binding data
Data acquisition and preprocessing. As described in detail by  
Alipanahi and colleagues2, set of 241,357 31–41 nt long RNA probes were 
split into two experimental sets (sets A and B), with each designed to 
include all possible 9-mers at least eight times, all possible 8-mers at 
least 33 times and all possible 7-mers 155 times (Extended Data Fig. 1a). 
These probes were assayed against 244 RBPs using a protein binding 
microarray44, and intensities were normalized as described by Ray 
and colleagues43. We downloaded the normalized RNA probe bind-
ing intensity matrix from the supplementary information of ref. 43, 
and separated the Set A and B sequences into two distinct groups. To 
remove outliers, we set all values of probe intensities to be capped at 
the 99.95 percentile for each prediction task (RBP). We then Z-scored 
the clamped values to zero mean and unit standard deviation for each 
RBP. All normalizations were performed using Set A statistics (that is, 
Set B values were Z-scored using means and standard deviations from 
Set A). For multitask prediction, we removed the 11 RBPs with ≥0.1% 
missing values across all probes in Set A, and further removed all probes 
in Set A that had any missing values for any of the remaining 233 RBPs. 
This left 120,326 and 110,645 probes for training single- and multitask 
models, respectively, and 121,031 in Set B for testing. Set A was then 
further split 80/20 into a training and validation set. All sequences 
were one-hot encoded using a channel for each of the RNA alphabet 
(‘ACGU’) for input into models.

Model initialization and training. We implemented the DeepBind 
architecture described in the supplementary information of Alipanahi 
et al.2 and added it as a EUGENe model library. DeepBind architectures 
were initially designed to take either the forward strand or both strands 
(ds) as input; however, Alipanahi et al. trained their RBP models with 
just the single-strand input due to the single-stranded nature of RNA, 
so we also used a single stranded implementation for our DeepBind 
models. We initialized both the single task models and the multitask 
model with parameters sampled from the Kaiming normal distribu-
tion85 and trained all models for a maximum of 25 and 100 epochs, 
respectively, using the Adam optimizer87 and an initial learning rate 
of 0.005. We also included a learning rate scheduler that modified the 
learning rate during training with a patience of 2 epochs. The batch size 
for training was fixed to 64 and 1,024 for single- and multitask models, 

respectively, and the mean-squared error was used as the objective 
function for all models, with training halting if the validation set error 
did not decrease after five epochs. For multitask models, we used the 
average mean-squared error across all tasks. Hyperparameters selected 
for the architectures of each model are provided in Supplementary  
Data 2. Finally, we downloaded a set of 89 pretrained human RBP  
models88 from Kipoi and wrapped functions from the Kipoi package 
to make predictions using these models.

Model evaluation. We evaluated models using the Z-score, AUC and 
E-score metrics reported by Alipanahi and co-workers2. To calculate 
these metrics, we first computed a binary n × m matrix A, where the n 
rows represent all possible 7-mers from the RNA alphabet (AAAAAAA, 
AAAAAAC, AAAAAAG and so on), and the m columns represent the 
121,031 probes assayed from Set B. Each entry aij in the matrix is 1 if 
the ith k-mer is found in the jth probe and 0 otherwise. Consider first 
working with a single RBP, in which we have normalized binding inten-
sity values for each of the 121,031 probes (m-dimensional vector x). 
We compared the ith row (representing a k-mer) of the matrix A (an 
m-dimensional vector) to the vector x of observed intensities and 
computed the Z-scores, AUCs and E-scores for that k-mer as described 
in ref. 2 and ref. 43. We repeated this for all k-mers (across rows of A) 
to generate an n-dimensional vector for each metric meant to cap-
ture the importance of each k-mer for binding that RBP. For Z-scores,  
0 indicates an average level of binding when that k-mer is present in 
the probe sequence, with more positive scores indicating higher lev-
els of binding than average when that k-mer is present. For AUC and 
E-scores (a modified AUC), the value is bound between 0 and 1, with 
values closer to 1 indicating more binding when that k-mer is present. 
We repeated this process for all models that predict probe intensities 
by substituting the predicted intensities from a given model for the 
vector x of observed intensities. We generated a set of n-dimensional 
vectors for each model-metric pair (that is, for a single-task model, 
we have a vector each for the Z-scores, E-scores and AUCs), and then 
took each of these vectors and calculated Pearson and Spearman cor-
relations with the vector x from the observed Set B intensities. This 
results in a pair of correlation values, one Pearson and one Spearman, 
describing the performance of a given model on a specific RBP (these 
are single points in the box plots shown in Extended Data Fig. 1b and 
Supplementary Fig. 2a). Repeating this process for all RBPs generates 
a distribution of correlations for a given model.

We can use the same procedure on Set A observed intensities 
to generate a distribution of correlations analogous to a biological 
replicate. These are the ‘Set A’ and ‘Observed intensities’ columns of 
Extended Data Fig. 1b and Supplementary Fig. 2a. We generated the 
distribution labeled ‘Set A’ in this way with our own implementation of 
these metrics and downloaded the ‘Observed intensities’ distribution 
from performance tables included in the supplement of Alipanahi and 
colleagues. Finally, we calculated Pearson and Spearman correlation 
coefficients for the observed and predicted intensities on Set B for all 
models. Note that this is not possible to do for Set A as the probes are 
different for this set, hence the omission of the ‘Set A’ and ‘Observed 
intensities’ columns in the last box plots of Extended Data Fig. 1b and 
Supplementary Fig. 2a.

Model interpretation. For filter visualization, we used the approach 
described in Alipanahi and co-workers. Briefly, for a given filter, we 
calculated the activation scores for all possible subsequences (of the 
same length as the filter) from Set B probes and identified the maximum 
value. We then used only the subsequences with an activation at least 
three-quarters of this maximum to generate a PFM for that filter. We 
repeated this process for all 16 filters in each of the top-10 single task 
models and for all 1,024 filters of the multitask model. The top-10 single 
task models were chosen on the basis of ranking of Pearson correlations 
between observed and predicted intensity values. We then input all 

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 3 | November 2023 | 946–956 953

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

multitask PFMs to TomTom for annotation against the Ray2013 Homo 
sapiens database and filtered for hits with a Bonferroni multiple-test-
corrected P-value ≤ 0.05. We calculated attributions for all Set B probes 
using the InputXGradient method42. For multitask models, attributions 
can be calculated on a per task basis to determine how each nucleotide 
of the input sequence influenced that particular task. We again only did 
this for a subset of RBPs, using the Pearson correlation of predicted and 
observed intensities to choose the top-10 single task models and the 
top-10 predicted tasks for the multitask model. We use the same in silico 
evolution method for this use case as we did for the plant promoters. 
Using trained models for selected RBPs, we first performed five rounds 
of evolution on ten randomly generated sequences of 41 nt in length 
(ACGU sampled uniformly). We then calculated feature attributes for 
the initial random sequences and the evolved sequences using the 
InputXGradient method and compared them.

Analysis of JunD binding data
Data acquisition and preprocessing. We followed the same procedure 
to acquire and preprocess the data for training models on the predic-
tion of JunD binding as reported in a work by Kopp and colleagues35. 
We started by downloading JunD peaks from human embryonic stem 
cells (H1-hesc) called with the hg38 reference genome from encode-
project.org (ENCFF446WOD, conservative IDR thresholded peaks, 
narrowPeak format). We next defined regions of interest (ROIs) by 
extending the union of all JunD peaks by 10 kb in each direction. We 
removed blacklisted regions for hg38 (ref. 89) using bedtools90 and 
trimmed the ends of resulting regions to be divisible into 200 bp bins. 
For training and testing, we binned ROI’s into 200 bp sequences and 
labeled any of those that overlapped a JunD binding peak with a posi-
tive label and all non-overlapping bins with a negative label. As input 
to models, we first extended each genomic bin by 150 bp on each side 
(so that the model sees 500 bp in total for each input when predicting 
on a 200 bp site) and then one-hot encoded using a channel for each 
of the DNA alphabet (ACGT). In total, we used 1,013,080 200 bp bins 
for generating training, validation and test sets. We split the sequences 
by chromosome so that validation sequences were from chr2 and test 
sequences from chr3 (the rest were used for training).

Model initialization and training. For the JunD binding task, we first 
implemented the Kopp21CNN architecture described in a work by Kopp 
et al.35 by following the Keras code in the associated GitHub repository 
along with their description of the layers in the supplementary informa-
tion of ref. 35. We then trained five random initializations of dsFCNs, 
dsCNNs, dsHybrids and Kopp21CNNs, each with parameters sampled 
from the Kaiming normal distribution. All of the models used both the 
forward and reverse strands as input through the same architecture 
(ds). Following the work by Kopp and co-workers, we trained all mod-
els for a maximum of 30 epochs with the AMSGrad optimizer91 and an 
initial learning rate of 0.001. The batch size for training was fixed to 
64 for all models and binary cross-entropy was used as the objective 
function, halting training if the validation set error did not decrease 
after five epochs. Hyperparameters selected for the architectures of 
each model are provided in Supplementary Data 3.

Model evaluation and interpretation. Models were primarily evalu-
ated using the AUPRC as the dataset was heavily imbalanced. We again 
performed model interpretation using attributions, filter visualizations 
and in silico experimentation methods from EUGENe. We calculated 
attributions for the forward and reverse strands of all test set sequences 
using the GradientSHAP method45. To visualize filters, we applied 
the approach from ref. 11 and generated PFMs. We fed these PFMs 
to the TomTom webserver and queried the HOCOMOCO v.11 FULL 
database46. We subset filters down to those with a multiple-test-cor-
rected P-value ≤ 0.05 and manually inspected the top hits. These PWMs 
were visualized as logos using a uniform background of nucleotide 

frequencies. We performed the in silico implantation experiment 
using the JunD PFM downloaded from JASPAR92. We calculated model 
scores by generating ten randomly generated sequences (uniformly 
sampled) and implanting the consensus one-hot encoded JunD motif 
at every possible position. We compared this to predicted scores from 
applying the same approach to a random one-hot encoded sequence, 
an all zeros input and a dinucleotide shuffled JunD motif, all of the same 
length as the consensus JunD motif.

Data visualization software
For most exploratory data analysis and performance evaluations, we 
used a combination of the Seaborn and Matplotlib plotting libraries 
in Python. For sequence logo visualizations of filters and attributions, 
we used modified functions from the viz_sequence package93, and the 
logomaker package94.

Statistical methods
Mann–Whitney U tests95 were used to compare performance distribu-
tions between architecture types and P-values were corrected with 
the Benjamini–Hochberg method96. TomTom reports significance of 
alignments of query motifs to a database using the methods described 
in ref. 41. We used the q-value reported by the webserver tool97 and 
considered hits to be those alignments with a q-value ≤ 0.05 as sig-
nificant. Figures for in silico implantation of motifs included 95% 
confidence intervals.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All of the datasets used in this study are publicly available. Raw and 
processed data for the plant promoter STARR-seq were obtained from 
ref. 83. Normalized RNA probe binding intensities were obtained from 
ref. 98. JunD peaks from human embryonic stem cells (H1-hesc) called 
with the hg38 reference genome were obtained from encodeproject.
org (ENCFF446WOD, conservative IDR thresholded peaks, narrow-
Peak format). Blacklisted regions for hg38 were obtained from ref. 89. 
TomTom queries were performed against the Ray2013 Homo sapiens 
and the HOCOMOCO v.11 FULL motif collections for the RBP binding 
and JunD binding use cases, respectively. The JunD PFM was obtained 
from ref. 92 for the in silico implantation experiment; 89 RBP models 
were obtained from the Kipoi mode repository at ref. 88. We have 
also deposited the EUGENe specific dataset files and trained models 
used in the analyses presented here on Zenodo99. These represent the 
processed data files and SeqData objects that can be used along with 
the accompanying code to generate the figures for all the use cases. 
Source Data are provided with this paper.

Code availability
EUGENe is freely available under the MIT license at https://github.
com/ML4GLand/EUGENe. The version of the codebase used for the 
analyses presented here is available on Zenodo100. Documentation for 
the tool is available at https://eugene-tools.readthedocs.io/en/latest/
index.html. Jupyter notebooks and Python scripts used to perform the 
analyses presented here are available on GitHub at https://github.com/
ML4GLand/EUGENe_paper (under the Creative Commons Zero v.1.0 
Universal license) and deposited on Zenodo101.

References
1.	 ENCODE Project Consortium. An integrated encyclopedia of DNA 

elements in the human genome. Nature 489, 57–74 (2012).
2.	 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting 

the sequence specificities of DNA- and RNA-binding proteins by 
deep learning. Nat. Biotechnol. 33, 831–838 (2015).

http://www.nature.com/natcomputsci
http://encodeproject.org
http://encodeproject.org
http://encodeproject.org
http://encodeproject.org
https://github.com/ML4GLand/EUGENe
https://github.com/ML4GLand/EUGENe
https://eugene-tools.readthedocs.io/en/latest/index.html
https://eugene-tools.readthedocs.io/en/latest/index.html
https://github.com/ML4GLand/EUGENe_paper
https://github.com/ML4GLand/EUGENe_paper


Nature Computational Science | Volume 3 | November 2023 | 946–956 954

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

3.	 Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA-
protein sequence and structure binding preferences using deep 
convolutional and recurrent neural networks. BMC Genomics 19, 
511 (2018).

4.	 Quang, D. & Xie, X. FactorNet: a deep learning framework for 
predicting cell type specific transcription factor binding from 
nucleotide-resolution sequential data. Methods 166, 40–47 (2019).

5.	 Koo, P. K., Majdandzic, A., Ploenzke, M., Anand, P. & Paul, S. B.  
Global importance analysis: an interpretability method to 
quantify importance of genomic features in deep neural 
networks. PLoS Comput. Biol. 17, e1008925 (2021).

6.	 Wang, M., Tai, C., E, W. & Wei, L. DeFine: deep convolutional 
neural networks accurately quantify intensities of transcription 
factor-DNA binding and facilitate evaluation of functional non-
coding variants. Nucleic Acids Res. 46, e69 (2018).

7.	 Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding 
variants with deep learning-based sequence model. Nat. Methods 
12, 931–934 (2015).

8.	 Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent 
deep neural network for quantifying the function of DNA 
sequences. Nucleic Acids Res. 44, e107 (2016).

9.	 Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory 
code of the accessible genome with deep convolutional neural 
networks. Genome Res 26, 990–999 (2016).

10.	 Kelley, D. R. et al. Sequential regulatory activity prediction across 
chromosomes with convolutional neural networks. Genome Res 
28, 739–750 (2018).

11.	 Minnoye, L. et al. Cross-species analysis of enhancer logic using 
deep learning. Genome Res. 3, 1815–1834 (2020).

12.	 Atak, Z. K. et al. Interpretation of allele-specific chromatin 
accessibility using cell state-aware deep learning. Genome Res. 
31, 1082–1096 (2021).

13.	 Li, J., Pu, Y., Tang, J., Zou, Q. & Guo, F. DeepATT: a hybrid category 
attention neural network for identifying functional effects of DNA 
sequences. Brief. Bioinform. 22, bbaa159 (2021).

14.	 Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of 
single-cell ATAC-seq using convolutional neural networks. Nat. 
Methods 19, 1088–1096 (2022).

15.	 Chen, K. M., Wong, A. K., Troyanskaya, O. G. & Zhou, J. A 
sequence-based global map of regulatory activity for deciphering 
human genetics. Nat. Genet. 54, 940–949 (2022).

16.	 Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 
601, 630–636 (2022).

17.	 Nair, S., Kim, D. S., Perricone, J. & Kundaje, A. Integrating 
regulatory DNA sequence and gene expression to predict 
genome-wide chromatin accessibility across cellular contexts. 
Bioinformatics 35, i108–i116 (2019).

18.	 Ullah, F. & Ben-Hur, A. A self-attention model for inferring 
cooperativity between regulatory features. Nucleic Acids Res. 49, 
e77 (2021).

19.	 Zhou, J. et al. Deep learning sequence-based ab initio prediction 
of variant effects on expression and disease risk. Nat. Genet. 50, 
1171–1179 (2018).

20.	 Agarwal, V. & Shendure, J. Predicting mRNA abundance directly 
from genomic sequence using deep convolutional neural 
networks. Cell Rep. 31, 107663 (2020).

21.	 Avsec, Ž. et al. Effective gene expression prediction from 
sequence by integrating long-range interactions. Nat. Methods 
18, 1196–1203 (2021).

22.	 Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin 
interaction-aware gene regulatory modeling with graph attention 
networks. Genome Res. 32, 930–944 (2022).

23.	 Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting 3D genome 
folding from DNA sequence with Akita. Nat. Methods 17, 1111–1117 
(2020).

24.	 Zhou, J. Sequence-based modeling of three-dimensional genome 
architecture from kilobase to chromosome scale. Nat. Genet. 54, 
725–734 (2022).

25.	 Yang, R. et al. Epiphany: predicting Hi-C contact maps from 1D 
epigenomic signals. Genome Biol. 24, 134 (2023).

26.	 Tan, J. et al. Cell-type-specific prediction of 3D chromatin 
organization enables high-throughput in silico genetic screening. 
Nat. Biotechnol. 41, 1140–1150 (2023).

27.	 de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR 
predicts enhancer activity from DNA sequence and enables the 
de novo design of synthetic enhancers. Nat. Genet. 54, 613–624 
(2022).

28.	 Movva, R. et al. Deciphering regulatory DNA sequences and 
noncoding genetic variants using neural network models of 
massively parallel reporter assays. PLoS One 14, e0218073 
(2019).

29.	 Jores, T. et al. Synthetic promoter designs enabled by a 
comprehensive analysis of plant core promoters. Nat. Plants 7, 
842–855 (2021).

30.	 Avsec, Ž. et al. Base-resolution models of transcription-factor 
binding reveal soft motif syntax. Nat. Genet. 53, 354–366 (2021).

31.	 Paszke, A. et al. PyTorch: an imperative style, high-performance 
deep learning library. Preprint at arXiv https://doi.org/10.48550/
arXiv.1912.01703 (2019).

32.	 Abadi, M. et al. TensorFlow: a system for large-scale 
machine learning. Preprint at arXiv https://doi.org/10.48550/
arXiv.1605.08695 (2016).

33.	 Budach, S. & Marsico, A. pysster: classification of biological 
sequences by learning sequence and structure motifs with 
convolutional neural networks. Bioinformatics 34, 3035–3037 (2018).

34.	 Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G. Selene: 
a PyTorch-based deep learning library for sequence data. Nat. 
Methods 16, 315–318 (2019).

35.	 Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep 
learning for genomics using Janggu. Nat. Commun. 11, 3488 (2020).

36.	 Avsec, Ž. et al. The Kipoi repository accelerates community 
exchange and reuse of predictive models for genomics. Nat. 
Biotechnol. 37, 592–600 (2019).

37.	 Chalupová, E. et al. ENNGene: an easy neural network model 
building tool for genomics. BMC Genomics 23, 248 (2022).

38.	 Barker, M. et al. Introducing the FAIR Principles for research 
software. Sci Data. 9, 622 (2022).

39.	 Jores, T. et al. Identification of plant enhancers and their 
constituent elements by STARR-seq in tobacco leaves. Plant Cell 
32, 2120–2131 (2020).

40.	 Onimaru, K., Nishimura, O. & Kuraku, S. Predicting gene 
regulatory regions with a convolutional neural network for 
processing double-strand genome sequence information. PLoS 
One 15, e0235748 (2020).

41.	 Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S.  
Quantifying similarity between motifs. Genome Biol. 8, R24 
(2007).

42.	 Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not just 
a black box: learning important features through propagating 
activation differences. Preprint at arXiv https://doi.org/10.48550/
arXiv.1605.01713 (2016).

43.	 Ray, D. et al. A compendium of RNA-binding motifs for decoding 
gene regulation. Nature 499, 172–177 (2013).

44.	 Berger, M. F. & Bulyk, M. L. Universal protein-binding microarrays 
for the comprehensive characterization of the DNA-binding 
specificities of transcription factors. Nat. Protoc. 4, 393–411 (2009).

45.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting 
model predictions. In Advances in Neural Information Processing 
Systems (eds. Guyon, I. et al.) Vol. 30, 4765–4774 (Curran 
Associates, 2017).

http://www.nature.com/natcomputsci
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1605.01713
https://doi.org/10.48550/arXiv.1605.01713


Nature Computational Science | Volume 3 | November 2023 | 946–956 955

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

46.	 Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete 
collection of transcription factor binding models for human and 
mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, 
D252–D259 (2018).

47.	 Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling 
on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).

48.	 Whalen, S., Schreiber, J., Noble, W. S. & Pollard, K. S. Navigating 
the pitfalls of applying machine learning in genomics. Nat. Rev. 
Genet. 23, 169–181 (2021).

49.	 Urban, G., Torrisi, M., Magnan, C. N., Pollastri, G. & Baldi, P. Protein 
profiles: biases and protocols. Comput. Struct. Biotechnol. J. 18, 
2281–2289 (2020).

50.	 Laub, D. & Klie, A. ML4GLand/SeqData (GitHub, 2023);  
https://github.com/ML4GLand/SeqData

51.	 Klie, A. ML4GLand/SeqDatasets (GitHub, 2023); https://github.
com/ML4GLand/SeqDatasets

52.	 Hoyer, S. & Hamman, J. XArray: N-D labeled arrays and datasets in 
Python. J. Open. Res. Softw. 5, 10 (2017).

53.	 Miles, A. et al. Zarr-Developers/Zarr-Python: v2.15.0 (Zenodo, 
2023); https://doi.org/10.5281/zenodo.8039103

54.	 Baker, E. A. G. et al. emObject: domain specific data  
abstraction for spatial omics. Preprint at bioRxiv https://doi.org/ 
10.1101/2023.06.07.543950 (2023).

55.	 Marconato, L. et al. SpatialData: an open and universal data 
framework for spatial omics. Preprint at bioRxiv https://doi.org/ 
10.1101/2023.05.05.539647 (2023).

56.	 Liu, H. et al. DNA methylation atlas of the mouse brain at single-
cell resolution. Nature 598, 120–128 (2021).

57.	 Dask: Library for Dynamic Task Scheduling (Dask, 2016);  
https://dask.org

58.	 Teufel, F. et al. GraphPart: homology partitioning for biological 
sequence analysis. NAR Genom. Bioinform. 5, lqad088 (2023).

59.	 Klie, A. & Laub, D. ML4GLand/SeqPro (GitHub, 2023);  
https://github.com/ML4GLand/SeqPro

60.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python 
JIT compiler. In Proc. 2nd Workshop on the LLVM Compiler 
Infrastructure in HPC 1–6 (Association for Computing Machinery, 
2015); https://doi.org/10.1145/2833157.2833162

61.	 Jiang, M., Anderson, J., Gillespie, J. & Mayne, M. uShuffle: a useful 
tool for shuffling biological sequences while preserving the k-let 
counts. BMC Bioinf. 9, 192 (2008).

62.	 Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. 
Eng. 9, 90–95 (2007).

63.	 Waskom, M. Seaborn: statistical data visualization. J. Open Source 
Softw. 6, 3021 (2021).

64.	 Klie, A. Tutorials/Eugene/Models/Instantiating_Models.ipynb 
(GitHub, 2023); https://github.com/ML4GLand/tutorials/blob/
main/eugene/models/instantiating_models.ipynb

65.	 Moritz, P. et al. Ray: a distributed framework for emerging 
AI applications. Preprint at arXiv https://doi.org/10.48550/
arXiv.1712.05889 (2017).

66.	 Falcon, W. et al. PyTorchLightning/Pytorch-Lightning: 0.7.6 Release 
(Zenodo, 2020); https://doi.org/10.5281/ZENODO.3828935

67.	 Klie, A. Use_Cases/BPNet/Train_Eugene.ipynb (GitHub, 2023); 
https://github.com/ML4GLand/use_cases/blob/main/BPNet/
train_eugene.ipynb

68.	 Koo, P. K., Qian, S., Kaplun, G., Volf, V. & Kalimeris, D. Robust neural 
networks are more interpretable for genomics. Preprint at bioRxiv 
https://doi.org/10.1101/657437 (2019).

69.	 Taskiran, I. I., Spanier, K. I., Christiaens, V., Mauduit, D. & Aerts, S.  
Cell type directed design of synthetic enhancers. Preprint at 
bioRxiv https://doi.org/10.1101/2022.07.26.501466 (2022).

70.	 Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained 
bidirectional encoder representations from transformers model 
for DNA-language in genome. Bioinformatics 37, 2112–2120 (2021).

71.	 Koo, P. K. & Ploenzke, M. Deep learning for inferring transcription 
factor binding sites. Curr Opin Syst Biol 19, 16–23 (2020).

72.	 Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W. & 
Mostafavi, S. Obtaining genetics insights from deep learning via 
explainable artificial intelligence. Nat. Rev. Genet. 24, 125–137 (2022).

73.	 Talukder, A., Barham, C., Li, X. & Hu, H. Interpretation of deep 
learning in genomics and epigenomics. Brief. Bioinform. 22, 
bbaa177 (2021).

74.	 Klie, A. ML4GLand/SeqExplainer (GitHub, 2023); https://github.
com/ML4GLand/SeqExplainer

75.	 Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the 
open-access database of transcription factor binding profiles. 
Nucleic Acids Res. 50, D165–D173 (2022).

76.	 Koo, P. K. & Eddy, S. R. Representation learning of genomic 
sequence motifs with convolutional neural networks. PLoS 
Comput. Biol. 15, e1007560 (2019).

77.	 Koo, P. K. & Ploenzke, M. Improving representations of genomic 
sequence motifs in convolutional networks with exponential 
activations. Nat. Mach. Intell. 3, 258–266 (2021).

78.	 Ploenzke, M. S. & Irizarry, R. A. Interpretable convolution methods 
for learning genomic sequence motifs. Preprint at bioRxiv https://
doi.org/10.1101/411934 (2018).

79.	 Kokhlikyan, N. et al. Captum: a unified and generic model 
interpretability library for PyTorch. Preprint at arXiv https://doi.org/ 
10.48550/arXiv.2009.07896 (2020).

80.	 Han, T., Srinivas, S. & Lakkaraju, H. Which explanation should I 
choose? A function approximation perspective to characterizing 
post Hoc explanations. Preprint at arXiv https://doi.org/10.48550/
arXiv.2206.01254 (2022).

81.	 Majdandzic, A., Rajesh, C. & Koo, P. K. Correcting gradient-based 
interpretations of deep neural networks for genomics. Genome 
Biol. 24, 109 (2023).

82.	 Shrikumar, A. et al. Technical note on transcription factor motif 
discovery from importance scores (TF-MoDISco) version 0.5.6.5. 
Preprint at https://arxiv.org/abs/1811.00416 (2018).

83.	 Jores, T. Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive- 
Analysis-of-Plant-Core-Promoters/tree/main/CNN (GitHub, 2021); 
https://github.com/tobjores/Synthetic-Promoter-Designs-
Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/
tree/main/CNN

84.	 Jores, T. Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive- 
Analysis-of-Plant-Core-Promoters (GitHub, 2021); https://github.
com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-
Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/
data/misc

85.	 He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: 
surpassing human-level performance on imagenet classification. 
Preprint at https://arxiv.org/abs/1502.01852 (2015).

86.	 Jores, T. Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive- 
Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_
sequences/promoters_for_evolution.tsv (GitHub, 2021); https://
github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-
a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/
analysis/validation_sequences/promoters_for_evolution.tsv

87.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. 
Preprint at https://arxiv.org/abs/1412.6980 (2014).

88.	 DeepBind/Homo_sapiens/RBP/ (Kipoi, 2023); https://kipoi.org/
models/DeepBind/Homo_sapiens/RBP/

89.	 Index of Kundaje/Akundaje/Release/Blacklists/hg38-human (Univ. 
Stanford, 2016); http://mitra.stanford.edu/kundaje/akundaje/
release/blacklists/hg38-human/hg38.blacklist.bed.gz

90.	 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for 
comparing genomic features. Bioinformatics 26, 841–842 (2010).

91.	 Phuong, T. T. & Phong, L. T. On the convergence proof of AMSGrad and 
a new version. Preprint at https://arxiv.org/abs/1904.03590 (2019).

http://www.nature.com/natcomputsci
https://github.com/ML4GLand/SeqData
https://github.com/ML4GLand/SeqData
https://github.com/ML4GLand/SeqDatasets
https://github.com/ML4GLand/SeqDatasets
https://doi.org/10.5281/zenodo.8039103
https://doi.org/10.1101/2023.06.07.543950
https://doi.org/10.1101/2023.06.07.543950
https://doi.org/10.1101/2023.05.05.539647
https://doi.org/10.1101/2023.05.05.539647
https://dask.org
https://github.com/ML4GLand/SeqPro.
https://github.com/ML4GLand/SeqPro.
https://doi.org/10.1145/2833157.2833162
https://github.com/ML4GLand/tutorials/blob/main/eugene/models/instantiating_models.ipynb
https://github.com/ML4GLand/tutorials/blob/main/eugene/models/instantiating_models.ipynb
https://doi.org/10.48550/arXiv.1712.05889
https://doi.org/10.48550/arXiv.1712.05889
https://doi.org/10.5281/ZENODO.3828935
https://github.com/ML4GLand/use_cases/blob/main/BPNet/train_eugene.ipynb
https://github.com/ML4GLand/use_cases/blob/main/BPNet/train_eugene.ipynb
https://doi.org/10.1101/657437
https://doi.org/10.1101/2022.07.26.501466
https://github.com/ML4GLand/SeqExplainer
https://github.com/ML4GLand/SeqExplainer
https://doi.org/10.1101/411934
https://doi.org/10.1101/411934
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.48550/arXiv.2009.07896
https://doi.org/10.48550/arXiv.2206.01254
https://doi.org/10.48550/arXiv.2206.01254
https://arxiv.org/abs/1811.00416
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/CNN
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/CNN
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/CNN
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://arxiv.org/abs/1502.01852
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://arxiv.org/abs/1412.6980
https://kipoi.org/models/DeepBind/Homo_sapiens/RBP/
https://kipoi.org/models/DeepBind/Homo_sapiens/RBP/
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz
https://arxiv.org/abs/1904.03590


Nature Computational Science | Volume 3 | November 2023 | 946–956 956

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

92.	 Detailed Information of Matrix Profile MA0491.1 (JASPAR, 2022); 
https://jaspar.genereg.net/matrix/MA0491.1

93.	 Shri, A. Kundajelab/Vizsequence (GitHub, 2019); https://github.
com/kundajelab/vizsequence

94.	 Kinney, J. B. Jbkinney/Logomaker (GitHub, 2019); https://github.
com/jbkinney/logomaker

95.	 Mann, H. B. & Whitney, D. R. On a test of whether one of two 
random variables is stochastically larger than the other. Ann. 
Math. Statist. 18, 50–60 (1947).

96.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: 
a practical and powerful approach to multiple testing. J. R. Stat. 
Soc. B 57, 289–300 (1995).

97.	 TomTom: Motif Comparison Tool (MEME Suite, 2023);  
https://meme-suite.org/meme/tools/tomtom

98.	 Hughes, T. R. et al. Web Supplement to "A Compendium of RNA-
Binding Motifs for Decoding Gene Regulation" (Univ. Toronto, 
2023); https://hugheslab.ccbr.utoronto.ca/supplementary-data/
RNAcompete_eukarya/

99.	 Klie, A. Data to reproduce results presented in: Predictive analyses 
of regulatory sequences with EUGENe (Zenodo, 2023);  
https://doi.org/10.5281/zenodo.8169774

100.	Klie, A., Hayden & Laub, D. ML4GLand/EUGENe: Revision Release 
for EUGENe Codebase (Zenodo, 2023); https://doi.org/10.5281/
zenodo.8357440

101.	 Klie, A. & Laub, D. ML4GLand/EUGENe_paper: Revision Release for 
EUGENe Paper Repository (Zenodo, 2023); https://doi.org/10.5281/
zenodo.8357432

Acknowledgements
This work was supported by the National Institutes of Health (grant  
no. 1U01HG012059); infrastructure was funded by the National 
Institutes of Health (grant no. 2P41GM103504-11); T.J. is supported by 
the German Research Foundation (DFG; fellowship no. 441540116). 
E.K.F and J.J.S were supported by the National Institutes of Health 
(grant no. DP2HG010013). H.C. is supported by the Canadian Institute 
for Advanced Research (award no. FL-000655). We would like to thank 
the community of genomics researchers who made their code open 
source so that we could utilize it for EUGENe functions.

Author contributions
A.K., J.J.S., E.K.F. and H.C. designed the study. A.K. designed the 
toolkit. A.K., D.L, J.T. and H.S. implemented the code. A.K. and D.L. 

performed the use case analyses. J.J.S., D.L., J.T. and H.S. performed 
software testing. H.C. supervised the work. All authors read and 
corrected the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s43588-023-00544-w.

Correspondence and requests for materials should be addressed to 
Hannah Carter.

Peer review information Nature Computational Science thanks the 
anonymous reviewer(s) for their contribution to the peer review of this 
work. Primary Handling Editor: Fernando Chirigati, in collaboration 
with the Nature Computational Science team. Peer reviewer reports 
are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natcomputsci
https://jaspar.genereg.net/matrix/MA0491.1
https://github.com/kundajelab/vizsequence
https://github.com/kundajelab/vizsequence
https://github.com/jbkinney/logomaker
https://github.com/jbkinney/logomaker
https://meme-suite.org/meme/tools/tomtom
https://meme-suite.org/meme/tools/tomtom
https://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/
https://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/
https://doi.org/10.5281/zenodo.8169774
https://doi.org/10.5281/zenodo.8357440
https://doi.org/10.5281/zenodo.8357440
https://doi.org/10.5281/zenodo.8357432
https://doi.org/10.5281/zenodo.8357432
https://doi.org/10.1038/s43588-023-00544-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/natcomputsci


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 1 | In vitro RNA binding prediction with DeepBind. a, ray13 
use case schematic. n = 244 RNA binding proteins (RBPs) were assayed across 
a set of 241,357 RNA probes to generate a 241,357 × 244 dimensional matrix of 
normalized intensity values. b, Pearson correlations across four different metrics 
with each metric calculated from comparisons between observed (Set B) and 
predicted binding intensities (see Methods for more details on how each metric  
is calculated). Each boxplot indicates a distribution of Pearson correlations 
across all n = 244 RBPs, except for Kipoi which includes n = 89 RBPs. Ray et al,  
MatrixREDUCE, DeepBind and Observed intensities refer to correlations 
calculated from predicted intensities reported in Alipanahi et al. Observed 
intensities and SetA refer to correlations calculated using the intensities from 
Set A probes as the predicted intensities (see Methods). The boxes show medians 
along with low and high quartiles. Whiskers extend to the furthest datapoint 
within 1.5-times the interquartile range. c, Performance comparison scatterplots 
for ST models against MT models (left) and against Kipoi models (right). Each 

dot indicates a comparison of the Pearson correlation between predicted and 
observed intensities for two models on a single RBP. d, (top) A multitask filter 
with a TomTom annotation for HNRNPA1L2 visualized as a PWM logo. (middle) 
A filter for the single task HNRNPA1L2 model with a TomTom annotation for 
HNRNPA1L2. (bottom) The relationship between multitask performance (using 
the Z-scored Pearson correlations of observed and predicted intensities) on the 
y-axis, against the number of filters that were annotated with the corresponding 
RBP for that task on the x-axis. The Spearman’s correlation coefficient and 
associated P-value are shown. e, Attributions for the sequence with the highest 
observed intensity in the test set for HNRNPA1L2. The attributions were 
calculated using InputXGradient for single task (top) and multitask (bottom) 
models. f, The InputXGradient attribution scores for a random (top) and evolved 
(bottom) sequence after evolution with the HNRNPA1L2 single task model. Red 
dashed lines indicate mutations made during evolution and are annotated with 
the round the mutation occurred in. Source data.

http://www.nature.com/natcomputsci


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/natcomputsci


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 2 | JunD ChIP-seq binding classification. a, kopp21 use 
case schematic. We used SeqData to load in a set of 11,086 ChIP-seq peaks for 
JunD and to generate positive and negative sets for JunD binding prediction. 
SeqData uses a set of regions of interest (ROIs) along with peaks and a bin size 
and outputs a set of labeled sequences for each bin in the ROI. Bins are labeled as 
positive (1) if they overlap a peak and negative (0) if they do not. Upon loading, 
each sequence is extended by 150 bp in each direction to provide more sequence 
context for prediction. b,c, auPRCs on held-out test data from chromosome 
3 for JunD binding classification across four double-stranded architectures b, 
The boxplots show distributions of auPRC values on held-out test data for each 
architecture across n = 5 independent experiments (random initializations). 
A two-sided Mann-Whitney U test was used to determine P-values which were 
adjusted by the Benjamini-Hochberg method (* = adjusted P-value < 0.05, ns = 
not significant). Test statistics and adjusted P-values were: dsFCN-Kopp21CNN 
(u = 0, adjusted P-value = 0.02), dsFCN-dsHybrid (u = 0, adjusted P-value = 0.02), 

dsFCN-dsCNN (u = 0, adjusted P-value = 0.02), Kopp21CNN-dsHybrid (u = 4, 
adjusted P-value = 0.11), Kopp21CNN-dsCNN (u = 4, adjusted P-value = 0.11), 
dsHybrid-dsCNN (u = 8, adjusted P-value = 0.42). c, auPR curves for the best 
models from each architecture. d, Sequence logos of attributions for the top 
predicted sequence. The top row shows attributions from the forward strand 
and the bottom row from the reverse strand. Attributions were calculated using 
GradientSHAP. e, A selected set of convolutional filters visualized as PWM logos 
with significant annotations from TomTom (adjusted P-value < 0.05). f, Model 
scores for n = 10 random sequences with consensus JunD motif implanted at 
each possible location. Mean model scores with 95% confidence intervals are 
shown. The boxplot shows the distribution of scores for the random sequences 
prior to JunD motif implantation. All boxes show medians along with low and 
high quartiles. Whiskers extend to the furthest datapoint within 1.5-times the 
interquartile range. More extreme points are marked as outliers.

http://www.nature.com/natcomputsci


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/natcomputsci


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00544-w

Extended Data Fig. 3 | End-to-end data processing, training, and 
interpretation with EUGENe. a, SeqData objects can be loaded from files 
already on disk, or by calling for a dataset available for download from the 
SeqDatasets subpackage. Once instantiated, SeqData objects containerize the 
EUGENe workflow, easing the b, preprocessing of sequences and of sequence 
metadata, c, the generation of exploratory data analysis plots, and d, the creation 
of PyTorch loadable datasets and objects. e, An architecture can be instantiated 
either from a single function call (top) or from a configuration file (bottom). 
Conv1DBlocks and DenseBlocks both allow for flexibility in the ordering of layers 
they contain (one example ordering is shown). Instantiated architectures can 
be f, initialized with a desired initialization scheme, then g, fit to training data 
and used to predict on held-out data. Performance metric training curves are 
pictured in the top panel of g, test set performance curves for regression (left) 
and classification (right) are depicted in the bottom panel of g. Both training 

and prediction are handled by PyTorch Lightning. We show an example of the 
arguments for instantiating a SequenceModule in h. i, For filter interpretation, 
filters in the first convolutional layer are used to scan input sequences for 
‘maximally activating subsequences’ that can then be used to generate position 
frequency matrices and sequence logos. j, Attribution analysis starts by passing 
inputs sequences through the model to generate an output. This output signal is 
then backpropagated to the input to generate a per nucleotide score that can be 
visualized as a sequence logo. k, Random or synthetically designed sequences 
that have been mutated or have had motifs implanted in them can be scored 
using a trained model. Results from toy examples of this in silico approach are 
shown in l and m, which depict a positional importance analysis and a prediction 
evolution analysis respectively. Example function arguments have been omitted 
for a, b, e, i, j, k, l and m.

http://www.nature.com/natcomputsci







	Predictive analyses of regulatory sequences with EUGENe

	Methods

	The EUGENe workflow

	Data extraction, transformation and loading with SeqData
	Model training with PyTorch and PyTorch Lightning
	Model interpretation with SeqExplainer

	Analysis of plant promoter data

	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation and interpretation

	Analysis of RNA binding data

	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation
	Model interpretation

	Analysis of JunD binding data

	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation and interpretation

	Data visualization software

	Statistical methods

	Reporting summary


	Acknowledgements

	Fig. 1 EUGENe workflow for predictive analyses of regulatory sequences.
	Fig. 2 STARR-seq plant promoter activity prediction.
	Extended Data Fig. 1 In vitro RNA binding prediction with DeepBind.
	Extended Data Fig. 2 JunD ChIP-seq binding classification.
	Extended Data Fig. 3 End-to-end data processing, training, and interpretation with EUGENe.




