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A universal programmable Gaussian boson 
sampler for drug discovery

Shang Yu    1,2,3,4,7  , Zhi-Peng Zhong1,7, Yuhua Fang5,7, Raj B. Patel    2  ,  
Qing-Peng Li1, Wei Liu3,4, Zhenghao Li2, Liang Xu1, Steven Sagona-Stophel    2, 
Ewan Mer2, Sarah E. Thomas    2, Yu Meng3,4, Zhi-Peng Li3,4, Yuan-Ze Yang3,4, 
Zhao-An Wang3,4, Nai-Jie Guo3,4, Wen-Hao Zhang3,4, Geoffrey K. Tranmer5, 
Ying Dong    1, Yi-Tao Wang3,4  , Jian-Shun Tang    3,4,6  , Chuan-Feng Li    3,4,6  , 
Ian A. Walmsley    2 & Guang-Can Guo3,4,6

Gaussian boson sampling (GBS) has the potential to solve complex graph 
problems, such as clique finding, which is relevant to drug discovery tasks. 
However, realizing the full benefits of quantum enhancements requires 
large-scale quantum hardware with universal programmability. Here we 
have developed a time-bin-encoded GBS photonic quantum processor that 
is universal, programmable and software-scalable. Our processor features 
freely adjustable squeezing parameters and can implement arbitrary 
unitary operations with a programmable interferometer. Leveraging our 
processor, we successfully executed clique finding on a 32-node graph, 
achieving approximately twice the success probability compared to classical 
sampling. As proof of concept, we implemented a versatile quantum drug 
discovery platform using this GBS processor, enabling molecular docking 
and RNA-folding prediction tasks. Our work achieves GBS circuitry with its 
universal and programmable architecture, advancing GBS toward use in 
real-world applications.

Quantum computing technology has developed rapidly in recent 
years1–7, and an exponential ‘speed-up’ compared to classical  
methods has been experimentally demonstrated for certain  
algorithms4,5,7–9. Quantum sampling tasks, like boson sampling10–12, 
have proven to be challenging to solve within a reasonable time  
frame on classical computers, but can be implemented and solved 
efficiently on photonic processors1,13. As a variant of boson sampling, 
Gaussian boson sampling (GBS)14 uses squeezed light to encode and 
carry the input states, making the method easier to scale. The method 
shows great capacity to demonstrate quantum advantage in optical 
systems5,7.

The prospect of achieving quantum advantage has motivated 
the discovery of several real-world applications, such as dense graph 
searching15,16, molecular vibronic spectra calculations6,17 and molecular 
docking18. For these tasks, a GBS device should be programmable and 
scalable to a large number of modes5,6; however, achieving such capabil-
ity is a challenging task16 due to the experimental complexity involved 
in preparing the large number of individually addressable input states 
and phase-shifters necessary to achieve universal programmability5,6.

Time-bin encoding of Gaussian states is an effective means of 
achieving scale and programmability7,16,19–21. First, it is resource efficient 
because only one squeezed source and one detector are required16. 
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Fig. 1 | Implementation, verification and application of Abacus. a, The GBS 
machine consists of four main parts: (1) squeezed-state preparation, (2) QPU, (3) 
QuSAM and (4) detection. The red lines represent the squeezed-light signal, while 
the dark red arrows indicate the direction of the signal light within the QPU loop. 
For clarity, the control system, which includes three arbitrary waveform 
generators and a control computer, is not shown. The abbreviations indicate PBS, 
half-wave plate (HWP), right-angle prism mirrors (RAP), roof prism mirror (RF), 
cylindrical lens (CL), beam splitter (BS) and time-to-digital converter (TDC).  
b, GBS results, probability distribution of all 496 two-photon detection events in a 
32-mode experiment. The horizontal axis numbering represents a methodical 
ordering by (i,j) from 0 to C32

2 − 1 (Cnk = n!/(k!(n− k)!)), corresponding to the 
detection of a photon in output mode (i,j). c, GBS results, probability distribution 
of all 1,820 four-photon detection events in a 16-mode experiment. The 
horizontal axis numbering represents a methodical ordering by (i,j,k,l) from  
0 to C16

4 − 1, corresponding to the detection of a photon in output mode (i,j,k,l).  

d, Finding the maximum weighted clique in a 32-node graph. The probabilities of 
the six-node cliques in the graph 𝒢𝒢32 are shown at the bottom with box-and-
whisker plots. The corresponding graph is shown above; the labels beside the 
nodes denote the corresponding order and the weight of the nodes is represented 
by their size. The statistics are calculated from ten individual experiments, each 
with around 300 samples. The wide blue boxes of varying shades, and the red box, 
symbolize the GBS experimental results. The lower and upper limits of the 
‘whisker’ denote the minimum and maximum values (excluding outliers), 
respectively; and the horizontal black (or white) lines inside the boxes indicate 
the median value. The shaded regions denote the cliques identified through GBS 
results, with the red-shaded regions representing the maximum weighted 
cliques. The classical uniform sampling results are portrayed by slim yellow boxes 
of varying shades. In a few cases, outlier data are displayed as circles that match 
the color of the corresponding box. The diagram shows that the GBS machine  
can identify the maximum weighted clique with a higher success rate.

http://www.nature.com/natcomputsci
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Second, time-bin operation provides phase stability and exhibits  
losses comparable with other approaches22. Time-bin interferometers 
show flexibility in reconfiguration because they can realize arbitrary-
dimension linear transformations with the same setup. Recently, 
quantum computational advantage has been demonstrated with a  
programmable time-bin-encoded GBS machine7, though in that 
research, universality was sacrificed to avoid the accumulation of loss.

This prompts us to consider a universal and programmable  
time-bin GBS machine that can fulfill various practical tasks. The GBS 
algorithm can potentially be applied to many important problems  
and enhance their solution, for example, the complete subgraph 
(clique) finding task23,24. Some structure-based drug design methods, 
like molecular docking or protein folding prediction, can be inter-
preted as equivalent to the problem of finding the maximum weighted  
clique in their corresponding graph models18,25,26. Hence, a universal, 
programmable, GBS machine equipped with freely adjustable squeez-
ers and interferometer can be utilized for these tasks and extend the 
range of practical applications based on graph theory. Inspired by this 
prospect, in this work we built a scalable, universal and programma-
ble time-bin GBS machine, making a stride toward using GBS in drug 
discovery applications.

Results
Programmable GBS machine and sampling results
The GBS machine, named ‘Abacus’, comprises four primary com-
ponents: a tunable squeezed-state source for precise light state  
control27–30; a quantum processing unit based on the architecture  
of Clements et al.31 that ensures stable, programmable quantum 
information processing32; a quantum sequential access memory 
with a 180-meter optical fiber designed for efficient data storage and 
cyclic operations; and a detection module featuring superconducting 
nanowire single-photon detectors (SNSPDs) for collision-free photon  
measurements. Further details are provided in the Methods  
section ‘Details about the programmable GBS machine’, as well as in 
Supplementary Information Sections 1 and 2.

As illustrated in Fig. 1a, this time-bin-encoded GBS machine ena-
bles us to expand the number of modes arbitrarily and freely set the 
required squeezing parameters, denoted as ri, and linear transforma-
tion matrix for the tasks with a series of electro-optic modulators 
(EOMs). Thus, this universal and programmable architecture supports 
the running of arbitrary GBS circuits on this machine. As a concrete 
example, benefitting from these features, the adjacency matrix 𝒜𝒜  
of a graph 𝒢𝒢 can be encoded into this GBS machine by decomposing 
ℒ(𝒜𝒜𝒜 (Laplacian of the adjacency matrix of graph 𝒢𝒢) after a suitable 
re-scaling, as shown in the inset of Fig. 1a.

The validation of Abacus is demonstrated by the sampling results 
from running two random GBS circuits with different dimensions. The 
normalized photon sampling distribution probabilities are shown in 
Fig. 1b,c. In Fig. 1b, a 32-mode random interferometer is chosen, and 
only four squeezers are turned on, with r1−3,32 = 2.23. The statistical 

results of all two-photon detection events are plotted, and the total 
variation distance between experimental and theoretical results is 
0.054. Similarly, the four-photon distribution pattern is shown in 
Fig. 1c, conducted on a 16-mode GBS with all 16 squeezers turned on 
and rmax = 1.8 (here, the total variation distance is 0.175). We also use 
the modified likelihood ratio test introduced in ref. 33 to exclude the 
thermal state and distinguishable photon hypotheses; these details 
can be found in Supplementary Information Section 2G. These results 
show that Abacus can perform the sampling tasks with high fidelity.

Finding the maximum weighted clique with GBS
Not only can GBS be used to demonstrate quantum advantage in the 
laboratory5,7 as a near-term specific-function quantum computer, it 
can also be used in solving certain problems in real-world applications. 
Here, we use Abacus to solve max clique decision problems, which are 
NP-hard (non-deterministic polynomial time) problems in graph theory 
and play a crucial role in many applications25.

Clique refers to all the maximal complete subgraphs in a graph  
𝒢𝒢; the clique-finding problem has a complexity which scales exponen-
tially with the number of nodes. Here, we use Abacus to find the maxi-
mum weighted clique in a graph. A 32-node weighted graph 𝒢𝒢32  
is artificially constructed here (details are shown in Supplementary 
Information Sections 3 and 4), and the essential step is encoding 𝒢𝒢32 
onto our GBS machine. Using the method introduced in refs. 18,24,  
we perform Takagi–Autonne decomposition to the Laplacian of graph 
𝒢𝒢32, with appropriate re-scaling, and obtain the unitary operation U 
and the squeezing parameters ri, which are required to be programmed 
on the GBS (Methods). Then, we control the acoustic-optical modulator 
chopper with an arbitrary waveform generator to pump the periodi-
cally polled potassium titanyl phosphate (ppKTP) waveguide with 32 
sequential pulses. EOM0 is used to adjust ri for each time bin, and U, 
the unitary operation, is achieved by adjusting the input voltages of 
EOM1 and EOM2 in the time-bin interferometer. After mapping 𝒢𝒢32 
onto Abacus, around 300 five (or more)-photon sampling results are 
collected in each experiment. Using these sampling data, we can find 
the cliques with nodes corresponding to the 30-time postprocessed 
sampling results (see details in Methods). Figure 1d displays all six-node 
cliques and their corresponding probabilities. The maximum weighted 
clique stands out as the most probable among them. In comparison to 
classical sampling with the same postprocessing iterations, GBS demon
strates a substantially higher probability of successfully finding the 
maximum weighted clique, approximately twice as much. This indicates 
that GBS can perform the clique-finding task with high efficiency18.

Molecular docking with GBS
If the graph is constructed according to an actual system occupying 
the network structure, the clique-finding task then could be utilized 
to find the optimal subset corresponding to the maximum weighted 
clique. Recent research shows that the information of the best dock-
ing orientation of the protein–ligand complex can be predicted by the 

Fig. 2 | Molecular docking and RNA-folding prediction results obtained 
with Abacus. a, The docking pair of PARP-CQ (see text). Abacus is encoded 
with a 24-node BIG and finds the maximum weighted clique, using 347 sample 
data and 100-iteration local searches. b, Another 28-node BIG constructed by 
the complex of TACE-TS (see text), using 254 sample data and 10 iterations. In a 
and b the colored spheres denote the pharmacophore points we considered in 
the experiment (cyan: hydrogen-bond acceptor, HA, ha; blue: hydrogen-bond 
donor, HD, hd; yellow: negative charge, NC; orange: aromatic, AR, ar; and we use 
capital letters to represent pharmacophore points in the protein and lowercase 
letters to represent pharmacophore points in the ligand.) The sphere meshes 
in the ligands are other possible pharmacophore points but are not considered 
in our experiments. The shaded region in panels a and b denotes the maximum 
weighted cliques, as determined by the experimental results. All the cliques 
found from GBS experiments are shown in the pie charts; the maximum weighted 

cliques in both cases have a major proportion in the experimental results 
obtained from QIVS. More details are found in Supplementary Information 
Sections 5 and 6. c,d, The GBS-based RNA-folding prediction results for two RNA 
sequences (in c, accession no. AH003339; in d, accession no. AB041850). The 
max weighted cliques are highlighted in colored regions; they represent the most 
likely folding structures. The four colored circles (A, G, U, C) in the RNA structure 
represent the four different bases and the gray dashed lines represent the false 
negative base-pair matching. The colors of nodes within the clique, outlined by 
solid black lines, correspond to the predicted stems (base-pairs with matching 
shadow colors) in the RNA folding structure. For example, in c, the yellow node 
corresponds to the predicted stem with base-pairs 10–25, 11–24, 12–23 and 13–22. 
The cliques encircled by dashed pink (c) and yellow lines (d) represent other 
folding structures, though they are less accurate. More details are shown in 
Supplementary Information Section 7.

http://www.nature.com/natcomputsci
https://www.ncbi.nlm.nih.gov/nuccore/AH003339
https://www.ncbi.nlm.nih.gov/nuccore/AB041850


Nature Computational Science | Volume 3 | October 2023 | 839–848 842

Brief Communication https://doi.org/10.1038/s43588-023-00526-y

maximum weighted clique of a corresponding binding interaction  
graph (BIG), which is a weighted graph constructed based on dock-
ing modes between ligand and receptor18. In the BIG, the weighted  
nodes represent the interacting pharmacophore pairs weighted  
by potential, and the edges represent the compatible contacts  

(Methods). By encoding the BIG on Abacus, we can solve molecular  
docking problems by finding the maximum weighted clique in  
the BIG18,34, as we demonstrated in Fig. 1d.

To demonstrate the capability of GBS in solving molecular docking 
problems, we build a quantum inverse virtual screening (QIVS) 
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platform based on Abacus and use two pairs of protein–ligand com-
plexes with different drug properties to demonstrate the ability of QIVS  
in drug design and verified the practicability of the platform.  
In the first case (Fig. 2a), a 28-node BIG 𝒢𝒢28

PARP-CQ  is constructed  
based on the Poly (ADP-Ribose) polymerase-1 (PARP) and an  
8-chloroquinazolinone-based inhibitor (PARP-CQ), which is a promis-
ing candidate for anticancer drugs35–37 and for some central nervous 
system diseases such as Parkinson’s and Alzheimer’s diseases38,39. The 
structures of ligand and protein and their BIG are shown in Fig. 2a.  
By encoding 𝒢𝒢28

PARP-CQ  onto Abacus, we collect the sampling  
results and find the associated cliques with postprocessing (that is, 
shrink and local search)18. The pie chart in Fig. 2a shows all the cliques 
we find with GBS experiments, where each sector corresponds to  
one the various cliques with corresponding weights. The maximum 
weighted clique (with seven nodes and weight = 6.8144) occupies  
the major proportion. This demonstrates we can use Abacus to find 
the best binding pose (Fig. 2a, right side) of this complex with a high 
success rate.

In the second case (Fig. 2b), we use the complex of tumor necrosis 
factor (TNF) converting enzyme (TACE) and thiomorpholine  
sulfonamide hydroxamate inhibitor (TACE-TS)40, which are involved 
in inflammatory diseases41. Aromatic pharmacophore points are 
included and, in order to increase the accuracy of the docking results, 
an improved algorithm is used. Considering the fact that the interaction 
strength between various pharmacophore points may create some 
behavior differences, the variable distance is used to compare  
the distance between different points when we construct the  
24-node BIG 𝒢𝒢24

TACE-TS . GBS experiments then are performed by  
programming the circuit with another set of polarization rotation (θi), 
phase shift (φi) and ri. We find 11 cliques in the sampling results; and  
six of them (maximum size N = 9) appear with relatively high  
probabilities. The protein–ligand docking position suggested by the 
maximum weighted clique (with weight (w) = 4.5657) is shown on the 
right in Fig. 2b. Compared with the method used by Banchi et al.18,  
the improved method we proposed here obtains a more accurate  
binding pose result; the detailed comparison analysis is shown in  
the Supplementary Information Sections 5 and 6.

Although there is relatively high loss in the experiment, the maxi-
mum weighted clique can still be found with a high success probability 
through postprocessing, which is robust with regard to noise18. The 
above results, predicted by GBS experiments, agree well with the out-
comes obtained from the corresponding co-crystal structures, which 
can be found by reviewing complex structures within a certain distance 
(τ) to each other40,42,43, through their entries in the Protein Data Bank 
(PDB) for PARP1 (PDB entry no. 7ONR) and TACE (PDB entry no. 2A8H).

GBS for RNA-folding prediction
The molecular docking process relies heavily on the protein struc-
ture, and the fact is that many pathogenic proteins associated with 
human diseases cannot be targeted by conventional small-molecule 
drugs or biomacromolecules44. In recent years, nucleic acid drugs have 
received attention in the pharmaceutical field as a potential solution 
to overcome the limitations of existing target drugs and to treat previ-
ously untargeted diseases. Predicting RNA structures has become an 
important task in discovering these nucleic acid drugs, as it can aid in 
identifying potential drug targets and predicting small-molecule-drugs’ 
interactions with RNA molecules45. However, predicting RNA struc-
tures by calculation has proven difficult, as only a few RNA structures 
are known. Nevertheless, exciting work in protein and RNA structure 
prediction has emerged recently, with artificial intelligence technology 
being particularly prominent45,46. Quantum computational technology 
also has great potential to solve this folding prediction task47,48. How-
ever, no solution to this problem has yet been experimentally demon-
strated on devices that can exhibit quantum computational advantages 
(such as GBS devices) due to their programmability limitations.

Using our universal programmable GBS device Abacus, we use a 
method, inspired by Tang et al.26, for predicting RNA sequence fold-
ing. This approach involves modeling the RNA sequence as a weighted  
full stem graph (WFSG) and then encoding it into our universal pro-
grammable GBS device. The WFSG captures all possible folding infor-
mation of the RNA sequence, where each node represents a possible 
stem in the sequence, and the edges indicate the co-existence between 
them26. The weight of each node corresponds to the length of the stem 
it represents. Then, the RNA-folding prediction can be obtained by 
finding the maximum weighted cliques in WFSG26. To demonstrate 
the effectiveness of our GBS machine in solving this problem, we con-
ducted two experiments with different RNA fragments on Abacus; the 
results are shown in Fig. 2c,d.

In the first example, we predicted the secondary structure of an 
RNA sequence (accession no.: AH003339) by encoding the correspond-
ing 32-node WFSG into Abacus. We found two maximum weighted 
cliques, and the Matthews correlation coefficient (MCC) of the best 
one (shown in light orange shadow in Fig. 2c) reached 0.953, which 
outperforms FOLD49 (best case) and RNAProbing50, with MCC values 
of only 0.864 and 0.934, respectively. In the second experiment, we use 
the RNA sequence of the organism Alanine (accession no.: AB041850) 
and encoded its corresponding WFSG, which had 31 nodes, into Abacus 
by modifying the control program. The best prediction with MCC = 1.00 
among the two results is shown in Fig. 2d, and it is more accurate than 
those obtained by other methods, with FOLD achieving MCC = 0.870 
and RNAProbing achieving MCC = 0.914. Details of the true reference 
folding and other information are provided in Supplementary Infor-
mation Section 7.

Discussion
The scalability and programmability of our universal GBS machine 
enable its utilization in real-world applications, as demonstrated in this 
work. The ability to program arbitrary graphs demonstrates that drug 
discovery tasks, such as molecular docking or RNA-folding prediction, 
can be performed efficiently by a purpose-built quantum computer. 
However, unequivocal quantum computational advantage5,7 has not 
been realized in our experiments due to photon loss. Although the 
question of whether GBS can outperform improved classical algorithms 
or quantum-inspired algorithms remains open51, and the potential 
for GBS to demonstrate computational advantages also relies on the 
properties of the encoded graph, we remain optimistic about scaling 
Abacus to several hundred modes using the ‘multicore encoding’ and 
‘distributed computing’ methods. This scalability holds the potential 
to unlock quantum advantages in some specific real-world applica-
tions. Additionally, it is crucial to consider practical applications that 
encompass more complex protein structures, larger pharmacophore 
points and longer RNA sequences, which also necessitate the use of 
such a large-scale GBS machine. For a comprehensive discussion on 
scaling our GBS machine by minimizing loss and utilizing the multicore 
encoding and distributed computing methods, refer to Supplemen-
tary Information Section 8. Apart from offering programmability and 
universality, this work presents a promising hardware solution for the 
near-term industrial implementation of quantum computing in the 
biopharmaceutical industry. It also paves the way for diverse real-world 
applications in the future.

Methods
Details about the programmable GBS machine
The GBS machine shown in Fig. 1a, which we named Abacus, can be 
divided into four main parts: (1) Tunable squeezed-state source. The 
pump light from a mode-locked pulsed laser (80 MHz, 773 nm, ~150 fs) 
is reduced in repetition rate to 40 MHz by an acoustic-optic modulator. 
The electro-optic modulator (EOM0) and polarization beam splitter 
(PBS) are used to adjust the pump energy of each pulse. This controls 
the squeezing degree (ri) of the squeezed vacuum states in each time 
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bin. The spectral mode of the pump light is modulated by a spatial light 
modulator, two gratings and two cylindrical lenses (CLs). Then, spec-
trally uncorrelated two-mode squeezed light is generated by pumping 
a 10-mm-long ppKTP waveguide27–29. Following interference at a 50:50 
beamsplitter, a series of individually addressable single-mode 
squeezed states can be efficiently prepared30. (2) Quantum processing 
unit (QPU). The single-mode squeezed states are then sent into a time-
bin interferometer, which is programmed for a specific unitary opera-
tion. This is achieved according to Clements’ architecture31, which is 
realized by a group of Mach–Zehnder interferometers consisting  
of two high-speed optical switches EOMa and EOMb, a 7.5 m delay  
line (to combine or separate two adjacent time bins) and a linear  

transformation T(θ,φ𝒜 = ( e
iφ cosθ − sinθ
eiφ sinθ cosθ ) ,  where φ represents the 

phase shift and θ denotes the polarization rotation, these are achieved 
by EOM1 and EOM2, respectively. Since the optical path before and 
after T(θ, φ) passes through the same low-loss free-space delay line, 
the phase stability of the setup is well guaranteed, and the non-uniform 
loss expected in the fiber-loop scheme32 is mitigated. (3) Quantum 
sequential access memory (QuSAM). In each loop of evolution, the 
quantum memory is achieved by a 180-meter-long optical fiber delay 
line. The QuSAM ensures that the last time bin has completed the 
operation in one cycle before the first time bin enters into the next 
cycle. With a 4f beam-shaper system, we can efficiently couple the light 
from free space into single-mode optical fiber and realize a low-loss 
time-bin memory (with total efficiency of ~94%) by reshaping the spatial 
mode of the beam. (4) Detection module. SNSPDs are used to detect 
the single-photon events, since our experiments are performed in the 
collision-free space. To avoid the issue of the SNSPD dead-time (≲50 ns) 
being longer than the time interval between two adjacent time bins 
(25 ns), we use another EOM to separate two adjacent time bins and use 
two SNSPDs for detection. The throughput of each round-trip in the 
system is approximately 82%. In the case of Fig. 1b, the average count  
rate of two-fold events is 45 counts per second, and in the case of  
Fig. 1c, the four-fold average count rate is 24 counts per second, which 
are calculated from 107 samples in 10 min (the repetition rate of each 
individual sampling experiment is 20 kHz). More details are provided 
in Supplementary Information Section 2.

This GBS machine has two main advantages compared with  
previous works: First, universal operation is possible since both the 
squeezers and arbitrary unitary matrices can be programmed on the 
time-bin interferometer. This makes it suitable not only for molecular 
docking of various molecules but also for other applications. Our 
architecture also provides flexibility in scaling to many modes via 
the control software. Compared to previous work5,7, our GBS setup 
supports adjustments to all the parameters: n squeezing parameters 
ri and n(n − 1)/2 parameters for an arbitrary U. Our time-bin-encoding 
GBS setup is resource-efficient for scaling up. Specifically, when the 
number of modes increases, we do not need to add more squeezed-light 
sources. Independent of the number of modes we required in experi-
ments, two analog EOMs (that is, EOM1 and EOM2) assisted with two 
light-switch EOMs (that is, EOMa and EOMb) are sufficient to realize 
any linear transformation. A resource advantage is also exhibited in 
the detection. As we discussed in the main text and Supplementary 
Information Section 2E, two SNSPDs are enough for collecting the 
~30-mode GBS samples.

Second, non-uniform loss in previous time-bin interferometer 
implementations appears across different time-bin modes, and this 
limits the ability to perform an arbitrary unitary operation32. In this 
setup, we use a free-space delay line with transmittance 0.995 to greatly 
reduce the non-uniform loss. Thus, the mitigated non-uniform loss and 
dispersion-free features in our setup can better exhibit universality. 
The time-bin-encoded GBS scheme is intrinsically phase stable20. As 
shown in Fig. 1a, since every time bin goes through the same path, the 
slow phase fluctuations (caused by mechanical vibrations, temperature 

drifts or other unpredictable environmental noise) can be neglected 
compared to the high sampling rate where a sample is obtained in 
50 μs. The 7.5 m free-space delay line is isolated from the environment 
to ensure that the phase between two adjacent time bins can be stable 
for up to 5 min. This is enough for collecting 106 samples within 1 min.

Mapping a graph onto GBS
As for a loopless, undirected and vertex-weighted graph 𝒢𝒢, the  
corresponding adjacency matrix 𝒜𝒜 is a symmetric (0,1)-matrix, where 
the vertex weights are given by ωi, and the entries are 𝒜𝒜ii = ωi, 𝒜𝒜ij = 1  
if there is an edge between vertex i and j and 𝒜𝒜ij = 0  if otherwise.  
After finding the adjacency matrix 𝒜𝒜 of a graph, then the key step  
to encode the graph 𝒢𝒢 onto GBS machine is connecting 𝒜𝒜 with the 
sampling matrix A through some proper transformation (the inset in 
Fig. 1a provides an example possibility).

For a pure Gaussian state, the sampling matrix A can be written  
as B ⊕ B*; then the Hafnian Haf(A) can be expressed as Haf(B ⊕ B*) =  
∣Haf(B)∣2. Thus, the output probability of obtaining the sampling  
pattern s can be expressed as

Pr(s𝒜 = |Haf(Bs𝒜|2

n1!n2!⋯nN!√det (σ + 𝕀𝕀𝕀2𝒜
. (1)

An immediate idea is to replace B here with the adjacency matrix 
Ω(𝒟𝒟 − 𝒜𝒜𝒜Ω , where Ω is a diagonal matrix with elements (Ωii = ωi𝒜   
and 𝒟𝒟 is the degree matrix of 𝒜𝒜 defined as 𝒟𝒟ii = ∑j𝒜𝒜ij . However, this 
does not work, since the eigenvalues of B should be within the interval 
[0, 1), such that the covariance matrix of the pure Gaussian state  
is positive definite24. From an experimental point of view, this  
restriction is because the eigenvalues of B denote the brightness  
of squeezing sources in the experiment. We can decompose the  
symmetric matrix B as52

B = U⊕N
i tanh(ri𝒜UT, (2)

where U is the unitary matrix applied in experiments and ri denotes 
 the squeezing parameters for the vacuum states, as shown in Supple-
mentary Information Fig. 1a. Thus, the value of eigenvalues tanh(ri𝒜 
should be between 0 and 1, and 1 cannot be reached because that would 
correspond to infinite brightness.

To satisfy this condition, we can rescale 𝒜𝒜 by carefully choosing 
the parameters c and α when we add the weight of each vertex to the 
adjacency matrix:

𝒜𝒜′ = Ω(𝒟𝒟 − 𝒟𝒟𝒜Ω, (3)

where Ω is a diagonal matrix with elements Ωii = c(1 + αωi). By choosing 
parameters c and α suitably, we can obtain an 𝒜𝒜′ with the correct  
spectrum. Additionally, we also can maximize the maximum  
input photon number in the experiment over the choice of c and α.  
The 𝒟𝒟 matrix is introduced so that the 𝒜𝒜′ matrix is positive definite18. 
But when GBS is operated in the collision-free subspace, 𝒟𝒟 will  
not affect the results of Haf (𝒜𝒜′𝒜  and, according to Banchi et al.18, 
Haf (𝒜𝒜′𝒜 = det(Ω𝒜Haf (𝒜𝒜𝒜. More details can be found in Supplementary 
Information Section 3.

Constructing the adjacency matrix of a BIG
Inverse virtual screening is a structure-based approach to find potential 
drug targets for a given drug or active small molecule by calculation. 
For known drugs, inverse virtual screening technology can do the  
drug repositioning and provide reference for the study of new drug 
effects and drug side effects53. For active small molecules, inverse  
virtual screening technology can predict their potential targets, iden-
tify their therapeutic potential in diseases and provide direction for the 
later transformation and mechanism research of active compounds54,55.
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If the graph is constructed according to an actual system occupy-
ing the network structure, the clique-finding task then could be utilized 
to find the optimal subset corresponding to the maximum weighted 
clique. Recent research shows that the information of the best dock-
ing orientation of the protein–ligand complex can be predicted by the 
maximum weighted clique of a corresponding BIG18. In the docking 
scheme of bioactive molecules, the BIG is a weighted graph constructed 
based on docking modes between ligand and receptor. In the BIG, 
the weighted nodes represent the interacting pharmacophore pairs 
weighted by potential and the edges represent the compatible contacts.

The edge generation in a BIG is determined by comparing the 
distances between the pharmacophore points on the ligand (Dx−xL ) and 
binding (Dx−xP ) sites. This is illustrated in boxes 1 and 2 of Supplementary 
Information Fig. 21. Each possible contact is represented by a vertex  
in BIG, and the corresponding weight is determined by the contact 
potential (shown in Supplementary Information Fig. 23). A BIG with 
only weighted vertices is illustrated in box 3 in Supplementary Informa-
tion Fig. 21.

While the geometric distances between two contacts should nor-
mally be approximately the same on both the ligand and the binding 
site, they can exhibit some degree of flexibility18. A pair of contacts, for 
example, (C, a) and (B, c), is considered a τ-flexible contact pair if the 
difference between the distances of the pharmacophore points on the 
ligand (corresponding to vertices ‘C’ and ‘B’) and the distances of the 
pharmacophore points on the binding site (corresponding to vertices 
‘a’ and ‘c’) is within τ + 2ε, as depicted in Supplementary Information Fig. 
21. The constants τ and ε describe the flexibility constant and interac-
tion distance, respectively, and they determine which edges appear in 
the BIG, as shown in boxes 4 and 5 in Supplementary Information Fig. 21.

It should be noted that, in the work of Banchi et al.18, τ and ε are 
set as constants for simplicity, as discussed above. However, more 
accurate methods can account for the changeable flexibility of the 
ligand and receptor18,56. τ and ε are no longer set as constants and can 
vary according to the various pharmacophore points in the contacts.

By encoding the BIG on Abacus, we can solve molecular docking 
problems by finding the maximum weighted clique18,34 in the BIG, as 
we demonstrated, with results shown in Fig. 2.

To better demonstrate the capability of Abacus in solving mole
cular docking problems, we build a QIVS platform, as shown in Sup-
plementary Information Fig. 22. Inverse virtual screening (IVS) is a 
technology for finding potential drug targets for a given drug or small 
active molecule by calculations, and it has been applied to identifying 
targets, research on side effects and drug repurposing57,58. In such a 
computer-aided drug design method as IVS, a large amount of compu-
tational resources are usually required, since a huge number of proteins 
in the database need to be screened by this docking program to identify 
potential targets for a given ligand, with a run-time that scales with  
the size of the ligands and receptors.

Unlike the classical IVS, we replace the traditional molecular  
docking process with GBS and achieve a more efficient and accurate 
QIVS. According to the selected ligand and potential proteins, a  
corresponding BIG, 𝒢𝒢BIG, is constructed (shown in Supplementary 
Information Fig. 22) and is then encoded into the GBS machine.  
The best binding pose can be determined by finding the maximum 
weighted clique of this graph 𝒢𝒢BIG (ref. 18), a task for which our  
programmable Abacus is well suited. More details can be found in  
Supplementary Information Section 5.

Postprocessing method with ‘Shrinking’ and ‘Local search’
The presence of various types of noise in the experiments affects the 
probability of the maximum weighted clique obtained from the raw 
experimental data. In some cases, the subgraph obtained may not even 
be a clique. Certain types of noise are unavoidable in experiments (for 
example, photon loss), in which case we can use the raw experimental 
data as a seed which can be input to a postprocessing algorithm to 

generate cliques at a high-rate. The postprocessing method introduced 
in Banchi et al.18 is very useful for this purpose. We briefly review the 
postprocessing method and discuss how we use it in our experiments.

We use ‘Greedy Shrinking’ to ensure the subgraph obtained from 
the raw GBS data is a clique by removing the nodes based on the degree 
and weight of the nodes until it forms a clique. To obtain the maximum 
weighted clique, which usually occurs with a larger number of nodes,  
we perform an expansion with a ‘Local search’. This expands the clique 
by adding neighboring nodes within several iterations of the algorithm 
to generate the largest clique. This is represented as the ‘Postprocess-
ing’ module in Supplementary Information Fig. 22. Strawberry Fields59 
is used to perform the postprocessing. Further details can be found in 
the work of Banchi et al.18

Further scaling by reducing loss
In our experiment, simultaneously achieving universality and pro-
grammability comes at the cost of loss, which increases with the circuit 
depth or, more specifically, the number of cycles. This relatively large 
loss exists in our GBS machine prohibits demonstration of quantum 
computational advantage. Although we mainly focus on the mapping 
of GBS to real-world applications in this work, with further develop-
ments toward low-loss optical components, realization of quantum 
advantage should be possible in the future.

Loss in Abacus can be reduced by various methods. Loss in the 
experiment mainly comes from (1) the coupling loss from the ppKTP 
waveguide to single-mode fiber, (2) insertion loss caused by EOMs, (3) 
the limited coupling efficiency from free space to QuSAM and (4) the 
limited detection efficiency of SNSPDs. Particularly, for the EOM inser-
tion loss (2) and the limited QuSAM coupling efficiency (3), due to the 
characteristics of our free-space loop architecture, the total loss will 
increase exponentially with the loss inside the loop. Therefore, when 
the number of modes is large, small improvements to these sources of 
loss will greatly improve the overall loss.

First, for the coupling loss from the ppKTP waveguide to single-
mode fiber, mode shaping techniques may be applied to match the 
spatial mode of light from the ppKTP waveguide to that of the fiber, 
potentially improving the coupling efficiency to greater than 0.9  
(ref. 60). Second, the insertion loss of EOMs or other optical elements 
is unavoidable. However, an EOM with a shorter and lower loss crys-
tal—driven by a higher-gain amplifier—could be used. Combining  
the actions of EOM1 and EOM2 into an integrated EOM operation  
will further reduce the loss experienced upon reflection and 
absorption at the end faces. Transmission has been shown to reach  
higher than 0.99 after optimizing the EOM7. Third, the coupling effi-
ciency from free space to QuSAM can be improved up to ~0.97 by using 
a 4f or 8f imaging systems through spherical lenses and graded-index 
lens fiber couplers (see Madsen et al.7). In addition, a Herriott long-
distance delay line can be used as a quantum memory for minimizing 
the loss61. Finally, the detection efficiency can be improved with the 
latest generation of nanowire detectors with detection efficiencies at 
1,550 nm of up to 0.95. Through these methods to minimize the loss, 
the single-loop transmission can potentially reach ~90%. Thus, our GBS 
setup can be extended to at least 60 modes (for example, a 60-mode 
GBS experiment will have total transmission efficiency of ~0.12%, 
found from the product of the several involved transmission efficien-
cies, as 0.9061 (loop efficiency, to the loop-count power) × 0.9 (cou-
pling efficiency from ppKTP to fiber) × 0.944 (filter after ppKTP 
induce) × 0.93 (coupling efficiency from QPU to fiber) × 0.973 (trans-
mission of demultiplexer) × 0.95 (detection efficiency of SNSPDs).

Implement displacement and photon-number resolving 
detection in time-domain GBS
Displacement operation D(α) is entirely feasible to include in  
Abacus. To achieve this, the photon source module needs to be rebuilt, 
which involves incorporating an optical parametric oscillator after 
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the mode-locked laser (Chameleon) to generate a 1,550 nm laser. This 
laser is subsequently split into two separate paths. In one path, the light 
serves as the pump for generating squeezed states. In the other path, 
the light is utilized as a coherent state to achieve the displacement 
operation. The addition of a delay line ensures that the coherent state 
and squeezed state reach the beamsplitter simultaneously, enabling 
optimal interference at the output. Two EOMs facilitate the program-
mability of the amplitude and phase of the displacement operation. For 
more detailed information, please refer to Supplementary Information 
Section 2H.

Our time-domain GBS machine Abacus can also implement 
photon-number resolving detection with a transition edge sensor 
(TES). The TES initially needs to be cooled below its transition tem-
perature of approximately 100 mK and then heated back to its transi-
tion temperature by applying a bias current62. To maintain the TES at  
this temperature, it should be operated inside a dilution refrigera-
tor. After a photon absorption event, it takes approximately 5 μs for 
the TES to return to its original temperature. Therefore, the repeti-
tion rate of TES detectors is usually limited to around 100–300 kHz. 
This necessitates the installation of a demultiplexer in our time- 
domain GBS setup. To address this limitation for a time-domain GBS 
machine, a demultiplexer needs to be installed. By employing a loop 
structure, it is straightforward to implement a nine-channel demulti
plexer using a single EOM. The EOM enables us to manipulate the 
polarization of photons in each time bin, thereby determining whether 
they exit the system through PBSs or undergo internal reflection and 
remain within the loop. The design corresponding to this approach is 
depicted in Supplementary Information Fig. 15, and further detailed 
information can be found in Supplementary Information Section 2I.

Pharmacophore points selection
The selection of PARP–PARPi pharmacophore points—where PARPi 
refers to PARP inhibitors, including the PARP-CQ we used as shown 
in Fig. 2a—is according to previous research focused on PARP–PARPi 
relationships63,64. These articles have demonstrated important amino 
acid residues from the protein and functional groups from the inhibi-
tor that will influence the efficacy of the protein–ligand interactions. 
We choose some of them for the GBS machine due to the size of the 
experiment.

The selection of pharmacophore points in this work is typically  
based on prior knowledge from experimental studies, structural  
analysis or computational modeling of similar PARP–PARPi complexes. 
The selection of pharmacophore points, such as hydrogen-bond accep-
tors and donors, negative charges, pi–pi interaction and aromatic ring 
in the PARP–PARPi complex is based on their known importance in the 
interaction between the protein, PARP and the ligand. These pharma-
cophore characteristics play a crucial role in the binding affinity and 
specificity of ligands to protein targets.

Hydrogen-bond interactions are important for stabilizing the pro-
tein–ligand complex. Such an interaction occurs between the hydrogen 
atom of the ligand and a hydrogen-bond acceptor or donor group on 
the protein. These pi–pi interactions contribute to the overall binding 
strength and specificity by forming specific and directional interac-
tions; they involve the stacking of aromatic rings in the ligand and the 
protein. These interactions are driven by the pi electrons present in 
the aromatic systems and contribute to the stability of the complex. 
Such pi–pi interactions are often found in protein–ligand interactions 
and can enhance binding affinity. Some articles have reviewed phar-
macophores in a PARP inhibitor, and in those studies the nicotinamide 
component is considered as a hydrogen-bond donor and acceptor, 
as well as being a part of pi–pi interaction with the tyrosine residue63.

Aromatic rings are frequently present in ligands and proteins 
and can participate in various types of interactions, including pi–pi 
stacking, hydrophobic interactions and van der Waals interactions. 
Aromatic rings provide a hydrophobic surface that can interact with 

complementary hydrophobic regions in the protein, contributing to 
the overall binding affinity. The aromatic ring at the tail of the com-
pound is also critical, and we take it as a pharmacophore as well42.

Negative charges, represented by negatively charged atoms or 
functional groups, also play a major role in the PARP–PARPi complex. 
Such a negative charge can interact with positively charged residues 
on the protein, like arginine or lysine, through electrostatic interac-
tions, and these interactions can also contribute to the stability of the 
complex and enhance ligand binding.

Classical combinatorial optimization methods
In Supplementary Information Section 9, we discuss more details about 
the classical or quantum-inspired approaches like genetic algorithms, 
quantum approximate optimization algorithm, quantum annealing 
and digital annealer, which also can be used to realize clique finding 
and other similar tasks.

Data availability
Source data are provided with this paper. The experimental data used in 
this paper are also publicly available in a Zenodo repository at https://
doi.org/10.5281/zenodo.8306628 with a citable release at ref. 65.

Code availability
The codes used to generate the corresponding adjacency matrices 
in Fig. 2a–d, analyze experimental data and implement the Bron–
Kerbosch and Maximum Clique algorithms for result verification are 
available at https://doi.org/10.5281/zenodo.8284043 with a citable 
release at ref. 66.
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