Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The promise and pitfalls of AI for molecular and materials synthesis

As artificial intelligence (AI) proliferates, synthetic chemistry stands to benefit from its progress. Despite hidden variables and ‘unknown unknowns’ in datasets that may impede the realization of a digital twin for the laboratory flask, there are many opportunities to leverage AI and large datasets to advance synthesis science.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Opportunities in AI for synthesis science in the style of Bloom’s taxonomy.

References

  1. Burger, B. et al. Nature 583, 237–241 (2020).

    Article  Google Scholar 

  2. Coley, C. W. et al. Science 365, eaax1566 (2019).

    Article  Google Scholar 

  3. Abolhasani, M. & Kumacheva, E. Nat. Synth. https://doi.org/10.1038/s44160-022-00231-0 (2023).

    Article  Google Scholar 

  4. Lowe, D. Chemical Reactions From US Patents (1976-Sep2016) (Figshare, 2017); https://doi.org/10.6084/m9.figshare.5104873.v1

  5. Kearnes, S. M. et al. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article  Google Scholar 

  6. Tshitoyan, V. et al. Nature 571, 95–98 (2019).

    Article  Google Scholar 

  7. Olivetti, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    Article  Google Scholar 

  8. Kononova, O. et al. Sci. Data 6, 203 (2019).

    Article  Google Scholar 

  9. Wang, Z. et al. Sci. Data 9, 231 (2022).

    Article  MathSciNet  Google Scholar 

  10. Kim, E., Huang, K., Kononova, O., Ceder, G. & Olivetti, E. Matter 1, 8–12 (2019).

    Article  Google Scholar 

  11. Fitzner, M. et al. Chem. Sci. 11, 13085–13093 (2020).

    Article  Google Scholar 

  12. Kim, E. et al. Chem. Mater. 29, 9436–9444 (2017).

    Article  Google Scholar 

  13. Segler, M. H. S., Preuss, M. & Waller, M. P. Nature 555, 604–610 (2018).

    Article  Google Scholar 

  14. Szymanski, N. J. et al. Mater. Horiz. 8, 2169–2198 (2021).

    Article  Google Scholar 

  15. MacLeod, B. P. et al. Sci. Adv. 6, eaaz8867 (2020).

    Article  Google Scholar 

  16. Xu, L. et al. Nat. Catal. 4, 71–78 (2021).

    Article  Google Scholar 

  17. Novák, Z. et al. Nat. Catal. 4, 991–993 (2021).

    Article  Google Scholar 

  18. McQueen, T., Xu, Q., Andersen, E. N., Zandbergen, H. W. & Cava, R. J. J. Solid State Chem. 180, 2864–2870 (2007).

    Article  Google Scholar 

  19. Raccuglia, P. et al. Nature 533, 73–76 (2016).

    Article  Google Scholar 

  20. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. ACS Cent. Sci. 3, 434–443 (2017).

    Article  Google Scholar 

  21. Wang, Z. et al. Optimal thermodynamic conditions to minimize kinetic byproducts in aqueous materials synthesis. Preprint at https://doi.org/10.21203/rs.3.rs-2398824/v1 (2023).

  22. Bergman, R. G. & Danheiser, R. L. Angew. Chem. Int. Ed. 55, 12548–12549 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

N.D. and W.S. acknowledge support through the Dreyfus Program for Machine Learning in the Chemical Sciences and Engineering. C.W.C. thanks the National Science Foundation under grant no. CHE-2144153 and the AI2050 program at Schmidt Futures (grant G-22-64475) for financial support. We thank P.F. Poudeu, J. Neilson, and A. Miura for stimulating conversations.

Author information

Authors and Affiliations

Authors

Contributions

N.D., W.S. and C.W.C. jointly prepared the manuscript.

Corresponding authors

Correspondence to Wenhao Sun or Connor W. Coley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, N., Sun, W. & Coley, C.W. The promise and pitfalls of AI for molecular and materials synthesis. Nat Comput Sci 3, 362–364 (2023). https://doi.org/10.1038/s43588-023-00446-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00446-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing