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Editorial

Guiding element mixing

Materials design has largely 
expanded to multiple compositions, 
which requires the mixing of an 
increasing number of elements. In 
this joint Focus issue with Nature 
Materials, we take a closer look at the 
role of computational methods for 
guiding exploration within such vast 
chemical spaces.

T
here is no doubt that composition-
ally complex materials (CCMs) 
— which are formed by mixing 
multiple elements — are of great 
interest to the materials science 

and engineering communities. The availabil-
ity of a large number of blended elements in 
material lattices greatly expands the chemical 
space for materials design. Correspondingly, 
this expansion can help materials scientists 
to access previously unexplored physical 
domains, thus potentially enabling improved 
and exotic materials properties and allow-
ing researchers to explore unprecedented 
applications.

This issue presents a Focus, in collabora-
tion with Nature Materials, that highlights 
recent developments within the burgeoning 
field of complex element coupling, bringing 
together experts’ opinions on the oppor-
tunities in designing CCMs for expanding 
materials capabilities. Notably, we at Nature 
Computational Science present a collection of 
manuscripts that provide insights into critical 
issues in computational method development 
for guiding element mixing in CCMs.

It goes without saying that the field of com-
putational materials science has seen tremen-
dous growth over the past several decades 
when it comes to steering materials design. 
For instance, first-principles methods at the 
atomic- and electronic-scale have enabled the 
calculation of defect energetics and electronic 
structures, offering insightful knowledge for 
dopant design in semiconductor applica-
tions, such as transistors and photovoltaics1. 
As another example, meso-scale computa-
tional methods, such as phase-field meth-
ods2, have been widely used to investigate 
materials properties related to kinetics and 
microstructural evolution. However, these 
conventional techniques can be ineffective 

when dealing with the new complexities that 
arise with CCMs, such as low crystal symmetry, 
an increased number of competing phases, 
and imbalance in interactions among various 
atomic pairs. Thus, there is a quest in the com-
putational science community to effectively 
utilize the available computational power in 
order to guide the design of CCMs.

Physics-based models continue to provide 
essential advances for the materials design 
process, but not without facing obstacles: 
the central computational challenge is to 
accurately model complexity and simultane-
ously keep the calculation affordable. One 
essential task in materials engineering, for 
example, is to predict materials defect prop-
erties and to further link these properties to 
application design. When modeling defects in 
CCMs — such as vacancies and interstitials — it 
is computationally expensive to sample and 
calculate the increased number of inequiva-
lent defect sites within different local chemi-
cal environments. In a Perspective, Xie Zhang 
and colleagues provide an overview of the 
challenges and opportunities for extending 
conventional defect physics models to CCMs. 
They argue that conventional defect energetic 
models can be extended to CCMs by defining 
an effective formation energy with the help 
of advanced computational tools, such as sta-
tistical methods, sampling techniques, and 
configuration generation tools. Zhang and 
colleagues further point out that the calcula-
tion of energies for such a vast configuration 

space by using purely quantum mechanical 
methods — such as density functional theory 
(DFT) — is very expensive, and thus, new inter-
atomic surrogate potential models that can 
reproduce the quantum-level accuracy are 
required.

To address some of the challenges faced by 
conventional physics-based models, artificial 
intelligence (AI)-based techniques that learn 
models from data have been identified as a 
promising venue in the field. For instance, as 
introduced in a Review by Alberto Ferrari and 
colleagues, the widely-used classical poten-
tials become infeasible to accurately describe 
the ubiquitous and technically-relevant short-
range order (SRO) — a type of local element 
ordering — in CCMs, since the various blended 
elements require a vast number of parameters 
to reliably mimic the high-dimensional intera-
tomic relations. Ferrari and colleagues argue 
that machine learning interatomic potentials, 
such as low-rank potentials and moment ten-
sor potentials, could be used to effectively 
investigate SRO in CCMs. Similarly, Dierk 
Raabe and colleagues examine in a Perspective 
how AI models can consider more constraints 
during the optimization processes for element 
selection and composition design in order 
to provide better guidance for the control of 
impurity during the manufacturing process. 
As one illustration, constraints related to 
the recyclability of the mixed elements can 
be taken into account for more sustainable 
materials manufacturing. The importance of 
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trace impurity control in alloy design is also 
highlighted in a Nature Materials Q&A with 
Zhi-Wei Shan.

It is worth highlighting that AI-based mod-
els can further complement, rather than sim-
ply replace, physics-based models. On the one 
hand, AI approaches can greatly expand the 
search space for identifying more complex 
physical relations for the design of CCMs, but 
this large dimension in the search space can 
impact efficiency. On the other hand, physics-
based models rely on established functional 
forms that can somewhat restrict new dis-
coveries, but that can more efficiently guide 
the design process. As highlighted by Raabe 
and colleagues, incorporating physical rela-
tions — such as thermodynamics laws and DFT 
predictions — into AI models as constraints 
is a promising strategy in the field that can 
improve the optimization and search effi-
ciency through a careful balance of explora-
tion and exploitation.

This Focus also features primary research 
articles, published at Nature Materials, that 
exemplify how exotic properties can be 
achieved through a sophisticated engineer-
ing of element mixing. For example, the Article 
by Hang Xue and colleagues demonstrates an 
interstitial solute stabilizing strategy to pro-
duce high-density, highly stable coherent 
nanoprecipitates in Sc-added Al–Cu–Mg–Ag 
alloys, enabling the Al alloy to reach an unprec-
edented creep resistance as well as an excep-
tional tensile strength at high temperatures. 
In another Article, Jinlong Du and colleagues 
report a reversible local disordering–ordering 
transition of precipitates by a careful element 
design in multi-component metallic alloys that 
enables high radiation tolerance at high tem-
peratures. Finally, an Article by Jiadong Zhou 
and colleagues reports the synthesis of various 
two-dimensional CCMs that achieve tunable 
materials properties such as ferromagnetism 
and superconductivity. We believe similar 

successful stories will continue to excite our 
community, especially with guidance from 
computational and theoretical insights.

Finally, we would like to highlight the fact 
that the design of CCMs requires multidisci-
plinary collaboration between experimental-
ists, theorists, and computational scientists. 
While theoretical and computational insights 
can help experimentalists to better navigate 
through the vast design space, theoretical 
mechanisms need new experimental data to 
validate the findings and to provide construc-
tive feedback for experimentalists. We hope 
that this joint Focus between Nature Computa-
tional Science and Nature Materials will inspire 
new collaborations that will accelerate new 
discoveries in materials engineering.

Published online: 31 March 2023

References
1. Freysoldt, C. et al. Rev. Mod. Phys. 86, 253 (2014).
2. Chen, L.-Q. Annu. Rev. Mater. Res. 32, 113–140 (2002).

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s41563-022-01434-8
https://doi.org/10.1038/s41563-022-01420-0
https://doi.org/10.1038/s41563-022-01260-y
https://doi.org/10.1038/s41563-022-01291-5

	Guiding element mixing



