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Deep-learning electronic-structure 
calculation of magnetic superstructures

He Li    1,2,3,7, Zechen Tang1,7, Xiaoxun Gong1,4, Nianlong Zou    1, 
Wenhui Duan    1,2,3,5  & Yong Xu    1,2,5,6 

Ab initio studies of magnetic superstructures are indispensable to research 
on emergent quantum materials, but are currently bottlenecked by the 
formidable computational cost. Here, to break this bottleneck, we have 
developed a deep equivariant neural network framework to represent the 
density functional theory Hamiltonian of magnetic materials for efficient 
electronic-structure calculation. A neural network architecture 
incorporating a priori knowledge of fundamental physical principles, 
especially the nearsightedness principle and the equivariance requirements 
of Euclidean and time-reversal symmetries (E(3) × {I, 𝒯𝒯𝒯), is designed, which 
is critical to capture the subtle magnetic effects. Systematic experiments on 
spin-spiral, nanotube and moiré magnets were performed, making the 
challenging study of magnetic skyrmions feasible.

The subject of magnetic superstructures, such as magnetic skyrmions, 
moiré magnetism and spin-spiral magnets, has attracted intensive 
research interest, opening opportunities to explore emergent physics 
in quantum materials, including the skyrmion Hall effect, the topo-
logical Hall effect, flat-band physics and so on1. Ab initio calculations 
based on density functional theory (DFT) has become an indispensa-
ble tool for research, but is only applicable to the study of small-scale 
superstructures owing to the high computational cost. The recent 
development of deep learning ab initio methods2–15 has shed light on 
solving this bottleneck problem; these methods use artificial neural 
networks to learn from ab initio data and apply neural networks for 
material simulation without invoking ab initio codes, enabling the 
study of large-scale material systems. However, current methods are 
usually designed to treat systems without magnetism, which neglects 
the dependence of material properties on magnetic structure; thus, 
they are not suitable for the purpose.

A key challenge of deep learning DFT calculations is to design deep 
neural network models to represent the DFT Hamiltonian HDFT for 
efficient electronic-structure simulation8,9. This problem has recently 
been investigated for non-magnetic systems7–13. The counterpart prob-
lem for magnetic systems is of great importance but faces some critical 
challenges. First, an extra dependence on magnetic structure {ℳ𝒯  

is introduced into HDFT (Fig. 1a), which is physically distinct from the 
dependence on atomic structure {ℛ𝒯. Second, the spin degrees of 
freedom are usually negligible in the non-magnetic case, but become 
essential for magnetic systems. Consequently, HDFT becomes non-
diagonal in spin space, leading to a larger number of non-zero matrix 
elements (Fig. 1a). Third, satisfying fundamental symmetry conditions 
is a prerequisite for achieving good performance in deep learning 
problems8–11. Generalized symmetry requirements for neural network 
models of HDFT are imposed by symmetry operations on both {ℳ𝒯  
and {ℛ𝒯. This important issue has not been addressed before. Last but 
not least, high-precision calculations are required to describe the 
subtle magnetic effects, setting high standards for method develop-
ment. In this context, substantial generalization of deep learning DFT 
methods is urgently demanded by the research field.

In this work, we develop an extended deep learning DFT Hamilto-
nian (xDeepH) method, including theoretical framework, numerical 
algorithm and computational code, which learns the dependence of the 
spin–orbital DFT Hamiltonian on atomic and magnetic structures by 
deep equivariant neural network (ENN) models, enabling efficient elec-
tronic-structure calculation of large-scale magnetic materials. As a 
critical innovation, we design an ENN architecture to incorporate physi-
cal insights and respect the fundamental symmetry group E(3) × {I, 𝒯𝒯𝒯 
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The workflow of xDeepH is illustrated in Fig. 1a. First, small-size 
materials (simulated by small supercells) with diverse atomic and 
magnetic configurations are calculated by constrained DFT for pre-
paring datasets. Then deep neural networks representing 
HDFT ({ℛ𝒯, {ℳ𝒯)  are trained on the datasets. Next, the neural networks 
are applied to predict HDFT for materials with varying atomic and 
magnetic structures. Based on HDFT, any electronic properties of 
materials in the single-particle picture can be computed. By replacing 
the DFT SCF calculation with deep neural networks, the method 
greatly reduces the computational cost of electronic-structure cal-
culation and enables the study of magnetic superstructures (for 
example, magnetic skyrmions). The critical issue, however, is the 
design of intelligent neural networks for modeling the mapping func-
tion ({ℛ𝒯, {ℳ𝒯) ↦ HDFT, using as much a priori knowledge as possible 
for optimizing neural network performance.

Two physical principles are essential to the deep learning problem 
here, including the nearsightedness (or locality) principle of elec-
tronic matter18 and the symmetry principle. Local physical properties 
satisfying the nearsightedness principle are insensitive to distant 
change of the chemical environment18. For instance, charge density 
is a local property, whereas the Kohn–Sham eigenstates are non-
local. The latter depends sensitively on the global material structure, 
which is complicated from the point of view of machine learning. In 
general, qualities with local properties are more favorable for deep 
learning than non-local ones19–21. Moreover, the fundamental physical 
equations are equivariant under symmetry operations (for example, 
translation, rotation and so on). The symmetry is an inherent prop-
erty of physical data. Hence the use of symmetry properties could 
substantially facilitate deep learning. In short, the principles of local-
ity and symmetry are a priori knowledge of pivotal importance to  
artificial intelligence.

Let us first check the locality nature of the deep learning  
target HDFT ({ℛ𝒯, {ℳ𝒯). In DFT calculations, plane waves and localized 
orbitals are usually employed as basis functions. The localized  
basis is preferred, as it is compatible with the locality principle. Under 
the localized basis, the DFT Hamiltonian can be viewed as an ab initio 
tight-binding Hamiltonian (see details in ‘DFT Hamiltonian under 
localized basis’ in Methods). The Hamiltonian matrix block Hij, which 
describes hopping between atoms i and j, has vanishing values for  
atom pairs with distance dij > RC. The cut-off radius RC is determined by 
the spread of orbital functions and usually on the order of a few ång-
ströms. Importantly, Hij ({ℛ𝒯, {ℳ𝒯)  obeys the nearsightedness princi-
ple, which is influenced only by changes in the chemical environment 
of finite range RN.

Noticeably, the influence induced by changes in {ℛ𝒯 and {ℳ𝒯 are 
relevant to two kinds of nearsightedness length scales, denoted as RN1 
and RN2, respectively. Formally, varying {ℛ𝒯  will alter the strong exter-
nal potential in HDFT, whereas varying {ℳ𝒯  will mainly modify the rela-
tively weak constraining fields, leading to minor influence on HDFT. It 
is thus expected that the latter influence on HDFT is weaker in magnitude 
and shorter in length scale (RN2 < RN1). Our results suggest that RN2 ≈ RC 
(Supplementary Fig. 1), and RN1 is typically several times larger than 
RC. The two distinct dependence behaviors of HDFT ({ℛ𝒯, {ℳ𝒯)  should 
be accurately described together by the deep learning method. This 
important issue will be addressed in the dataset preparation and neural 
network design.

The symmetry principle is another a priori knowledge of essential 
importance to optimize deep learning performance. On HDFT ({ℛ𝒯, {ℳ𝒯)
, the fundamental symmetry group is E(3) × {I, 𝒯𝒯𝒯, which includes the 
E(3) group (including translation, rotation and spatial inversion) in 
direct product with identity I and time reversal 𝒯𝒯 . These symmetry 
operations may act on the atomic and magnetic structures or on both 
orbital and spin spaces of HDFT, leading to equivariant transformation 
requirements, as illustrated in Fig. 1b for spatial rotation and time 
reversal. With information about one structure, HDFT of all the 

(Euclidean and time-reversal symmetries) in the representation of 
HDFT ({ℛ𝒯, {ℳ𝒯), ensuring efficient and accurate deep learning. E(3) is the 
Euclidean group in three-dimensional space, I is the identity operator 
and 𝒯𝒯 is the time-reversal operator. The method is systematically tested 
to show high precision (submillielectronvolt error) and good transfer-
ability by example studies of magnetic superstructures ranging from 
spin-spiral, nanotube and moiré magnets to magnetic skyrmions. Ben-
efiting from extended capability and state-of-the-art performance, 
xDeepH could find promising applications in future materials research 
and stimulate the development of deep learning ab initio methods.

Results and discussion
Theoretical framework of xDeepH
The deep learning DFT Hamiltonian (DeepH) method has been devel-
oped to improve the efficiency of electronic-structure calculation, 
which shows great potential to address the accuracy-efficiency dilemma 
of DFT8,9. A substantial generalization of the method is required to 
study a broad class of magnetic materials. For non-magnetic systems, 
HDFT as a function of atomic structure {ℛ𝒯 is calculated by self-consist-
ent field (SCF) iterations in DFT. The function HDFT ({ℛ𝒯)  is the learning 
target of DeepH. In contrast, for magnetic systems, HDFT depends not 
only on atomic structure but also on magnetic structure {ℳ𝒯. To com-
pute HDFT for a given {ℳ𝒯 , one needs to apply constrained DFT that 
employs the Lagrangian approach to constrain magnetic configuration 
and introduce constraining fields into the Kohn–Sham potential16. In 
general, the mapping from {ℛ𝒯  and {ℳ𝒯  to the spin–orbital HDFT is 
unique in constrained DFT17. HDFT for magnetic systems is also calculated 
by SCF iterations but requires much more computational resource than 
the non-magnetic counterpart. This is because the additional constrain-
ing fields should be determined self-consistently, and an enlarged 
Hamiltonian matrix non-diagonal in spin space must be considered.
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Fig. 1 | Extended deep learning DFT Hamiltonian (xDeepH) method for 
studying magnetic materials. a, Workflow of xDeepH. Equivariant neural 
networks (middle) are used to represent the DFT Hamiltonian HDFT (right) as a 
function of atomic structure {ℛ} and magnetic structure {ℳ} (left). The neural 
network models are trained on DFT data on small-size structures (blue dashed box) 
and applied to study magnetic superstructures, such as magnetic skyrmions. The 
colored arrows denote magnetic moments. b, Equivariance of HDFT ({ℛ}, {ℳ}) 
with respect to the E(3) × {I, 𝒯𝒯} group, where E(3) is the Euclidean group in 
three-dimensional space, I is the identity operator and 𝒯𝒯  is the time-reversal 
operator. Transformations of rotation R and time-reversal 𝒯𝒯 are illustrated. The 
colored balls and arrows denote atoms and magnetic moments, respectively.
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symmetry-related structures can be predicted via equivariant trans-
formations. Thus, the benefit of incorporating a symmetry principle 
into deep learning is considerable. The equivariance transformations 
of the DFT Hamiltonian required by the E(3) × {I, 𝒯𝒯𝒯 symmetry group 
are described in ‘Equivariance transformations of DFT Hamiltonian’  
in Methods.

The Euclidean symmetry requirements can be preserved using 
the framework of ENNs22,23. All of the feature vectors in ENNs have the 
equivariant form xlm, which carries the irreducible representation of 
the SO(3) group of dimension 2l + 1, where l is an integer and m is an 
integer or half-integer varying between −l and l. Feature vectors can be 
converted to equivariant tensors (or vice versa) to construct the DFT 
Hamiltonian via the Wigner–Eckart theorem: l1 ⊗ l2 = |l1 − l2| ⊕ ⋯ ⊕  
(l1 + l2), which changes tensor product ‘⊗’ into direct sum ‘⊕’. How to 
realize Euclidean equivariance is described in ‘Realization of Euclidean 
equivariance’ in Methods.

However, it seems difficult to handle the time-reversal equivari-
ance within the original ENN framework, because time reversal intro-
duces a non-trivial transformation of the DFT Hamiltonian in the  
spin space (equation (2) in Methods), and complex-valued quantities  
are prevalent in the problem. We find that this problem is  
solved by applying the transformation 1

2
⊗ 1

2
= 0⊕ 1 . Details of the 

time-reversal symmetry are described in Supplementary Section 2. 
Under the 0 ⊕ 1 representation, the effect of the time-reversal operator 
becomes very simple: the signs are flipped for the imaginary part of 
the l = 0 vector and the real part of the l = 1 vector, and all others are 
unchanged. This means, if we want to introduce time-reversal sym-
metry to the ENN, we need to let the ENN output the real and imaginary 
parts of the l = 0 and l = 1 vectors separately and introduce an additional 
index t (t = 0, 1) into the rotation-equivariant vectors to mark their 

‘time-reversal parity’: xl,tm
𝒯𝒯
⟶(−1)txl,tm . This additional parity should be 

taken care of for all the input, output and internal vectors throughout 
the ENN, but it can be treated in exactly the same way as the spatial 
inversion. Spatial-inversion symmetry is already implemented in our 
ENN framework, so introducing another parity index is a straightfor-
ward generalization. Therefore, all the symmetry requirements by the 
E(3) × {I, 𝒯𝒯𝒯 group can be obeyed by the generalized ENN framework.

Here we describe the ENN architecture for xDeepH. xDeepH  
is based on a message-passing neural network4, using graphs of vertices 
and edges to represent materials. Each atom associated with nuclear 
charge Zi and magnetic moment mi is denoted by a vertex. Atomic  
pairs with non-zero Hij are connected by directional edges associated 
with interatomic distance vector rij. These features of vertices and 
edges are input to an embedding layer, which is used to construct initial 
equivariant feature vectors of different l. Each vector is also labeled by 
the spatial-inversion and time-reversal parities (p, t). For instance, rij 
has (p = 1, t = 0), and mi has (p = 0, t = 1). The ENN iteratively updates 
the equivariant features for vertices vi and edges eij by updating them 
using features of their neighborhood as proposed in DeepH-E311. Note 
that non-linear activation functions are allowed for l = 0 vectors only, 
and only even or odd activation functions are allowed to act on vectors 
with p = 1 or t = 1. Otherwise, the equivariance of the ENN will get broken. 
Importantly, interaction between vectors of different l is implemented 
using a tensor product layer22, zl3m3 = ∑m1 ,m2C

l1l2l3
m1m2m3x

l1
m1y

l2
m2, that 

improves the capacity of ENN, where C
l1l2l3
m1m2m3 are Clebsch-Gordan 

coefficients and x,y, z  are equivariant vectors. Moreover, as the  
feature vectors are translation invariant, the translation invariance  
of ENN is respected. Contributions from different atoms are aggre-
gated by summation such that the updated features are invariant  
with respect to atomic permutations.

An overview of the neural network architecture of xDeepH is 
presented in Fig. 2. xDeepH embeds atomic and magnetic structures 
as initial vertex and edge features, followed by successive vertex layers 
and edge layers to update corresponding features. Distant 

information of atomic structure {ℛ𝒯 is aggregated into features upon 
successive stacking of layers. The influence of the local magnetic 
moment on the DFT Hamiltonian is more localized. Regarding this 
locality, we introduce magnetic information {ℳ𝒯  to the message- 
passing neural network with strict locality, as illustrated in the  
magnetic moment layer in Fig. 2b. We find that the approach makes  
training more efficient and accurate compared with treating {ℛ𝒯   
and {ℳ𝒯 on an equal footing (see ablation studies in Supplementary 
Table 1). Finally, equivariant features on edges eij are used to construct 
Hij. The xDeepH model is trained using DFT datasets by minimizing 
the loss function defined as the mean-squared errors of the DFT 
Hamiltonian matrix elements. Constraint DFT calculations are per-
formed by using the OpenMX package24. DFT datasets are prepared 
by calculating many magnetic configurations for any given atomic 
structure, which increases the learning weight on the subtle magnetic 
effects. More details are described in ‘Dataset preparation’ in Meth-
ods. A previous study developed the deep neural network SpookyNet 
to learn the total energy and atomic forces of molecules, which not 
only considers the nuclear degrees of freedom as input but also takes 
the electronic degrees of freedom (including the total charge and 
spin) into account6. It is also based on the ENN method. A compre-
hensive comparison between xDeepH and SpookyNet is presented 
in Supplementary Section 7.

Capability of xDeepH
The performance of xDeepH is tested by example studies of increas-
ing complexity. The first case study is on monolayer NiBr2, in which 
spin-spiral magnetism exists25. We prepare DFT datasets by calculating 
supercells of monolayer NiBr2 with equilibrium lattice structure and 
random magnetic moment orientations at Ni sites (Extended Data  
Fig. 1a), and use them for training, validation and testing. The distribu-
tion of the mean absolute error (MAE; defined for the DFT Hamiltonian 
matrix elements, if not mentioned explicitly) for the test set is shown 
in Supplementary Fig. 2. The average MAE is as low as 0.56 meV. This 
ensures reliable predictions of band structures for changing magnetic 
configurations (Supplementary Fig. 3). Then xDeepH is applied to study 
the band structure of the 19 × 1 spiral magnetism and obtains results 
that are well consistent with DFT (Extended Data Fig. 1b), demonstrat-
ing the good generalization ability of the method.

The second case study is on nanotubes of monolayer CrI3, which 
is one of the most investigated two-dimensional magnetic materials26. 
Recent research on CrI3 nanotubes has revealed an intriguing magnetic 
transition from ferromagnetism to curved magnetism with increas-
ing nanotube diameter27. The corresponding electronic-structure 
study, however, is lacking. We prepare DFT datasets by calculating flat 
monolayer sheets of CrI3 with randomly perturbed atomic and mag-
netic configurations, and apply the trained xDeepH for the research 
(Extended Data Fig. 1c). On the test sets of monolayer sheets, the aver-
aged MAE is down to 0.36 meV, and the band structures predicted by 
xDeepH match well with DFT results, showing quite high prediction 
accuracy (Supplementary Figs. 5 and 6). Test calculations are per-
formed to compare the computational cost between xDeepH and 
DFT. The results indicate that the efficiency advantage of xDeepH over 
DFT is substantial and becomes more considerable as the system size 
increases (Supplementary Section 5). We further use xDeepH to study 
(16, 16) CrI3 nanotubes for the two magnetic configurations proposed 
by ref. 27. As the curved lattice and magnetism are unseen during 
the training process, this is a strict test for xDeepH, especially on its 
equivariant performance. Remarkably, the predicted band structure 
(Extended Data Fig. 1d) and electric susceptibility (Supplementary  
Fig. 7) are in perfect agreement with DFT benchmark data. The varia-
tion in magnetism has a subtle influence on the band structure (Sup-
plementary Fig. 8), and the subtle magnetic effects are well captured 
by xDeepH. Therefore, this method is promising for studying magnetic 
superstructures.

http://www.nature.com/natcomputsci
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Finally, we try a challenging study on quantum materials with 
magnetic skyrmions. For this, we choose the moiré-twisted bilayer 
CrI3 (Extended Data Fig. 2a), which has recently been predicted to 
have magnetic skyrmions originating from the stacking-dependent 
interlayer magnetic coupling of CrI3 (ref. 28). The influence of magnetic 
skyrmions on electronic properties has rarely been studied before. The 
neural network models are trained on DFT datasets obtained for sample 
structures with a fixed twist angle θ = 60°, and then applied to study 
moiré-twisted structures of varying θ. Band structures and density of 
states obtained from xDeepH match well with the DFT results for a new 
twist angle θ = 81.79° (Supplementary Fig. 9), verifying the reliability of 
the approach. Next, we consider a twist angle of θ = 63.48°, which has 
magnetic skyrmions in a large supercell28, as illustrated in Extended 
Data Fig. 2a. For the ferromagnetic configuration, an extremely flat 
valence band emerges in the system (Extended Data Fig. 2b), which 
originates from the moiré twist. Noticeably, the flat band disappears 
in the presence of magnetic skyrmions (Extended Data Fig. 2c), indicat-
ing strong coupling between the two entities. This intriguing physics 
relevant to flat bands and magnetic skyrmions will be further explored 
in our future work.

Discussion
The xDeepH method enables efficient electronic-structure calculations 
of large-scale magnetic materials, opening opportunities to explore 
emergent quantum physics and diverse magnetic systems, such as 
magnetic alloys, collinear or non-collinear magnetic systems, and peri-
odic or non-periodic magnets. Moreover, the theoretical framework 
of xDeepH could find general applications in future development of 
deep learning ab initio methods, including the investigation of many-
body interactions. For instance, xDeepH can be adapted to design 
neural networks in full respect of fundamental physical principles for 

representing other physical quantities, which is useful for exploring 
general physical effects relevant to spin dynamics, electron–magnon 
and phonon–magnon coupling, and so on. A more detailed discussion 
is included in Supplementary Section 9. However, the current xDeepH 
approach is not without limitations. For instance, considerable time is 
required to perform spin-constrained DFT calculations and for train-
ing neural network models, which hinders the dataset preparation 
and neural network training, respectively. In-depth research is thus 
needed to develop advanced spin-constrained DFT algorithms and to 
optimize the neural network architecture.

Methods
DFT Hamiltonian under localized basis
Localized basis is compatible with the locality principle. The orbital 
functions have the form ϕiplm(r) = Ripl(r)Ylm( ̂r) , where the radial function 
Ripl(r) is centered at the ith atom, p is the multiplicity index, and the 
angular part Ylm( ̂r)  is the spherical harmonics of degree l and order m. 
Herein the spin degree of freedom must be considered, which is labeled 
by σ = ±1/2. The matrix element is then written as [Hij]

p1p2 ;l1 l2
m1σ1 ,m2σ2

, where the 
subscript ‘DFT’ is omitted for simplicity. Hij is the Hamiltonian matrix 
block describing hopping between atoms i and j. A notation of  
Hamiltonian matrix subblock h ≡ [Hij]

p1p2  is introduced, the elements 
of which have the form hl1 l2m1σ1 ,m2σ2.

Equivariance transformations of DFT Hamiltonian
To study magnetic systems, one must consider an additional input 
of {ℳ𝒯 and take the spin space of the electronic Hamiltonian into 
account. The Hamiltonian matrix subblock is the basic transforma-
tion unit of symmetry operations. For instance, if applying an rota-
tion R on {ℛ𝒯 and {ℳ𝒯, the Hamiltonian matrix subblock h will 
transform as follows:
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Fig. 2 | Neural network architecture of xDeepH. a, Workflow of the xDeepH 
model. Initial vertex and edge features are embedded by one-hot encoding and 
Gaussian expansion, respectively. Features are updated alternately by vertex 
layer and edge layer with interatomic distance vectors rij equipped with spherical 
harmonics Ylm. Subsequently, a magnetic moment layer with strict locality is used 
to include the magnetic moments mi of atoms as input. Finally, a Hamiltonian 

construction layer is employed to build the DFT Hamiltonian matrix block Hij.  
b, Details of the vertex layer (top), edge layer (middle) and magnetic moment layer 
(bottom), containing the ‘Interaction’ block. c, Details of the ‘Interaction’ block. 
The superscript (L) refers to the Lth layer. ∥ denotes vector concatenation and ⋅ 
denotes element-wise multiplication. ∑𝒩𝒩  denotes the summation of neighbors 
for features, which is only valid for the vertex layer.
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hl1 l2m1σ1 ,m2σ2
R
⟶

∑
m′
1 ,σ

′
1 ,m

′
2 ,σ

′
2

D
l1⊗

1
2

m1σ1 ,m′
1σ

′
1
(R)[D

l2⊗
1
2

m2σ2 ,m′
2σ

′
2
(R)]

∗

hl1 l2m′
1σ

′
1 ,m

′
2σ

′
2
,

(1)

where the superscript * denotes the complex conjugate, and Dl1⊗
1
2 (R) 

is the direct product of Wigner D-matrices Dl(R) and D
1
2 (R), which act 

on the orbital and spin spaces, respectively. Under 𝒯𝒯, {ℳ𝒯 changes sign, 
{ℛ𝒯 is unchanged and HDFT is transformed by an antiunitary operator. 
As real-valued orbital functions are employed here, the time-reversal 
transformation gives

hl1 l2m1σ1 ,m2σ2
𝒯𝒯
⟶

⎧
⎨
⎩

(hl1 l2m1(−σ1),m2(−σ2)
)
∗
σ1 = σ2

− (hl1 l2m1(−σ1),m2(−σ2)
)
∗
σ1 ≠ σ2.

(2)

On spatial inversion, {ℛ𝒯 and {ℳ𝒯 have odd and even parities, respec-
tively. hl1 l2 also has a well-defined parity, which is (−1)l1+l2. Moreover, 
HDFT ({ℛ𝒯 − r0, {ℳ𝒯)  is invariant under spatial translation, where r0 
denotes the origin and only the relative atomic positions are relevant 
to the problem. Besides, HDFT is equivariant under atomic 
permutation.

Realization of Euclidean equivariance
To maintain Euclidean equivariance, all the input, internal and output 
feature vectors of ENNs are required to be equivariant. If a rotation R 
is applied to the input coordinates of ENNs, the equivariant feature 
vectors will transform accordingly: xlm

R
⟶∑m′Dlmm′ (R)xlm′, where the 

equivariant feature vector xlm carries the irreducible representation of 
the SO(3) group of dimension 2l + 1, l is an integer or half-integer,  
and m is an integer or half-integer varying between −l and l.  
Moreover, feature vectors can be converted to equivariant tensors (or 
vice versa) via the Wigner–Eckart theorem: l1 ⊗ l2 = |l1 − l2| ⊕ ⋯ ⊕ (l1 + l2),  
which changes tensor product ‘⊗’ into direct sum ‘⊕’. For example, a 
representation of l1 ⊗ l2 is constructed by Xl1 l2m1m2

= ∑l3 ,m3
Cl1 l2 l3m1m2m3

xl3m3 ,  
w h e r e  Cl1 l2 l3m1m2m3

 a r e  C l e b s c h – G o r d a n  c o e f f i c i e n t s .  T h e  
equivariant rotation transformation rule of the tensor is 
Xl1 l2m1 ,m2

R
⟶∑m′

1 ,m
′
2
Dl1m1 ,m′

1
(R)Dl2m2 ,m′

2
(R)Xl1 l2m′

1 ,m
′
2

. When excluding the spin 

degrees of freedom and selecting real-valued Dl(R) for the orbital space, 
hl1 l2m1 ,m2

 follows the same transformation rule as Xl1 l2m1 ,m2
 (equation (1)). 

Thus, the spin-unpolarized DFT Hamiltonian can be represented by 
the tensor, making the rotation-equivariant property preserved. In 
contrast, using ENNs to construct the spin–orbital DFT Hamiltonian 
is more complicated for the following reasons. First, the DFT Hamilto-
nian matrix subblock corresponds to a special representation of 
(l1 ⊗

1
2
) ⊗ (l∗2 ⊗

1
2

∗
), where l* denotes a representation whose rotation 

transformation matrix is the complex conjugate of that for the repre-
sentation l. Second, complex-valued quantities are generally involved 
in half-integer representations, but only real-valued ENNs are currently 
available for practical computation. The problem is addressed in the 
DeepH-E3 method11, which proposes to convert the representation l* 
into l by unitary transformation, and reduce half-integer representa-
tions into integer ones by applying the Wigner–Eckart theorem.

Neural network model
On notations of building blocks in Fig. 2, ‘E3Linear’ is defined as

E3Linear(x)lcm = ∑
c′
Wl
cc′x

l
c′m + blc, (3)

where l is the angular momentum quantum number, m is the magnetic 
quantum number, c denotes the channel index, and Wl

cc′ and blc are 
learnable weights. To preserve equivariance requirements, biases 
blc ≠ 0 only for equivariant features x with l = 0, even spatial-inversion 
index and even time-reversal index.

‘(Ux) ⊗ (Vy)’ denotes the tensor product operation between  
features x and y, where U and V are learnable parameters. ‘E3Layer-
Norm’ is used to normalize the feature while preserving equivariance11:

E3LayerNorm(x)lcm = g lc
xlcm − μlm
σl + ϵ

+ hlc, (4)

where μlm and σl are the mean and the standard deviation of features, 
respectively, glc and hlc are learnable weights, and ϵ is denominator for 
realizing numerical stability. hlc has the same equivariance require-
ments as blc in equation (3).

The layer of ‘Non-linearity’ produces the non-linearity activation 
function or the scalar gate on features x with l = 0 or l > 0, respectively. 
For l = 0 features with even spatial-inversion index and even time-
reversal index, the activation function sigmoid linear unit is used. In 
addition, for other l = 0 features, the odd activation function tanh is 
used to preserve equivariance with respect to spatial inversion and 
time reversal.

‘Embedding’ is used to construct initial features and transform 
the interatomic distance vector rij and magnetic moment miinto  
equivariant vectors. Initial vertex features v(0)i  are vector embeddings  
of nuclear charge Zi. Initial edge features e(0)ij  are interatomic distances 
|rij| expanded by Gaussian functions. Real spherical harmonics Ylm  
acting on the vector input rij and mi are used to introduce equivariant 
features with arbitrary l, and update vertex and edge features.  
Inputs Ylm(mi) for non-magnetic atoms i are set to zero.

In the magnetic moment layer, ‘MLP’ is multilayer perceptron, and 
‘Aggregation’ is used to aggregate the magnetic moment information 
in the RC range to the edge feature elij:

Slik = MLP
l
left(escalarik ), k ∈ 𝒩𝒩i (5)

Wl
jk′ = MLP

l
right(escalarjk′ ), k′ ∈ 𝒩𝒩j (6)

Aggregationl(Sl,Wl, r,m)

= ( ∑
k∈𝒩𝒩i

Slik (Y
l( ̂rik)‖Yl(m̂i)‖Yl(m̂k)))

‖
‖‖‖

( ∑
k ′∈𝒩𝒩j

W l
jk ′ (Y

l( ̂rjk ′ )‖Yl(m̂j)‖Yl(m̂k ′ ))) ,

(7)

where ‘scalar’ means spatial-inversion-even and time-reversa-even 
equivariant feature with l = 0, 𝒩𝒩i  is the set of neighbors of atom i, S   
and W  are the outputs of equations (5) and (6), ̂r  and m̂ are unit  
vectors of r and m, respectively, and ‘∥’ denotes vector concatenation. 
Equation (7) introduces strict locality in the same spirit as ref. 15.

Details of neural network training
The xDeepH model was implemented with PyTorch, PyTorch Geometric 
and e3nn23 libraries. The initial vertex and edge features were 64-dimen-
sional. For the vertex and edge layers, equivariant vertex and edge 
features were set to be 64 × 0eE + 32 × 1oE + 16 × 1eE + 16 × 2eE + 8 × 3o
E + 8 × 4eE, where 64 × 0eE denotes 64 time-reversal-even equivariant 
vectors carrying the l = 0 representation with even parity, and 32 × 0oE 
denotes 32 time-reversal-even equivariant vectors carrying the l = 1 
representation with odd parity. For the intermediate magnetic moment 
layer, equivariant edge features were set to be 64 × 0eE + 32 × 1oE + 16 × 
1eE + 16 × 2eE + 8 × 3oE + 8 × 4eE + 64 × 0eO + 32 × 1oO + 16 × 1eO + 16 × 
2eO + 8 × 3oO + 8 × 4eO, where 64 × 0eO denotes 64 time-reversal-odd 
equivariant vectors carrying the l = 0 representation with even parity. 
The output features of the last magnetic moment layer were set to carry 
the irreducible representation required to construct the target Ham-
iltonian matrix. Finally, the final edge features were passed through a 
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E3Linear layer to obtain the Hamiltonian matrix block. l = 0 to l = 4 was 
used for Ylm(rij) and Ylm(mi). The neural network we use included three 
vertex layers, three edge layers and three magnetic moment layers.

Training was performed on an NVIDIA RTX 3090 graphics pro-
cessing unit with a batch size of 1. The initial learning rate was set to 
be 0.002, which decreases by a factor of 0.5 when the loss does not 
decrease after 120 epochs. Supplementary Table 3 summarizes the 
number of parameters of the neural network models and the data 
splitting used for training, validation and testing, respectively, in each 
dataset. For NiBr2, we found that the deep learning model without 
E3LayerNorm can achieve slightly lower loss. As a result, we used the 
model without E3LayerNorm for this dataset, which brings a small 
difference in the number of parameters.

Computational details
DFT calculations were performed by the OpenMX software package 
(version 3.9)24 using pseudo-atomic localized basis functions, norm-
conserving pseudopotentials and the Perdew–Berke–Ernzerhof-type 
exchange-correlation functional. Constraint DFT as implemented in 
OpenMX is applied to study systems with specified magnetic configu-
rations. In all calculations, we constrain the orientation of magnetic 
atoms (Ni and Cr) with 0.5 eV as the prefactor of spin constraint. The 
spin–orbit coupling is included in the DFT calculations. For NiBr2, the 
basis sets of Ni6.0H-s3p2d1 and Br7.0-s3p2d2 are used, including 14 
basis functions for Ni with cut-off radius rc = 6.0 bohr and 19 basis func-
tions for Br with rc = 7.0 bohr. The DFT + U method with a Hubbard cor-
rection of U = 4.0 eV is applied to describe the 3d orbitals of Ni. For CrI3, 
the basis sets of Cr6.0-s3p2d1 and I7.0-s3p2d2 pseudo-atomic orbitals 
are used, including 14 basis functions for Cr with rc = 6.0 bohr and 19 
basis functions for I with rc = 7.0 bohr. The convergence of basis sets in 
the DFT calculations is confirmed by test calculations (Supplementary 
Section 6.1). The influence of basis-set size on the training efficiency of 
xDeepH is also checked (Supplementary Section 6.2). The energy cut-
off is set to be 300 rydberg. To generate datasets, a Monkhorst–Pack 
k-mesh of 7 × 7 × 1 is used for supercell calculations of monolayer NiBr2 
with 27 atoms, monolayer CrI3 with 32 atoms and bilayer CrI3 with 64 
atoms. Meanwhile, a Monkhorst–Pack k-mesh of 3 × 15 × 1 is used for 
monolayer NiBr2 with 19 × 1 spiral magnetism (114 atoms), 1 × 1 × 13 for 
(16, 16) CrI3 nanotubes (256 atoms) and 3 × 5 × 1 for the 2 × 1 supercell 
of twisted bilayer CrI3 with twist angle 81.79° (224 atoms).

Dataset preparation
The datasets in this work involve systems with randomly perturbed 
atomic and magnetic configurations. Magnetic configurations are 
constrained by specifying orientations of local magnetic moments of 
magnetic sites (Ni or Cr). For uniform sampling of magnetic moment 
orientations, we first generate Mx, My, Mz ≈ N(0, 1) for each magnetic 
site, where N(0, 1) stands for standard normal distribution. They are 
then normalized by dividing √M2

x +M2
y +M2

z. The resulting distribution 
of magnetic orientation vector is equivalent to uniform distribution 
on the unit sphere.

For monolayer NiBr2, we prepare DFT datasets by calculating 
500 3 × 3 supercells of NiBr2 with 27 atoms at the equilibrium lattice 
structure with random magnetic moment orientations. For monolayer 
CrI3, 100 different atomic structures of 2 × 2 supercells with 32 atoms 
are prepared by introducing random atomic displacements (up to 
0.1 Å) to the equilibrium lattice structure. For each atomic structure, 10 
random magnetic configurations are generated with random magnetic 
moment orientations. In total, 1,000 supercell structures with random 
atomic and magnetic configurations are included in the datasets of 
monolayer CrI3. Training sets of bilayer CrI3 are composed of 2 × 2 
supercells containing 64 atoms. To simulate a local environment of 
different interlayer stacking patterns, the second layer is arranged 
with an overall shift with respect to the first layer. The overall shift is 
sampled by a uniform 16 × 16 grid of the supercell, yielding 256 atomic 

configurations. In addition, random displacements up to 0.1 Å are intro-
duced to each atom about their equilibrium positions. For each atomic 
configuration, 10 random magnetic configurations are generated with 
the aforementioned method. In total, 2,560 bilayer CrI3 supercells 
with 256 unique atomic configurations and 2,560 unique magnetic 
configurations are prepared. All datasets are randomly divided into 
training, validation and test sets with a ratio of 6:2:2.

Data availability
Source data for Extended Data Figs. 1 and 2 is available with this 
paper. The dataset used to train the deep learning model is available 
at Zenodo29.

Code availability
The code used in the current study is available at GitHub (https://github.
com/mzjb/xDeepH) and Zenodo30.

References
1. Nagaosa, N. & Tokura, Y. Topological properties and  

dynamics of magnetic skyrmions. Nat. Nanotechnol. 8,  
899–911 (2013).

2. Behler, J. & Parrinello, M. Generalized neural-network 
representation of high-dimensional potential-energy surfaces. 
Phys. Rev. Lett. 98, 146401 (2007).

3. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential 
molecular dynamics: a scalable model with the accuracy of 
quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

4. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. 
Neural message passing for quantum chemistry. In Proc.  
34th International Conference on Machine Learning Vol. 70, 
1263–1272 (JMLR.org, 2017); http://proceedings.mlr.press/v70/
gilmer17a.html

5. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & 
Müller, K.-R. SchNet—a deep learning architecture for molecules 
and materials. J. Chem. Phys. 148, 241722 (2018).

6. Unke, O. T. et al. Spookynet: learning force fields with electronic 
degrees of freedom and nonlocal effects. Nat. Commun. 12, 7273 
(2021).

7. Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer, 
R. J. Unifying machine learning and quantum chemistry with a 
deep neural network for molecular wavefunctions. Nat. Commun. 
10, 5024 (2019).

8. Li, H. et al. Deep-learning density functional theory Hamiltonian 
for efficient ab initio electronic-structure calculation. Nat. 
Comput. Sci. 2, 367–377 (2022).

9. Li, H. & Xu, Y. Improving the efficiency of ab initio electronic-
structure calculations by deep learning. Nat. Comput. Sci. 2, 
418–419 (2022).

10. Unke, O. T. et al. SE(3)-equivariant prediction of molecular 
wavefunctions and electronic densities. In 35th Conference 
on Neural Information Processing Systems 14434–14447 
(Curran Associates, 2021); https://openreview.net/
forum?id=auGY2UQfhSu

11. Gong, X. et al. General framework for E(3)-equivariant neural 
network representation of density functional theory Hamiltonian. 
Preprint at https://arxiv.org/abs/2210.13955 (2022).

12. Su, M., Yang, J.-H., Xiang, H.-J. & Gong, X.-G. Efficient prediction of 
density functional theory hamiltonian with graph neural network. 
Preprint at https://arxiv.org/abs/2205.05475 (2022).

13. Zhong, Y., Yu, H., Su, M., Gong, X. & Xiang, H. Transferable E(3) 
equivariant parameterization for hamiltonian of molecules and 
solids. Preprint at https://arxiv.org/abs/2210.16190 (2022).

14. Batzner, S. et al. E(3)-equivariant graph neural networks for  
data-efficient and accurate interatomic potentials. Nat. Commun. 
13, 2453 (2022).

http://www.nature.com/natcomputsci
https://github.com/mzjb/xDeepH
https://github.com/mzjb/xDeepH
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://openreview.net/forum?id=auGY2UQfhSu
https://openreview.net/forum?id=auGY2UQfhSu
https://arxiv.org/abs/2210.13955
https://arxiv.org/abs/2205.05475
https://arxiv.org/abs/2210.16190


Nature Computational Science | Volume 3 | April 2023 | 321–327 327

Brief Communication https://doi.org/10.1038/s43588-023-00424-3

15. Musaelian, A. et al. Learning local equivariant representations 
for large-scale atomistic dynamics. Nat. Commun. 14, 579 
(2023).

16. Dederichs, P. H., Blügel, S., Zeller, R. & Akai, H. Ground states of 
constrained systems: application to cerium impurities. Phys. Rev. 
Lett. 53, 2512–2515 (1984).

17. Wu, Q. & Van Voorhis, T. Direct optimization method to study 
constrained systems within density-functional theory. Phys. Rev. A 
72, 024502 (2005).

18. Prodan, E. & Kohn, W. Nearsightedness of electronic matter.  
Proc. Natl. Acad. Sci. USA 102, 11635–11638 (2005).

19. Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 
10142–10186 (2021).

20. Chen, Y., Zhang, L., Wang, H. & E, W. DeePKS: a compre hensive 
data-driven approach toward chemically accurate density 
functional theory. J. Chem. Theor. Comput. 17, 170–181 (2021).

21. Zepeda-Núñez, L. et al. Deep density: circumventing the Kohn–
Sham equations via symmetry preserving neural networks.  
J. Comput. Phys. 443, 110523 (2021).

22. Thomas, N. et al. Tensor field networks: rotation- and translation-
equivariant neural networks for 3D point clouds. Preprint at 
https://arxiv.org/abs/1802.08219 (2018).

23. Geiger, M. & Smidt, T. e3nn: Euclidean neural networks. Preprint 
at https://arxiv.org/abs/2207.09453 (2022).

24. Ozaki, T. Variationally optimized atomic orbitals for large-scale 
electronic structures. Phys. Rev. B 67, 155108 (2003).

25. Amoroso, D., Barone, P. & Picozzi, S. Spontaneous skyrmionic 
lattice from anisotropic symmetric exchange in a Ni-halide 
monolayer. Nat. Commun. 11, 5784 (2020).

26. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and 
emergent heterostructure devices. Science 363, eaav4450 
(2019).

27. Edström, A., Amoroso, D., Picozzi, S., Barone, P. & Stengel, M. 
Curved magnetism in CrI3. Phys. Rev. Lett. 128, 177202 (2022).

28. Zheng, F. Magnetic skyrmion lattices in a novel  
2D-twisted bilayer magnet. Adv. Funct. Mater. 33,  
2206923 (2023).

29. Li, H. Dataset for deep-learning electronic-structure calculation 
of magnetic superstructures. Zenodo https://doi.org/10.5281/
zenodo.7561013 (2023).

30. Li, H. Code for deep-learning electronic-structure calculation 
of magnetic superstructures. Zenodo https://doi.org/10.5281/
zenodo.7669862 (2023).

Acknowledgements
We thank F. Zheng for providing the structures of magnetic skyrmions. 
This work was supported by the Basic Science Center Project of NSFC 
(Grant No. 52388201), the National Science Fund for Distinguished 
Young Scholars (Grant No. 12025405), the National Natural Science 

Foundation of China (Grant No. 11874035), the Ministry of Science 
and Technology of China (Grant Nos. 2018YFA0307100 and 
2018YFA0305603), the Beijing Advanced Innovation Center for Future 
Chip (ICFC) and the Beijing Advanced Innovation Center for Materials 
Genome Engineering.

Author contributions
Y.X. and W.D. proposed the project and supervised H.L. and Z.T. in 
carrying out the research, with the help of X.G. and N.Z. All authors 
discussed the results. Y.X. and H.L. prepared the paper with input  
from the other co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s43588-023-00424-3.

Correspondence and requests for materials should be addressed to 
Wenhui Duan or Yong Xu.

Peer review information Nature Computational Science thanks the 
anonymous reviewers for their contribution to the peer review of this 
work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the 
Nature Computational Science team. Peer reviewer reports are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

http://www.nature.com/natcomputsci
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/2207.09453
https://doi.org/10.5281/zenodo.7561013
https://doi.org/10.5281/zenodo.7561013
https://doi.org/10.5281/zenodo.7669862
https://doi.org/10.5281/zenodo.7669862
https://doi.org/10.1038/s43588-023-00424-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Computational Science

Brief Communication https://doi.org/10.1038/s43588-023-00424-3

Extended Data Fig. 1 | Application of xDeepH to study spin-spiral and 
nanotube magnets. a, Example study on NiBr2, which uses DFT data on 
monolayer structures with random magnetic configurations for training and 
predicts on spiral magnetic structures. b, Band structures of monolayer NiBr2 
with 19 × 1 spiral magnetism computed by DFT and xDeepH. c, Example study on 

CrI3, which uses DFT data on monolayer structures for training and predicts on 
nanotubes. d, Band structures of (16, 16) CrI3 nanotube with the non-collinear 
magnetization (left) and collinear ferromagnetism (right) computed by DFT 
and xDeepH. Magnetic moments are denoted by arrows. Γ, X, S, Y, and Z denote 
different high-symmetry k-points of the Brillouin zone.
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Extended Data Fig. 2 | Application of xDeepH to study Moiré magnets 
without or with magnetic skyrmion. a, Schematic atomic structure and 
magnetic skyrmion in the Moiré-twisted bilayer CrI3 (twist angle 63.48∘  
and 4,336 atoms per supercell)28. Magnetic moments of the top CrI3 layer are 
labeled by colored arrows, whose out-of-plane components are shown by the 

color. The underlying CrI3 layer is in the ferromagnetic configuration with up 
magnetic moments. b,c, Band structures of the Moiré-twisted bilayer CrI3 (b) in 
the ferromagnetic configuration and (c) in the magnetic skyrmion configuration. 
Γ, K and M denote different high-symmetry k -points of the Brillouin zone.
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