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Multi-view manifold learning of human 
brain-state trajectories

Erica L. Busch1, Jessie Huang2, Andrew Benz3, Tom Wallenstein2, 
Guillaume Lajoie4,5, Guy Wolf4,5, Smita Krishnaswamy    2,6,7,8,9  & 
Nicholas B. Turk-Browne1,8,9

The complexity of the human brain gives the illusion that brain activity 
is intrinsically high-dimensional. Nonlinear dimensionality-reduction 
methods such as uniform manifold approximation and t-distributed 
stochastic neighbor embedding have been used for high-throughput 
biomedical data. However, they have not been used extensively for brain 
activity data such as those from functional magnetic resonance imaging 
(fMRI), primarily due to their inability to maintain dynamic structure. Here 
we introduce a nonlinear manifold learning method for time-series data—
including those from fMRI—called temporal potential of heat-diffusion for 
affinity-based transition embedding (T-PHATE). In addition to recovering 
a low-dimensional intrinsic manifold geometry from time-series data, 
T-PHATE exploits the data’s autocorrelative structure to faithfully denoise 
and unveil dynamic trajectories. We empirically validate T-PHATE on 
three fMRI datasets, showing that it greatly improves data visualization, 
classification, and segmentation of the data relative to several other state-
of-the-art dimensionality-reduction benchmarks. These improvements 
suggest many potential applications of T-PHATE to other high-dimensional 
datasets of temporally diffuse processes.

As we move through the world, the human brain performs innumer-
able operations to process, represent, and integrate information.  
How does a system composed of limited computational units  
represent so much while handling a constant barrage of incom-
ing information? One possible explanation is that individual neural  
units operate in tandem to encode and update information in popula-
tion codes, which exponentially expands the distinct ways in which 
information can be represented by a fixed number of units. Neu-
ral population codes better predict behavior than single neurons, 
parti cularly in how representations change over time in response to  
new information1–5. Although neural population codes exist in  
high ambient dimensions6, these dimensions are redundant7, and 

from them emerge dominant latent signals that code for behavior 
and information8,9.

The principles of neural population codes were defined  
using direct neural recordings, and were extended to non-invasive, 
indirect measurements of brain activity using functional magnetic 
resonance imaging (fMRI). Multivariate pattern analysis10,11 of fMRI  
activation has yielded valuable insights into the structure and con-
tent of cognitive representations, including low-12 and high-level11,13,14 
sensory stimuli, as well as higher-order cognitive processes such 
as memory15, emotion16, narrative comprehension17, and theory-of-
mind18. These insights have largely come from group-level analyses, 
requiring aggregation over subjects and time points to overcome the 
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unique insight into the healthy, behaving human brain, but the data 
are noisy, sampled slowly, and blurred in time, giving rise to high sig-
nal autocorrelation20,22. Furthermore, complex forms of cognition 
and learning unfurl and integrate over varying intrinsic timescales 
along processing hierarchies in the brain23,24. Addressing these issues 
requires consideration of how time and dimensionality interact with 
the measured BOLD signal, with the goal of interpreting fMRI activity 
at the single-subject level.

Here we introduce temporal potential of heat-diffusion for  
affinity-based transition embedding (T-PHATE) as a nonlinear  
manifold learning algorithm designed for high-dimensional, tempo-
rally dynamic signals. We apply T-PHATE to fMRI data measured  

spatiotemporal noise inherent to fMRI. Like other high-throughput 
biomedical data, fMRI noise is pervasive at multiple levels, from sub-
ject movement to blood-oxygenation-level-dependent (BOLD) signal  
drift and physiological confounds19. fMRI has a lower temporal  
resolution than the cognitive processes many studies attempt to  
measure, with acquisitions every one to two seconds20. Finally, the 
BOLD signal is a slow, vascular proxy of neuronal activity, peaking 
approximately four to five seconds after stimulation before returning 
to the baseline.

In summary, many brain representations of interest are coded  
in high-dimensional patterns of activation2–4,10,11, which can be  
characterized by low-dimensional latent signals1,9,21. fMRI affords 
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Fig. 1 | T-PHATE procedure. a, A multivariate pattern of fMRI activation over  
time (time points by voxels) is extracted from a region of interest (ROI). PHATE  
is then run to learn a PHATE-based affinity matrix between time points. The 
autocorrelation function is also estimated for the data separately to make an 
autocorrelation-based affinity matrix. These two views are combined into the 
T-PHATE diffusion operator and then embedded into lower dimensions. b,c, We 
tested this approach on simulated data with a known autocorrelative function.  
To do this, we took a matrix of pristine data (here, a simulated multivariate 
time-series in which f(Xt) = αf(Xt−1)) and added noise sampled from a normal 
distribution (ϵ ∼ 𝒩𝒩𝒩0, σ2)) to each sample of pristine data. We tested various 

values of σ from 0 to 100 (c, x-axis) and compared the fidelity of the manifold 
distances recovered by each embedding as a function of the amount of noise 
added to the input data using DeMAP28. We show two sample input matrices  
(b, far left) to the DeMAP analysis for noise sampled from a narrow distribution 
(top row, ϵ ∼ 𝒩𝒩𝒩0,0.12)) and noise sampled from the widest distribution 
(bottom row; ϵ ∼ 𝒩𝒩𝒩0, 1002)). T-PHATE both visually better reconstructs the 
autocorrelative signal from the noise (b) and quantitatively better preserves 
manifold distances (c) compared with PCA, UMAP, and PHATE. The error bands in 
c represent the 90% confidence interval of the mean DeMAP score from 1,000 
bootstrap iterations. See Supplementary Fig. 1a for more benchmarks.
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during cognitive tasks—a ripe testbed known for its high ambient 
dimensionality, multi-source noise, and temporal autocorrelation. 
Most previous studies exploring fMRI activity with dimensionality-
reduction methods have relied on linear heuristics25–27. Nonlinear 
dimensionality-reduction algorithms have been used previously to 
characterize the geometry and underlying temporal dynamics of  
neural recordings6,8,21 by integrating local similarities among  
data points into a global representation9,28–31, but they remain  
underutilized in fMRI21. We build on PHATE28—a manifold learning  
algorithm designed for high-throughput, high-noise biomedi-
cal data—with a second, explicit model of the temporal properties  
of BOLD activity. This second view is learned from the data to  
capture the temporal autocorrelation of the signal and the dynamics 
specific to the stimulus (Fig. 1a).

Using the manifold preservation metric denoised manifold  
affinity preservation (DeMAP)28, we benchmark T-PHATE against  
principal component analysis (PCA) and uniform manifold approxi-
mation (UMAP)32—dimensionality-reduction methods that have  
been commonly applied to fMRI data25,26,33,34—as well as PHATE28, a 
reduced form of T-PHATE excluding the above-mentioned second, 
temporal view. In Supplementary Information, we compare T-PHATE 
with further benchmarks such as locally linear embeddings (LLE)30,35, 
isometric mapping29, and t-distributed stochastic neighbor embedding 
(t-SNE)36. We test T-PHATE on two movie-viewing fMRI datasets and find 
that it both denoises the data and affords enhanced access to brain-state 
trajectories relative to voxel data and other embeddings. By mitigating  
noise and voxel covariance, this subspace yields clearer access to regional 
dynamics of brain signals, which we then relate to time-dependent 
cognitive features. In all, T-PHATE reveals that information about  
brain dynamics during naturalistic stimuli lies in a low-dimensional  
latent space that is best modeled in nonlinear, temporal dimensions.

Results
fMRI is a safe, powerful, and ubiquitous tool for studying how the 
healthy human brain generates the mind and behavior. However, fMRI 
data are highly noisy in both space and time. The measured BOLD signal 
is delayed and blurred by the hemodynamic response with respect to 
underlying neuronal activity. The naturalistic, dynamic stimuli (for 
example, movies) increasingly used to probe real-world cognition 
extend over multiple timescales (for example, conversations, plot 
lines). For these reasons, fMRI data are autocorrelated in time, and 
this varies across brain regions according to their functional role in 
cognition (for example, sensory processing versus narrative compre-
hension). We therefore designed T-PHATE as a variant of the PHATE 
algorithm that combines the robust manifold-geometry-preserving 
properties of PHATE with an explicit model of signal autocorrelation 
in a dual-diffusion operator.

Evaluating manifold quality on simulated data
We validated the quality of manifolds learned from data with a  
simulated high signal autocorrelation using DeMAP28. DeMAP takes 
pristine, noiseless data (here, a simulated multivariate time-series  
in which f(Xt) = αf(Xt−1)) and computes the Spearman correlation 
between the geodesic distances on the noiseless data and the Euclidean 
distances of the embeddings learned from the noisy data. Noisy data 
were generated by adding an error term ϵ to the pristine data, where 
ϵ ∼ 𝒩𝒩𝒩0, σ2). We tested robustness to noise by varying σ = (0, 100). 
Higher DeMAP scores suggest that an embedding method performs 
effective denoising and preserves the geometric relationships in  
the original data (Fig. 1c; see Supplementary Fig. 1a for additional 
benchmarks). All of the methods achieve high DeMAP scores at low 
noise levels, although PCA visualizations do not seem to reflect much 
structure (Fig. 1b). With increasing noise, T-PHATE outperforms the 
other methods at denoising the simulated data, providing visualiza-
tions that most closely resemble lower noise conditions.

Temporal trajectories and static information in fMRI 
embeddings
Having validated that T-PHATE can learn meaningful manifolds from 
simulated data under noise, we next applied T-PHATE to real fMRI 
data. First, we embedded the movie-viewing data from the Sherlock 
and StudyForrest datasets with PCA, UMAP, PHATE, and T-PHATE 
in two dimensions to visually inspect the properties of the data  
highlighted by the manifold. Embeddings were computed separately 
per subject for four regions of interest (ROIs): early visual cortex (EV), 
high visual cortex (HV), early auditory cortex (EA), and posterior medial 
cortex (PMC). Visually, T-PHATE embeddings both denoise the time-
series data and capture stimulus-related trajectory structure better  
than other methods, as shown in all brain regions for a sample subject 
(Fig. 2a). PCA visualizations show no apparent structure or clustering. 
UMAP shows slight clustering in HV and EA, but often creates small, 
shattered clusters with local structure placed through the latent  
space. PHATE yields slight improvements over UMAP, notably in  
HV and EA, with larger and less disjointed clusters of nearby time  
points. T-PHATE reveals trajectories through the latent space that are 
clearly reflective of temporal structure, and also shows a hub in the 
center of the space.

T-PHATE manifolds also better reflect non-temporal movie  
features, as shown by classification of these features (Fig. 2b and  
Supplementary Fig. 3). We trained a support vector machine to  
predict whether music was playing in the movie from embeddings  
of neural data (and as a baseline, the original voxel-resolution data). 
The significance of these predictions was tested by shifting the  
labels in time with respect to the brain data—which breaks the  
correspondence between the labels and the data without breaking  
the internal temporal structure—and recalculating the classification 
accuracy at each shift to obtain a null distribution of accuracies. Results 
are presented as the z-score of the true prediction accuracy between 
brain data and movie labels normalized to the mean and standard 
deviation of the shifted null distribution.

Alternative representations of time in the brain and tasks
The clarity of the dynamic structure recovered by T-PHATE prompted 
two follow-up questions. First, does the performance of T-PHATE 
depend on autocorrelation to represent a temporal structure during 
manifold learning? We tested two alternative models. PHATE + Time 
adds the time index label for each sample as an additional feature  
vector to the voxel data before embedding with PHATE. PHATE + Time 
manifolds show the clearest temporal trajectory through the embed-
ding space (Fig. 3a), unraveling the brain data in time due to the  
disproportionate weighting of time in the input data, with less of  
the hub structure revealed by T-PHATE. Smooth PHATE performs 
temporal smoothing along each voxel across a number of time  
points t, where t is learned as the width of the autocorrelation  
function of the input data before embedding with PHATE. Smooth 
PHATE yields comparable structure to PHATE or UMAP, with mild  
clustering and shattered trajectories.

Second, are the benefits of T-PHATE for stimulus feature classifi-
cation specific to fMRI tasks that are intrinsically linked to time, such  
as movie watching? We tested T-PHATE on an object category  
localizer task from StudyForrest with no temporal structure, during  
which static images of faces, bodies, objects, houses, scenes, and 
scrambled images were presented in a random order. Data were  
embedded with T-PHATE, PHATE + Time, and Smooth PHATE in EV  
and HV. Due to the lack of temporal structure in the task, a meaning-
ful manifold of fMRI activity in visual regions would show a time- 
independent clustering of categories. T-PHATE manifolds showed 
the best clustering of stimulus categories in the embedding space 
(Fig. 3b) when compared with PHATE + Time and Smooth PHATE. 
Smooth PHATE showed some less-pronounced clustering, whereas 
PHATE + Time showed minimal clustering by category but retained 
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temporal structure. We used a support vector machine with leave-one-
run-out cross-validation to quantify the classification of object catego-
ries in the latent space (chance = 1/6; Fig. 3c). Classification accuracy 
on T-PHATE embeddings surpassed other dimensionality-reduction 
methods in both the EV and HV ROIs (Fig. 3c; see Supplementary  
Fig. 1b for further benchmarks). T-PHATE therefore captures the  
structure in brain activity via autocorrelative denoising, whereas 
adding time explicitly into the manifold does little to capture data 
geometry aside from unrolling the signal in time. Temporal smoothing 
provides an advantage over time-agnostic dimensionality reduction 
(PCA, PHATE, UMAP), but less of an advantage than the autocorre-
lation kernel in T-PHATE for both the dynamic movie task and the  
non-temporal localizer task.

Segmentation of brain-state trajectories into events
We designed T-PHATE to incorporate temporal dynamics (namely, 
autocorrelation) into a manifold learning algorithm for two reasons. 
First, as shown above, this helps to denoise fMRI data, given its spati-
otemporal noise, and improve subsequent analyses such as feature 
classification. Second, this may help recover cognitive processes that 
are represented over time in fMRI data. Many cognitive processes oper-
ate on long timescales, including our ability to segment continuous 
sensory experience into discrete mental events37–39. That is, we neither 
perceive the world as transient from moment to moment nor as amor-
phous and undifferentiated, but rather as a series of coherent, hierar-
chically structured epochs40,41. For example, consider taking a flight: 
traveling to the airport, passing through security, boarding, flying,  
deplaning, and transiting to the destination. These mental events are 

reflected in stable states of the brain, which can be captured with a 
hidden Markov model (HMM) to identify the boundaries between 
events42–44. We hypothesized that an HMM would better segment events 
from fMRI data after embedding them into a manifold learned with 
T-PHATE. This would suggest that T-PHATE increases sensitivity to the 
neural dynamics associated with cognitive processing of the stimulus.

We started by learning the optimal number of events experienced 
by each ROI using a nested leave-one-subject-out cross-validation 
procedure on the voxel resolution data (Fig. 4a). We find a consistent 
pattern of results across datasets where the number of events K is 
higher for early sensory cortices (EV) than late (HV) and integrative 
cortices (PMC) (mean ± s.d. across subjects): Sherlock, EV = 46 ± 2, 
HV = 21 ± 1, EA = 18 ± 1, PMC = 24 ± 1; StudyForrest, EV = 121 ± 3, 
HV = 70 ± 2, EA = 69 ± 2, PMC = 110 ± 4. After fixing the K parameter 
for each ROI based on the voxel data, we then learned the number of 
manifold dimensions that would best reveal temporal structure for 
each region, subject, and embedding method with a leave-one-subject-
out cross-validation procedure. The number of dimensions is low 
(between 3 and 6) with minor variance across subjects and methods 
(Supplementary Fig. 2), indicating substantial redundancy, covariance, 
and noise among voxels in the ROIs.

A goal of T-PHATE is to recover dynamic cognitive processes that 
may have been obscured by redundancy and noise. If the T-PHATE 
latent space unveils dynamical structure during movie watching, we 
should see better HMM performance on data embedded with T-PHATE 
compared with other methods, or on the voxel resolution data. This 
can be framed as: (1) how well can an HMM fit the data and (2) how well 
do boundaries learned by the model capture structure of the neural 
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Dots represent individual subjects (n = 16), bars represent the average z-score 
across subjects, and error bars represent the 95% confidence interval of the 
mean, estimated with 1,000 bootstrap iterations. The significance of differences 
between T-PHATE and other methods is evaluated with permutation tests 
(10,000 iterations) and corrected for multiple comparisons. The extended 
results are included in Supplementary Fig. 3.
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data. If an HMM can fit the data well, then there is event-related struc-
ture in the data representation for the model to capture. If the event 
boundaries learned by the model capture this structure, we would 
further expect a distinction between time points within the same event 
label versus those spanning across event labels. For each subject, ROI, 
and embedding method, we fitted an HMM with K hidden states on a 
M-dimensional embedding (hyperparameter K was cross-validated  
at the subject level and within ROI; M was cross-validated within  
ROI and embedding method).

The model fit was quantified on a held-out subject after  
hyperparameter tuning on a training sample using log-likelihood, 

which captures the probability that the data input to the model were 
generated from the learned event structure, and Akaike’s information 
criterion (AIC45), which penalizes the log-likelihood of a model by 
the number of parameters of that model. The statistical significance  
of the difference in performance between T-PHATE and other  
methods was assessed within ROIs using a permutation test, correct-
ing for the four multiple comparisons. The model fit for T-PHATE  
was much better for both the Sherlock and StudyForrest datasets 
in almost all regions (Supplementary Fig. 4). This indicates that  
an HMM trained on one representation of the data (the embedding  
for a given ROI and subject using one of the methods) was more 
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confident in its learned event structure than a very similar (or, in the 
case of Supplementary Fig. 7, identical) HMM trained on a different  
data representation. This is a somewhat unorthodox approach to 
model fitting (comparing the fit of the same data between models 
that have a different number of parameters, architecture, or objec-
tive function), so we further evaluated the benefits of T-PHATE by  
examining event-related dynamics and additional outcomes in the 
brain and behavior.

Within- versus between-event stability of brain states
To validate that the HMM boundaries identified real transitions between 
brain states, we next tested whether patterns of fMRI activity from pairs 
of time points labeled as within the same event were more similar to 
each other than equidistant pairs of time points labeled as from two 
different events (Fig. 4b). We first compared the performance of voxel 
resolution data to T-PHATE embeddings, as this type of within- ver-
sus between-event correlation difference analysis has been applied 
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successfully at the voxel level42,46. For all subjects, T-PHATE embeddings 
outperformed the voxel resolution data (Fig. 5a). We next asked whether 
this benefit was specific to T-PHATE or a generic effect of dimensionality 
reduction. We thus repeated this analysis on PCA, UMAP, and PHATE 
embeddings (Fig. 5b; see Supplementary Figs. 5a and 6a for additional 
benchmarks) and again found better performance for T-PHATE embed-
dings in all ROIs. In three out of four ROIs for both datasets, T-PHATE 
doubled the performance of the second-best method. Except for two 
instances, all of the dimensionality-reduction methods outperformed 
the voxel resolution data. Thus, although there is a generic advantage 
of lower dimensionality when revealing signal structure, T-PHATE  
captures dynamic signals beyond a temporally agnostic manifold.

In the previous analysis, each HMM was trained and tested within 
the same subject. To ensure that these results were not driven by overfit-
ting, we performed between-subject cross-validation by applying the 
event boundaries learned from N − 1 subjects to held-out data from 
subject N. The premise for this analysis is that the event structure 
learned from voxel data can be shared across subjects42,46. We asked 
whether the same holds true in lower dimensions with embeddings 
performed at the subject level. For each of N subjects (per ROI and 
embedding method), we repeated the analysis N − 1 times using each  

of the other subject’s HMM-identified boundaries. We again found 
better performance for T-PHATE relative to other embedding  
methods overall (Fig. 6a), though with a smaller advantage than  
when the analysis was performed within-subject. Although T-PHATE 
outperformed the voxel resolution data in all cases, the voxel resolution 
data outperformed some of the embedding methods (Sherlock dataset: 
EV voxel > PCA, PHATE, UMAP; HV voxel > UMAP; PMC voxel > UMAP. 
StudyForrest dataset: EV voxel > PCA, PHATE; HV voxel > UMAP;  
EA voxel > UMAP, PHATE; PMC voxel > PCA, UMAP, PHATE). This 
was not true for the within-subject analysis, which suggests that  
embedding data in lower, subject-specific dimensions highlights idio-
syncratic aspects of event structure. Voxel resolution data are assumed 
to be in the same anatomical template space for all subjects, which 
would lend itself better to generalization across subjects. T-PHATE  
still outperforms other methods in most cases on this task, suggest-
ing that the event structure highlighted in subject-specific T-PHATE 
embeddings is at least partly generalizable to other subjects.

Relationship between neural and behavioral event boundaries
Identifying neural event boundaries with an HMM is a data-
driven approach to understanding how the brain makes sense of 
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Fig. 5 | Evaluating event segmentation within-subject. a, After hyper-
parameters K and M were tuned with cross-validation, a new HMM with these 
parameters was fit to each subject’s data to identify neural event boundaries 
and calculate the within- versus between-event score, shown as one point per 
subject. Embedding the data with T-PHATE greatly increased the within- versus 
between-event score over the voxel-resolution data. b, We expanded this analysis 
to embeddings performed with three additional dimensionality-reduction 

methods. Dots represent individual subjects (n = 16 for Sherlock, n = 14 for 
StudyForrest); bars represent the average within- versus between-event score 
across subjects; error bars represent the 95% confidence interval of the mean, 
estimated with 1,000 bootstrap iterations. The significance of the differences 
between T-PHATE and other methods was evaluated with permutation tests 
(10,000 iterations) and corrected for multiple comparisons. See Supplementary 
Figs. 5a and 6a for additional benchmark results.
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continuous experience. This can be compared with boundaries obtained  
from other tasks, such as having subjects watch the same movie and 
indicate behaviorally when they believe “something changed”37–39,47 
(Fig. 6b). Such behavioral boundaries have been used to model event 
structure in the brain previously47–50, incuding in PMC42,51. We used 
behavioral boundaries to test the generalization of neural event  
structure to the conscious experience of an out-of-sample cohort.  
We applied behavioral boundaries from this cohort to the neural 
embedding data and analyzed their fit as in Fig. 4b. We found much 
higher fMRI pattern similarity within-versus-between behavioral 
boundaries in the T-PHATE embedding than in the other methods, at 
least for EV and PMC (Fig. 6c). Critically, T-PHATE improved on voxel 

performance in PMC by an order of magnitude, a particularly striking 
gain as the behavioral data being predicted were generated by other 
subjects performing a distinct behavioral task.

Discussion
Many complex aspects of cognition, including attention, memory, 
language, thinking, navigation, and decision-making, play out over 
long timescales52. These cognitive processes mutually drive our 
conscious experience in the moment, structuring continuous input  
into meaningful events37–39,42,46,53. To understand the dynamics  
of how this integration occurs seamlessly, it can be helpful to  
consider the geometry of brain states. The human fMRI literature 

Example of events identified by a participant:

Task instructions:
“Indicate when you feel like a new scene is starting; 

these are points in the movie when there is a major change in topic, 
location, time, etc. Then, provide a brief title of the scene.”

0.12

0.10

0.08

0.06

C
or

re
la

tio
n 

di
�e

re
nc

e

Sherlock movie dataset

Between-subject neural event boundaries

Defining event boundaries behaviorally

a

cb Sherlock behavioral events fit to neural data

StudyForrest movie dataset

0.04

0.02

0

–0.12
EV HV EA PMC EV HV EA PMC

Voxel
PCA
UMAP
PHATE
T-PHATE
P < 0.01
P < 0.05

EV HV
ROI

EA PMC

0.12

0.10

0.08

0.06

0.04

0.02

0

–0.12

0.14

0.12

0.10

0.08

C
or

re
la

tio
n 

di
�e

re
nc

e

0.06

0.04

0.02

0

–0.12

“John and Mike 
in the park”

“Sherlock and 
cabbie at the 
warehouse”

“Sherlock at 
the phonebox”

“John & Sherlock
outside 221B
Baker Street”

Time

Fig. 6 | Out-of-sample event boundary fit. a, Event boundaries were rotated 
between subjects by testing subject N iteratively with the event boundaries 
learned from HMMs applied to each of the remaining N − 1 subjects (within ROI 
and embedding type). Within- versus between-event correlation difference 
was evaluated as in Fig. 4b. T-PHATE embeddings revealed robust event-related 
structure that generalized across subjects. See Supplementary Figs. 5b and 6b 
for additional benchmark results for this analysis. b, Event boundaries were also 
identified in behavioral ratings of the Sherlock movie by other subjects. These 
behavioral boundaries were then applied to the neural data and the within- versus 
between-event correlation difference was calculated as in Fig. 4b. Images in the 

figure are drawn for copyright reasons; movies were shown at high resolution 
in the experiment. c, T-PHATE revealed event structure in PMC (and to a weaker 
extent EV) that mirrored the behavioral boundaries. Dots represent individual 
subjects (n = 16 for Sherlock; n = 14 for StudyForrest); bars represent the average 
within- versus between-event correlation difference across subjects; error 
bars represent the 95% confidence interval of the mean, estimated with 1,000 
bootstrap iterations. The significance of differences between T-PHATE and other 
methods was evaluated with permutation tests (10,000 iterations) and corrected 
for multiple comparisons.
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suggests that flexible population codes underlie complex cognitive 
processing13,18,42,51,54. Linear manifolds have so far been used to track  
discrete, task-related brain states25,26, and nonlinear manifolds  
have been used to model dynamics across tasks21. These approaches 
aggregated whole-brain data across dozens of subjects when defining  
a manifold, which resulted in coarse, population-average representa-
tions that could limit utility for understanding individual brains.

With the proper choice of dimensionality-reduction algorithm6,9, 
we accounted for these challenges to unveil the dynamics and contents 
of naturalistic cognition. We investigated the latent space of brain 
activity from movie-viewing fMRI data. T-PHATE manifolds revealed 
brain-state trajectories obscured in high-dimensional, noisy, and 
redundant neural population activity by modeling its latent spatio-
temporal geometry. The advantages of T-PHATE representations  
for capturing temporal dynamics in continuous tasks did not come at 
the expense of decoding discrete stimuli without temporal structure. 
Thus, although time-considerate and time-agnostic manifolds can 
encode static information (Figs. 2b and 3c, and Supplementary Figs. 
1b and 3), only the former additionally unveil dynamic information.

There are other multi-view variants of dimensionality-reduc-
tion methods, such as Multi-SNE55 or Multi-LLE56, which capture  
multiple views of data by summarizing different types of measure-
ments from the same samples. Whether alternative dimensionality-
reduction methods, when combined with an autocorrelation kernel, 
could yield similar insights remains an open question; however, given 
that vanilla PHATE yields better performance on most tasks here  
than benchmarked methods, we predict that T-PHATE benefits  
from the combination of superior manifold learning of fMRI by  
PHATE plus modeling temporal signals with the autocorrelation view.

The latent dimensions learned by T-PHATE with this combination 
of nonlinear dimensionality reduction and temporal diffusion outper-
forms methods lacking either of those components. This suggests 
that the relation between the dimensions of individual voxels and the 
dominant signals that emerge from them are tied by nonlinear rela-
tions. By modeling a subject’s BOLD time-series in these dimensions, 
we can gauge the trajectory of their brain states throughout the course 
of the experiment, and we can relate this trajectory to theoretical 
frameworks such as event segmentation theory that facilitate higher-
order cognitive processes in the brain. As this is performed at the level 
of individual subjects, future investigations could use this approach 
to probe individual differences, developmental trajectories, and/or 
clinical disorders in the native latent space.

Beyond the applications in cognitive neuroscience explored  
here, T-PHATE has promise for other forms of high-dimensional,  
noisy data. PHATE and variants have already been applied successfully  
to high-throughput biomedical data types including spatial transcrip-
tomics, single-cell RNA sequencing, and blood sample data from SARS-
CoV-2 data28,57,58. As T-PHATE converges with PHATE when there is no 
temporal relation among samples, we foresee T-PHATE having similar 
advantages in these data types. We expect T-PHATE to afford particu-
lar insight into data with temporal structure, given the multi-view 
approach to integrating temporal dynamics in learning the embedding. 
Such data types could include, for example, calcium imaging, devel-
opmental trajectories, longitudinal health data, disease progression, 
climate change, economic trends, language evolution, and more. In all,  
we present a method with promising application to various big- 
data challenges.

Methods
Manifold embeddings
Different dimensionality-reduction algorithms focus on different 
aspects of a dataset, and thus amplify distinct signals depending on the 
structure targeted by the algorithm. We hypothesized that a nonlinear 
manifold learning algorithm designed to handle noisy, high-dimen-
sional biological data would be best suited for the signal and intrinsic 

noise of fMRI data. PHATE28 is a diffusion-based manifold learning 
method that models local and global structures simultaneously in 
nonlinear dimensions58. Brain activity measured with fMRI is highly 
noisy in both space and time, with the BOLD signal canonically peaking 
4–5 s after stimulus onset before slowly returning to baseline. With a 
temporally dependent stimulus such as a movie, where conversations 
and plot lines play out over different timescales, the autocorrelation 
of nearby time points will likely extend beyond the curve of the BOLD 
signal and vary by ROI along the hierarchy of temporal integration 
in the brain59. We estimate an autocorrelation kernel for each ROI by  
correlating each voxel time-series with lagged versions of itself until  
the correlation drops and stays below zero, then averaging the func-
tions across voxels to get a regional autocorrelation function. This  
function is then expanded to calculate the transitional probability 
between all pairs of time points based solely on their estimated auto-
correlation and then combined with the PHATE-based transitional 
probability matrix and embedded in lower dimensions (Fig. 1a).

PHATE
Given a dataset of voxel time-series data, X = x1, x2, …, xT, where  
xt ∈ ℝN at time t is a N-dimensional vector and N is the number of voxels. 
Construction of the PHATE28 diffusion geometry has five main steps:

 1. The Euclidean distance matrix D is computed between data 
pairs, where:

D𝒩i, j) = ||xi − xj||2 (1)

 2. D is converted from a distance matrix into a local affinity matrix 
K using an adaptive bandwidth Gaussian kernel, to capture local 
neighborhoods in the data:

𝒦𝒦𝒩x, y) = 𝒢𝒢𝒩x, y)
∥ 𝒢𝒢𝒩x, ⋅)∥α1 ∥ 𝒢𝒢𝒩y, ⋅)∥

α
1
, 𝒢𝒢𝒩x, y) = e−

∥x−y∥α

σ (2)

 3. K is then row-normalized to define transition probabilities into 
the T × T row stochastic matrix, P:

P𝒩x, y) = 𝒦𝒦𝒩x, y)
∥ 𝒦𝒦𝒩x, ⋅)∥1

(3)

 4. The probabilities P are then used for the Markovian random-
walk diffusion process. The PHATE diffusion timescale, tD, is 
then computed, which specifies the number of steps taken in 
the random-walk process. This parameter provides a tradeoff 
between encoding local and global information in the embed-
ding, where a larger tD corresponds to more steps than a  
smaller tD. tD is computed automatically using the spectral or 
von Neumann entropy of the diffusion operator. P is raised to 
the power of tD to perform the the tD-step random walk over P. 
Based on the representation of PtD, PHATE then computes the 
diffusion potential distance PD between the distribution at the 
ith row PtD

i
 and the distribution at the jth row PtD

j
 (both of which 

are distributions as PtD is Markovian):

PD𝒩i, j) =
√
∑
k

(log𝒩PtD 𝒩i, k) − PtD 𝒩j, k)) 2 (4)

The log scaling in the diffusion potential distance calculation acts as a 
damping factor which makes faraway points similarly equal to nearby 
points in terms of diffusion probabilities, giving PHATE the ability to 
maintain global context.
 5. The potential distance matrix PD is finally embedded with metric 

MDS (a distance embedding method, using stochastic gradient 
descent as a solver) as a final step to derive an M-dimensional 
embedding (or 2–3 dimensions for visualization). For more 
details about the PHATE algorithm, we refer readers to ref. 28.
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T-PHATE
We designed T-PHATE as a variant of PHATE that uses a dual-view 
diffusion operator to embed time-series data in a low-dimensional 
space. The first view of the T-PHATE diffusion operator is identical to 
the PHATE matrix, PD, defined above. The second view PT is based on  
an affinity matrix that summarizes the autocorrelation function of  
the data60. Computing the T-PHATE diffusion operator has the  
following steps:

 1. For each voxel time-series vector v = v1, v2, …, vT, where T is the 
number of time points, calculate its autocovariance using T − 1 
lags, resulting in a N x (T − 1) matrix where N is the number of 
voxels. Then, average across the N voxels to obtain a single  
vector c of autocorrelation at each lag.

 2. Smooth c with a rolling average over w time points, where w is 
set by the user:

c𝒩i, j) = 1
w

i+w−1
∑
j=i

c𝒩i, j) (5)

w serves as a damping tool to account for possible jittering around 
where c = 0. Here we use w = 1, the default, as we did not find much 
instability in this dataset where c → 0. In other data types, this parameter 
may be more useful.
 3. Find the first lag (lagmax) where c = 0. This defines the maximum 

width of smoothing for the temporal affinity matrix A, which is 
calculated as:

A𝒩i, j) = {
c𝒩i, j), if0 < |i − j| ≤ lagmax
0, otherwise

(6)

 4. Convert the autocorrelation matrix into the transition prob-
ability matrix PT by row-normalizing the affinity matrix A and 
powering it to tD, as in equation (3).

 5. Combine PT with the result of step 4 from the PHATE algorithm 
via alternating diffusion:

P = PDPT (7)

 6. Embed with metric MDS into M dimensions (where M = 2 − 3 for 
visualization or higher for downstream analysis).

This dual-view diffusion step allows T-PHATE to learn data geo-
metry and latent signals that represent cognitive processes that  
play out over longer temporal windows. We compare T-PHATE’s  
performance at learning dynamic neural manifolds with common 
dimensionality-reduction algorithms that are agnostic to time includ-
ing PCA, UMAP32, vanilla PHATE58, LLE30,35, isometric mapping29, and 
t-SNE36. To test whether our autocorrelation kernel was the best 
approach to modeling temporal dynamics in this manifold, we tested 
two additional versions of PHATE: incorporating time labels as a fea-
ture vector in the input data (PHATE + Time) and smoothing the data 
temporally over the data’s autocorrelation function as learned by 
T-PHATE (Smooth PHATE), to test whether T-PHATE’s effects can be 
accomplished by incorporating time into the PHATE embeddings 
without the additional kernel. fMRI data were extracted from ROIs and 
z-scored before embedding.

Event segmentation modeling
Human experience of real life is continuous, yet perception and  
conception of this experience is typically divided into discrete 
moments or events. Event segmentation theory explains that 
humans automatically divide continuous streams of information into  
discrete events37,39 to form, organize, and recollect memories, make 
decisions, and predict the future61. Participants show high consist-
ency in explicitly segmenting continuous stimuli38 and also in how 

their brains represent these event boundaries42,46. Event boundaries 
can be represented—both behaviorally and in brain activity—at dif-
ferent timescales depending on the information being used to draw 
event boundaries53. In the brain, event boundaries are reflected by 
shifts in the stability of regional activity patterns, and we can learn 
the structure of events with a variant of an HMM42. During a continu-
ous stimulus such as a movie, different brain regions represent events 
along different timescales, which reflect the dynamics of the informa-
tion being represented by a given region. For example, early sensory 
regions represent low-level information about a stimulus. In most 
movie stimuli, low-level sensory features shift quickly as cameras 
change angles or characters speak, and so early sensory regions show 
more frequent event shifts42,44. Later sensory regions represent longer 
timescale events, such as conversations and physical environments that 
change less frequently than features such as camera angles. Regions 
associated with memory or narrative processing represent events on 
longer timescales, and these boundaries best correspond with scene 
changes marked by human raters43.

We used the HMM variant presented in ref. 42 and implemented in 
BrainIAK62 to learn from different representations of BOLD time-series 
data where a brain region experiences event boundaries, or transitions 
between stable states of activation. See ref. 42 for more details about 
the formulation of this model. Given an activation time-series of a 
brain region during a continuous stimulus, the HMM identifies stable 
activity patterns or “events” that are divided by boundaries, where the 
time-series transitions between two stable patterns of activation. This 
is done iteratively and the log-likelihood of the model fit is evaluated at 
each iteration, and model fitting stops when the log-likelihood begins 
to decrease. The first step of this process is to use the HMM to learn 
from the data the number of events a brain region represents for a given 
stimulus. Past studies have used HMMs for event segmentation on 
multivoxel activity patterns and have validated this approach against 
behavioral segmentation42,43,46. This shows that voxel resolution data 
reflect meaningful event segmentation, so we chose to estimate the 
optimal number of events (K) for each brain region using the voxel 
resolution data (Fig. 4), which also prevents overfitting to the embed-
ding data.

To run an HMM for event segmentation on our manifold  
embedding data, we needed to tune two parameters for each subject: 
K, or the number of hidden states through which a brain region passes 
during the stimulus, and M, the dimensionality of the latent space that 
captures this signal.

Optimizing the number of neural events. We estimated a hyper-
parameter K for each ROI and subject from the voxel resolution data and 
held this constant for a subject and ROI across all embedding methods. 
This was performed with a nested cross-validation procedure. In the 
outer loop, a subject N was held out as a validation subject, and the 
parameter identified by the inner loop was applied to this subject. In the 
inner loop, another subject N − 1 was held out as a test subject, and the 
BOLD data were averaged over the remaining N − 2 training subjects to 
get an average time-series matrix for this region. Importantly, as voxel 
space is assumed to be the same across subjects (as they have all been 
aligned to a standard template brain based on common anatomy), we 
can assume correspondence between the features of these time-series 
matrices and can thus average them together (the same assumption 
cannot be made for embedding data, as those spaces are learned within-
subject and are thus subject-specific). We define K as the number of 
hidden states in an HMM, and we optimize the K parameter by fitting 
a model with K states to the training data from the N − 2 subjects and 
then applying that model to subject N − 1, where the model is scored 
using the log-likelihood. This is repeated for all K values, testing K from  
2 to 200 for Sherlock and 2 to 400 for StudyForrest; the test subject 
N − 1 is then folded over for each subject in the training set, resulting in 
N − 1 sets of scores for each validation subject, which are then averaged 
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over the N − 1 subjects. The K value that maximizes the log-likelihood 
after averaging over the inner-fold is set as subject N’s K value for  
this ROI. After definition on the voxel resolution data, K for each  
subject and ROI was held constant for all embedding types. For  
subsequent analyses, a new HMM was fitted with K states to each  
subject’s data.

Optimizing the manifold dimensionality. We used a leave-one-
subject-out cross-validation scheme to select the dimensionality  
of manifold embeddings. Holding out each subject one at a time,  
we embedded the data for each of N − 1 training subjects into  
M dimensions, testing values of M ranging from 2 to 10. As each training  
subject’s data were embedded into a distinct feature space, we fit an  
HMM to each embedding separately, and scored the model fit to each 
M-dimensional embedding using the within- versus between-event  
correlation difference (presented in Fig. 4b). We then averaged the cor-
relation difference scores across the N − 1 training subjects to obtain  
one average score per M-value tested. We chose the M-value that  
maximized the within-versus-between score in the training set and  
fixed that as the M-value for the held-out subject N in all subsequent 
analyses. This procedure was performed separately for each ROI  
and embedding method.

To control for possible effects of embedding in different numbers 
of dimensions across different methods, we repeated all analyses  
without the M optimization step (Supplementary Fig. 7). We instead 
tested all embedding methods in M = 3 dimensions (chosen because 
three dimensions is the maximum embedding dimensionality for 
t-SNE). Our control and optimized M analyses were highly correlated 
(within- versus between-event correlation difference, Pearson’s 
r = 0.930; log-likelihood of model fit, r = 0.993; AIC of model fit, 
r = 0.998).

Evaluating the fit of event boundaries. To quantify how well a learned 
manifold embedding amplifies dynamic structure in the data, we cal-
culated difference in correlation across latent dimensions for pairs of 
time points within and across event boundaries. For this calculation, 
we restricted the time points that went into the calculation as follows. 
We calculated the length of the longest event, and only considered time 
points that were less than that temporal distance apart. We anchored 
a comparison on each time point t in the time-series, and for each 
temporal distance n ranging from one time point to the length of the 
longest event; we considered a pair of time points t − d and t + d if one 
time point fell in the same event as the anchor and the other a different 
event. We then took the correlation between the anchor and each time 
point, binning them according to whether they were a within-event 
comparison or a between-event comparison. This process assures that 
there are equal numbers of time points going into each comparison 
type (Fig. 4b).

One issue of defining and testing event boundaries within-sub-
ject is that the dynamics captured are subject-specific. Studies using  
voxel-resolution data to perform this HMM event segmentation  
analysis have shown that there is shared structure in voxel representa-
tions of event dynamics42,44,46. We therefore asked whether boundaries 
identified on one subject generalized across all other subjects. To 
test this, we cross-validated the event boundaries across subjects  
with a nested cross-validation procedure. In the outer loop, we held  
out one subject’s data for testing. In the inner loop, we performed  
leave-one-subject-out cross-validation to learn the best number of 
events (K) for the HMM and the optimal dimensionality (M) for embed-
ding methods. After learning this K parameter, we fit an HMM with 
K states on each of the training subjects’ data to identify their event 
boundaries. These boundaries were then applied to the test subject 
one by one, scored with the within- versus between-event correlation 
difference, and then averaged over the training segmentations. This 
procedure was iterated with all subjects serving as test subject.

To assess the behavioral relevance of the neural event segmenta-
tion, we used a set of event boundaries identified by a separate cohort  
of Sherlock study participants. These participants watched the  
Sherlock episode outside of the scanner and were asked to indicate 
where they believed a new event began63 (Fig. 6b). We applied these 
human-labeled boundaries to the neural data and measured the fit 
of the boundaries (as outlined above) to gauge how the embeddings  
not only highlight neural dynamics but how those neural dynamics 
relate to the conscious, real-world experience of events.

Statistical tests
All results present the following pairwise statistical testing  
comparing T-PHATE with each other method. For each pair of methods, 
within ROI and dataset, we calculated the difference in scores across  
the two methods, within subjects to preserve subject-wise random 
effects. We then generated a null distribution of difference scores 
across the two methods by randomly permuting the method label  
of a subject’s score 10,000 times and recomputing the mean  
difference between the methods. We then tested whether T-PHATE 
outperformed the other method by calculating a one-tailed P-value 
of the true difference relative to the null distribution, and corrected 
for multiple comparisons using the Bonferroni method. All figures 
show bootstrapped 95% confidence intervals of the mean perfor-
mance across subjects within method, tested with 1,000 iterations of  
bootstrap resampling.

Data
Sherlock dataset. See the original publication of ref. 51 for full details 
on the Sherlock data. Here we used data from the sixteen participants 
who viewed a 48 min clip of the BBC television series ‘Sherlock’. Data 
were collected in two fMRI runs of 946 and 1,030 time points (repetition 
time; TRs) and was downloaded from the DataSpace public reposi-
tory (http://arks.princeton.edu/ark:/88435/dsp01nz8062179). This 
experiment was approved by the Princeton University Institutional 
Review Board. The data were collected on a Siemens Skyra 3 T scanner 
with a 20-channel head coil. Functional images were acquired with 
a T2*-weighted echo-planar imaging sequence (TE, 28 ms; TR, 1.5 s; 
64° flip angle, whole brain coverage with 27 slices of 4 mm thickness 
and 3 × 3 mm2 in-plane resolution, 192 × 192 mm2 FOV). Anatomical 
images were acquired with a T1-weighted MPRAGE pulse sequence with 
0.89 mm3 resolution. Slice-time correction, motion correction, linear 
detrending, high-pass filtering (140 s cut-off), and co-registration and 
affine transformation of functional volumes to the Montreal Neurologi-
cal Institute template were all performed with fMRI Software Library 
(FSL). Functional images were then resampled from native resolution 
to 3 mm isotropic voxels for all analyses, z-scored across time at every 
voxel and smoothed with a 6 mm kernel.

StudyForrest dataset. For full details on the StudyForrest data, see 
the original publication of the movie dataset64 and the localizer exten-
sion dataset65. Here we included data from fourteen participants who 
completed both tasks. All participants were native German speakers. 
This experiment was approved by the Ethics Committee of the Otto- 
von-Guericke University. In the movie-viewing task, participants 
watched a 2 h version of the movie ‘Forrest Gump.’ These data were 
collected in eight fMRI runs resulting in a full time-series of 3,599 TRs 
(451, 441, 438, 488, 462, 439, 542 and 338 per run). Movie data were 
collected on a 3 T Philips Achieva dStream scanner with a 32-chan-
nel headcoil. Functional images were acquired with a T2*-weighted 
echo-planar imaging sequence (TE, 30 ms; TR, 2 s; whole brain cover-
age with 35 slices of 3 mm thickness and 3 × 3 mm2 in-plane resolu-
tion, 240 mm FOV). In the localizer task, the same fifteen participants 
viewed 24 unique grayscale images from six categories (human faces, 
human bodies without heads, houses, small objects, outdoor scenes 
and scrambled images) in four (156 TR) block-design runs with two 16 s 
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blocks per stimulus category per run. Localizer data were collected on 
a 3 T Philips Achieva scanner with a 32-channel headcoil. Functional 
images for the localizer task were acquired with a T2*-weighted echo-
planar imaging sequence (TE, 30 ms; TR, 2 s; 90° flip angle, 35 slices 
of 3 mm thickness and 3 × 3 mm2 in-plane resolution, 240 mm FOV). 
Structural images were acquired with a 3 T Philips Achieva using a 
32-channel headcoil. T1-weighted anatomical images were acquired 
with a 3D turbo field echo sequence with 0.67 mm isotropic resolu-
tion. Slice-time correction, co-registration and affine transformation 
to Montreal Neurological Institute template were performed with FSL 
where functional images were resampled to 3 mm isotropic voxels. 
Additional preprocessing included linear detrending, high-pass filter-
ing (100 s cut-off), spatial smoothing with a 6 mm kernel, and nuisance 
regression (including six motion parameters, global signal, white 
matter and cerebrospinal fluid) and z-scoring within voxel to match 
the Sherlock preprocessing.

ROI selection
We selected four ROIs based on the original publication of the Sherlock  
dataset51, subsequent publications42 and regions known to have  
reliably strong signals in response to audiovisual movie stimuli66.  
The EV, EA and HV region masks were based on a functional atlas 
defined with resting-state connectivity67. As in the original Sherlock 
publication, we defined a PMC ROI as the posterior medial cluster  
of voxels within the dorsal default mode network51. In the Sherlock data, 
the dimensionality of voxel-resolution ROIs are as follows: EV = 307, 
HV = 571, EA = 1,018, PMC = 481. In the StudyForrest data, the dimen-
sionality of voxel-resolution ROIs are as follows: EV = 166, HV = 456, 
EA = 657, PMC = 309.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The Sherlock dataset was downloaded from the Dataspace Public 
Repository at the following link: http://arks.princeton.edu/ark:/88435/
dsp01nz8062179. The StudyForrest dataset was accessed via DataLad68 
from: https://github.com/psychoinformatics-de/studyforrest-data. 
Steps to reproduce our preprocessing pipeline and ROI extraction are 
available here: https://github.com/ericabusch/tphate_analysis_capsule 
(ref. 69). Source Data are provided with this paper.

Code availability
Data analysis code is written as custom Python scripts (v.3.6.13) based 
on sci-kit learn v.0.23.2 (https://scikit-learn.org/), nilearn v.0.9.2 
(https://nilearn.github.io), nibabel v.4.0.1 (https://github.com/nipy/
nibabel), PHATE v.1.0.7 (https://phate.readthedocs.io/en/stable/)28 and 
Brainiak v.0.11 (https://brainiak.org/)62. T-PHATE is available as a Python 
package at: https://github.com/KrishnaswamyLab/TPHATE (ref. 70). 
The pipeline to replicate all of the analyses presented here is available 
at: https://github.com/ericabusch/tphate_analysis_capsule (ref. 69).
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