
Nature Computational Science | Volume 3 | March 2023 | 264–276 264

nature computational science

Resource https://doi.org/10.1038/s43588-023-00417-2

Full-scale scaffold model of the human 
hippocampus CA1 area

Daniela Gandolfi    1,2,9 , Jonathan Mapelli    1,3,9 , Sergio M. G. Solinas4,5, 
Paul Triebkorn    6, Egidio D’Angelo2,7, Viktor Jirsa6 & Michele Migliore    8 

The increasing availability of quantitative data on the human brain is 
opening new avenues to study neural function and dysfunction, thus 
bringing us closer and closer to the implementation of digital twin 
applications for personalized medicine. Here we provide a resource to the 
neuroscience community: a computational method to generate full-scale 
scaffold model of human brain regions starting from microscopy images. 
We have benchmarked the method to reconstruct the CA1 region of a right 
human hippocampus, which accounts for about half of the entire right 
hippocampal formation. Together with 3D soma positioning we provide 
a connectivity matrix generated using a morpho-anatomical connection 
strategy based on axonal and dendritic probability density functions 
accounting for morphological properties of hippocampal neurons. The data 
and algorithms are supplied in a ready-to-use format, suited to implement 
computational models at different scales and detail.

In recent years, research on computational brain models has increased 
rapidly, leading to a large set of data-driven models1. Large-scale imple-
mentations of brain circuits at single-cell resolution have been proven 
to be instrumental for a better understanding of brain functions and 
could become a disruptive technology to investigate pathological 
conditions and discover new pharmacological treatments. Despite 
extensive efforts and remarkable investments (for example, Human 
Brain Project2, Human Connectome project3, The Virtual Brain project4, 
Human Neocortical Solver5, Openworm6 and Open Source Brain7), the 
lack of critical data (for example, morphology, electrophysiology, 
synaptic properties and connectivity) on human neurons and circuits 
suggesting how and to what extent they differ from other species still 
substantially hinders our understanding of the specific mechanisms 
underlying brain functions in humans.

Cellular data on human brain are sparse8 and mostly limited to a 
few neocortical regions. Technological and methodological limita-
tions have prevented the possibility to collect enough experimental 

data on human brain at the cellular level9–11. The simulation of brain 
activity at cellular resolution with large-scale model has been obtained 
for different animal species and entire rodent brain areas12–15. Nota-
bly, novel co-simulation technologies, in which regions of interest 
are modelled at high cellular resolution and others using dimension 
reduction techniques16, enable mixed modes of operation. Such modes 
have been developed for co-simulations of the NEST simulator17 and 
The Virtual Brain18.

With respect to connectivity, despite several technological 
advancements19–21, the most widely adopted method to analyse entire 
human brain samples is light microscopy of silver- or Nissl-stained sam-
ples. Unfortunately, the non-specificity of both labels22 limits the spatial 
resolution to neuronal size. Beside data collection, different strategies 
to connect neuronal networks ranging from randomized connectiv-
ity to ‘touch detection’ algorithm23,24 have been proposed. However, 
the computational load and the scarce availability of data required 
to generate realistic models must be considered when connecting 
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into seven classes based on their morphological features and location 
within hippocampal layers (Fig. 2a,b and Methods).

It has been observed that PCs are distributed according to a bi-
directional gradient along the medio-lateral39,40 and antero-poste-
rior axes41. We have calculated the neuronal density distribution of 
the model along the dorso-ventral (transversal slices, Fig. 3a) and 
medio-lateral directions (Methods). In contrast with rodents (compare  
Figs. 2 and 3 in ref. 39 and Fig. 2 in ref. 40), where PCs are mainly aligned 
within a thin stratum pyramidale (SP) layer, the human SP is much 
thicker (∼1 mm) and cells are anisotropically distributed, with a pref-
erential accumulation in the proximity of the stratum radiatum (SR) 
(Fig. 3b). The analysis performed in transversal slices showed a marked 
increase in the cell density going from the stratum oriens (SO) to SR 
(Fig. 3c, +289 ± 71%; Methods). The density profile was also estimated 
in the antero-posterior direction by sampling voxels (white circles in 
Fig. 3d; Methods) along that axis. The average density profile in the 
antero-posterior (A-P) axis showed a marked increase (+127 ± 21.6% 
mean value of the density in the first four voxels in anterior part versus 
the last four voxels in the posterior part; Fig. 3e) in agreement with 
previous suggestions30,41.

Neuronal morphology
Neuronal morphology is performed by translating the shape of axons 
and dendrites of PCs and GABAergic interneurons into geometrical 
probability distributions that were parameterized according to the 
values reported in Supplementary Table 1. Cells were oriented accord-
ing to their relative positions with respect to anatomical landmarks. 
More specifically, the human CA1 PCs have basal and apical dendrites 
whose shapes can be approximated to cones oriented towards the SR 
and SO. This geometrical feature, which closely resembles the one 
encountered in mouse PCs25, suggested the adoption of conical shapes 
for both apical and basal dendrites of human PCs. Furthermore, accord-
ing to literature39, dendritic extension of human PCs is about 150% 
of mouse dendritic size (see Fig. 6 in ref. 39). The estimated values of 
mouse pyramidal dendrites25 were therefore rescaled by a factor of 
1.5 (Methods). Conversely, PC axons could not be approximated to 
regular shapes. Differently from rodents in fact, axonal pathways of 
PCs had to be adapted to the marked sulci and gyrification character-
izing the human hippocampal surface (Fig. 4). Given the lack of data, 
we have assumed a similarity with rodents where pyramidal axons 
preferentially branch towards the subiculum (Fig. 4b) with a poor back-
propagation to the CA3 (see Fig. 4b inset and the MouseLight database) 
and a limited longitudinal spread. The axonal probability density func-
tions were generated by calculating transversal planes for every PC  
(Fig. 4b and Methods). The transversal planes were used to calculate 
the pathway of the axon extending towards the SO and running towards 
the subiculum (Fig. 4c and Methods). Moreover, the axonal probability 
density functions have been generated by creating a tubular structure 
with a 300 μm diameter running in parallel with the CA1 from the soma 
positioning towards the subiculum and with a limited back-projection 
(∼150 μm) to the CA2 (Methods and Fig. 4c). The result of the overall 
procedure is illustrated in Fig. 4d,e showing examples of axonal and 
dendritic probability distributions of PCs.

The full network was constructed by adding GABAergic neurons 
whose geometries were designed according to the morphological 
properties derived from rodents25 (Methods, Supplementary Fig. 1 
and Supplementary Table 1). We have assumed that the major inhibi-
tory classes that are present in rodents could also exist in human. By 
analysing the morphological features of experimentally reconstructed 
mouse CA1 interneurons, seven morphological classes represent-
ing the heterogeneity of GABAergic CA1 cells25 were identified. Each 
of these classes was composed of a combination of ellipsoids and 
cones (Methods), and the parameters derived from the analysis of 
mouse morphologies25 were corrected by a factor of 1.5. To increase 
the variability, values adopted to parameterize neuronal geometries 

millions of neurons. Variants of ‘touch detection’ algorithms, are in 
fact based on morphologies derived from experimental data. Alter-
natively, probability distributions of axonal and dendritic volumes 
have also been proposed25. These methods estimate the connectivity 
among neurons through isotropic or distance-dependent criteria26. 
Moreover, neuronal connectivity can be derived from the conversion 
of axons and dendrites into grids of voxels generating density fields of 
neurites whose intersections determine the probability of contact27. 
However, procedures customizing morphological orientation accord-
ing to specific constraints are particularly complicated in human brain 
circuits, due to the complexity of anatomical organization28.

In this Resource, we provide a computational method to generate 
the 3D positions and full connectivity of brain regions starting from 
microscopy images. We have benchmarked the method to the Cornus 
Ammonis-1 (CA1) region of a right human hippocampus by creating the 
3D positioning of all pyramidal cells (PCs) and interneurons as well as 
the full network connectivity.

Results
Model overview
The method pipeline is represented in the flowchart shown in Extended 
Data Fig. 1. The workflow is divided into sequential blocks: (1) neuronal 
placement, (2) neuronal morphology, (3) network connectivity and (4) 
network simulation.

Neuronal placement
Neuronal placement was performed by analysing a dataset of human 
brain images (Bigbrain29; Fig. 1a) previously labelled30 for the subre-
gions of the hippocampal formation (CA1,2,3,4, dentate gyrus (DG) 
and subiculum (Sub)). Labelled images were segmented and employed 
to generate the surface of hippocampal regions adopted as external 
anatomical landmarks. The calculation of hippocampal subregions 
confirmed the estimates that the volume of CA1 (547.1 mm3) is about 
half of the entire hippocampal formation (Sub 289 mm3, CA2 41.6 mm3, 
CA3 55.6 mm3, CA4 110 mm3 and DG 110 mm3).

According to the labels obtained in the first analysis, stacked 
images were cropped to isolate the regions of interest (Fig. 1b). Binary 
images were then generated through dynamic thresholding on hip-
pocampal stained areas (Fig. 1c,d and Methods) and were then con-
verted into 3D coordinates according to the x,y,z resolution (Fig. 1e). 
The image-processing procedure identified about 18 million cells. 
However, given the non-cell type specificity of the staining method, 
voxels contained a mixture of glial and neuronal cells to be in turn 
further differentiated into PCs and interneurons.

The hippocampal network is a conserved brain structure, and 
despite the marked surface gyrifications and complex folding of the 
human CA1 (Fig. 1 and Discussion), PCs show similar morphological 
characteristics among mammals from rodents to human. Given these 
premises, we have assumed that human CA1 neurons could be divided 
in excitatory and inhibitory with a further subdivision of GABAergic 
interneurons like the one encountered in rodents. From the 18 million 
cells, 5.28 million were randomly selected to represent PCs31,32 and 
interneurons33. The number comes from the estimate of PCs reported in 
ref. 32 (4,836,111 cells) and subsequently rounded to the closest integer. 
The GABAergic interneurons have been classified by adopting a 10% 
ratio between excitatory and inhibitory neurons: a proportion well con-
served among species (from 5% (ref. 34) to more than 20% (ref. 35)) and 
brain regions, including hippocampal circuits36,37. We have adopted an 
intermediate value of 10%, in agreement with the range of interneurons 
representativeness reported in refs. 36,37 and in experimental databases 
such as https://bbp.epfl.ch/nexus/cell-atlas/.

The neurons were therefore subdivided into two classes, label-
ling 90% (4.8 M) of the overall population as PCs (pink circles in  
Fig. 2) and the remaining 10% (0.48 M) as interneurons. According to the 
terminology adopted for rodents38, interneurons were further grouped 
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were randomly chosen within normal distributions of dendritic and 
axonal sizes (Supplementary Table 1).

Network connectivity
The connection pairs were obtained by intersecting the convex hull 
of every presynaptic neuron with dendritic points of postsynaptic 
neurons. The connectivity matrix was created by intersecting axonal 
and dendritic probability density functions of the different neuronal 
classes. To reduce computational time, the connectivity of each neuron 
was calculated only in a limited region determined by the overlap-
ping of axonal and dendritic bounding boxes (Extended Data Fig. 1). 
Independently from the number of dendritic points included in the 
axon, every pair of intersecting neurons was included in the initial 
connectivity matrix.

The resulting human CA1 connectome generated about 40 billion 
of connected pairs, in good agreement with the estimation based on 
the rodent connection probability (www.hippocampome.org (ref. 42); 
Supplementary Table 2), once rescaled to human neuronal numerosity. 

The model network architecture was validated by evaluating the prob-
ability density of converging inputs and diverging outputs, also called 
indegree and outdegree. It has been reported43 that the outdegree 
and indegree distributions of experimental neuronal networks in dif-
ferent brain regions share similar features. The initial evaluation was 
performed exclusively for the excitatory network of PCs (Fig. 5a,b, pink 
area). The indegree and outdegree curves exhibited shapes consistent 
with experimental data (see Figs. 1 and 6 in ref. 43). A similar profile was 
conserved including inhibitory connections albeit a shift to higher 
values for the peak of the distributions (from 1,100 to 1,600 for the out-
degree and from 2,400 to 3,300 for indegree). The similarity between 
the two distributions was estimated through the Kullback–Leibler (KL) 
divergence method. A difference between the two conditions (0.029 KL 
score for outdegree and 0.033 KL score for indegree), probably due to 
a wider probability density function of interneurons (Supplementary  
Fig. 1), was observed. In both cases, the connection length distribution 
(Fig. 5c) had shapes similar to that observed experimentally in rodents 
and in other brain areas43. The inhibitory connections shifted the peak 
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Fig. 1 | Single image analysis. a, Cell body-stained histological sections of a  
right hippocampus from the BigBrain29 database at 20 μm voxel resolution. 
Overlay of the manual segmentation of the hippocampal formation from ref. 30.  
b, Stack images of silver-stained coronal sections from a 65-year-old male 
human brain (x,y,z resolution 20 × 20 × 20 μm3; BigBrain29). Centre: stack images 
were cropped (black box) to isolate hippocampal structures. Right: cropped 
images were automatically adjusted through an image-processing algorithm 

highlighting cell bodies. c, Binarized images resulting from image segmentation 
and corresponding to cell body positions (white spots) within the CA1 subregion 
(red contour) isolated from the background. d, x,y coordinates of cell bodies (red 
spots) are assigned on the basis of the pixel grid, while z coordinates correspond 
to stack level (red contour corresponds to red contour in c). e. 3D cell body 
distribution of a complete right CA1 hippocampus (coloured lines represent 
coronal planes shown in d).
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of the distribution to higher values (from 1,100 μm to 1,900 μm) while 
the subtracted curves show that larger connection lengths are present 
in the purely excitatory network. The connection strategy was fur-
ther validated by analysing indegrees and outdegrees in a randomly 
connected network. The profiles distribution obtained from random 
connectivity showed a Gaussian shape with peak values around 5,400 
connections with a narrowed half-width (150 connections, see Supple-
mentary Fig. 2) for both indegree and outdegree in contrast with the 
expected profiles obtained from experimental observations43 (0.7 KL 
score). Conversely, the proposed approach considers a more realistic 
cell distribution, maintaining the natural anatomical layout and the 
peculiar properties of the hippocampal CA1 neurons and interneu-
rons organization. The proposed model allowed one to observe hub 
neurons (Fig. 5), highly connected elements playing a key role in hip-
pocampal computation44 whose emergence was prevented by random 
connectivity (Supplementary Fig. 2). The dependence of the network 
connectivity from parameterization was evaluated by changing axonal 
and dendritic parameters, and results are shown in Supplementary  
Fig. 3. The KL estimates revealed that the shape of the probability den-
sities was not affected in all the configurations (axons and dendrites 
were halved, doubled or left unchanged; KL average score 0.012 with a 
minimum of 0.0016 and a maximum of 0.042; less than 1/10 compared 
with the network generated with random connectivity).

Network simulation
A model network, using simple integrate and fire neurons and Tso-
dyks–Markram synapses with default parameters45, was implemented 
with the exclusive intention to have a demo model to test running 

times and circuit integrity. The computational effort required to 
run a full-scale simulation was tested using the excitatory network 
(connection matrix stored in HDF5 format with gzip compressed 
dataset, file size approximately 86 Gb) implemented in NEST simula-
tor (https://www.nest-simulator.org). For the purpose of this work, 
neurons were implemented as standard Hill and Tononi point neu-
rons, available in the NEST distribution (‘HT_neuron’). The neurons 
were connected with ‘Tsodyks–Markram’ synapses, also available in 
NEST (‘Tsodyks_synapse’). Hippocampal activity was stimulated by 
activating with a single pulse a group of 6,706 PCs distributed in a 
spherical volume of 500 μm radius. Results of a simulation performed 
on a purely excitatory network are shown in Fig. 6 (for the full video, 
see Supplementary Information), where it can be evidenced that, 
in response to a single stimulus delivered to a confined population 
of PCs, the activity starts spreading transversally (CA2–subiculum) 
to be further diffused longitudinally (Fig. 6). The same stimulation 
protocol has also been arranged for a simulation with the complete 
network (Supplementary Figs. 4 and 5) showing that inhibitory cir-
cuits prevent the signal spread in the longitudinal direction. Full-
scale network test simulations were carried out on the Piz-Daint Cray 
XC40 supercomputer available at the Swiss National Supercomputer 
Center (CSCS, ETH Zurich), composed of 1,813 nodes each featur-
ing two Intel Xeon E5-2695 v4 @ 2.10 GHz (2 × 18 cores, 64 or 128 GB 
random-access memory). The large number of synaptic connections 
composing the CA1 network, about 40 billion, required a special setup 
procedure. To minimize the memory requirements, excitatory con-
nections were loaded and instantiated in chunks of 166 million taking 
a total of about 10,000 s. The inhibitory connections were loaded also 

C
el

l p
la

ce
m

en
t

a

b c

A
V M

P

Pyramidal
TRI-like
NGF-like
IVY-like
OLM-like
SCA-like
PPA-like
Perisomatic-like

D

M V

L
A

P

D

D
SR

SO

SO

SR

SLM

SO

SR

M
A

V
L

P

L

Fig. 2 | Neuronal soma positioning. a, 3D positioning of the excitatory (PCs, 
pink) and inhibitory neurons. Interneurons are divided into seven classes 
according to positioning and morphological features. b, Reoriented 3D neuronal 
positioning shown in a to highlight interneurons distribution. c, Two-millimetre 
transversal slice of 3D positioning obtained from sectioning CA1 between the two 

grey-shaded planes shown in b, right. Note the NGF-like neurons (grey spots) in 
the lower part corresponding to SR and SLM and IVY-like neurons (yellow spots) 
scattered within the pyramidal layer (SP) derived from the sampling procedure 
adopted to place interneurons and described in Methods.

http://www.nature.com/natcomputsci
https://www.nest-simulator.org


Nature Computational Science | Volume 3 | March 2023 | 264–276 268

Resource https://doi.org/10.1038/s43588-023-00417-2

from hdf5 files, and their creation took about 4,000 s. Moreover, the 
maximum number of connections that could be managed by NEST on 
each computing node cannot exceed 134,217,727, to respect limita-
tions of local indexing of instantiated elements. To meet this limit, 
the number of central processing units (CPUs) (tasks) cannot be less 
than 250. To meet memory requirements, we used a total of 160 nodes 
and allocated at most three tasks on each computing node, using a 
total of 480 processes to set up the network. Since each process was 
instructed to use five threads to carry out the simulation, the actual 
number of processors used to simulate the full network was 2,400, 
the available amount of random-access memory was 19.2 TB out of 
which 7.2 TB was used by NEST.

Disregarding the network setup time, 200 ms of simulated time 
and data saving in the native text file format of NEST (.dat files) required 
162 s of CPU time.

Discussion
One of the main assumptions of this work is that some of the morpho-
logical and anatomical properties of hippocampal formations can 
be conserved during phylogenesis. We have assumed that features 
extracted from experimental observations in rodents could be trans-
lated into human structures. Our scaffold model considers the known 
differences at both macro- and microscopic level between human and 
rodent hippocampus, like the marked surface gyrification or a thicker 
SP with sparse PCs. These structural features might have functional 
consequences on the activity of the whole network, which remains to 
be tested through a suitable implementation of human single-cell and 
synapse-computational models. This is crucial, since it has been shown 
that cortical gyrifications correlate with information-processing capac-
ity46 while their alterations could lead to cognitive impairment47 and 
are correlated with neurodegenerative diseases48. The data extracted 
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Fig. 3 | Analysis of neuronal density. a, Left: 3D voxelization of neuronal 
placement: each voxel (300 × 300 × 300 μm3) is coloured according to its 
neuronal density value, from low (blue) to high (yellow) density. Right: 
transversal slice of a single layer of voxels obtained from the slicing plane on 
the left (black rectangle). Note the higher density in the SP and SR compared 
with SO. b. Density profile along the medio-lateral axis. Coloured spots have 
been obtained by calculating density values for 25 voxels in three stripes of 
the SP running from the dorsal (D) to the ventral (V) side of the CA1 in analogy 
with the density gradient within SP shown in the images in the inset (adapted 

from ref. 53). Blue dots (lateral, SO side), green dots (middle), yellow dots 
(medial, SR side). c, The analysis has been repeated for ten transversal slices 
(+289 ± 71%; mean ± s.e.m.). d. 3D voxelization of neuronal placement with  
25 positions (white circles) employed to calculate the density distribution.  
e, Density profile along the antero-posterior direction obtained sampling  
25 different positions (white circles in d). Black line represents the average 
of 13 different sampling voxels (1,000 × 1,000 × 1,000 μm3) for each position 
(+127 ± 21.6; mean ± sem).
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to implement models of the hippocampus at cellular resolution will 
be used to run co-simulations, a framework enabling the use of two 
simulators operating at different scales to run simulations of full brain 
networks (Supplementary Fig. 6). A further embedding in a large-scale 
network using co-simulation will shed light on the relevance of these 
structural variances at the large-scale network level (Supplementary 
Fig. 6). Using co-simulation would enable the modelling of the impact 
of the pathomechanisms on the emergence of temporal lobe epilepsy, 
which arises at the microscale level49, on the full brain network. We 
expect that those models will lead to new mechanistic hypotheses, as 
well as to an improved prediction of patient-specific seizure dynamics.

We have assumed that both excitatory and inhibitory neurons had 
to be distributed according to the mapping generated by image analysis 
procedures. In particular, inhibitory interneurons have been placed in 
analogy with general morpho-anatomical features observed in rodents. 
We have adopted an anisotropic distribution for GABAergic interneu-
rons because: (1) recent findings showed that human GABAergic hip-
pocampus interneurons exhibit strong similarities with GABAergic 

mouse cell types and could be clustered into seven classes depending 
on expression patterns of marker genes, and global transcriptional 
similarity48, and (2) the distribution of GABAergic interneurons in sin-
gle human cortical columns, which maintains a fairly constant ratio of 
about 10% with respect to glutamatergic neurons throughout layers, 
exhibits a marked asymmetry and layer specificity for different sub-
types50. Similarly to rodents, inhibitory neurons in human isocortical 
columns are clustered within distinct preferential layers providing 
functional segregation of inhibitory patterns. It is therefore not plausi-
ble to obtain a diffuse inhibitory action by randomly and isotropically 
arranging neuronal soma throughout the simulated volume.

These observations support our hypothesis of an anisotropic 
distribution of GABAergic subtypes that can presumably resemble 
that observed in rodent hippocampus, albeit molecular similarities 
and cortical distribution in humans do not necessarily imply a quan-
titative match of morphological and topological features between 
humans and rodents. Furthermore, the use of a unique inhibitory 
class distributed isotropically in the CA1 volume would introduce  
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Note the directionality of PC axons from CA3 side to subiculum. c, Schematic 

representation of the axon modelling procedure. The points of the CA1 surface 
laying on the orientation plane are connected through a spline line defining a 
tubular volume (150 μm radius). d. Left: example of modelled PC axons (orange 
and blue thick lines) running in the SO from PC somas placement towards 
subiculum. Right: 100 randomly selected PC axons running in the external part 
of the SP from PC placement towards subiculum. e. Left: realistic morphology of 
PCs (basal dendrites in brown and apical in blue, adapted from ref. 53), oriented 
within a transversal CA1 hippocampal slice. Right: the probability density 
functions are represented as two cones with colour code respecting the realistic 
morphology.
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an artefact in the choice of the most probable shape to be assigned to 
this neuronal model.

It is indeed well consolidated that human PCs are distributed 
in a thicker SP51 compared with rodents and preserve morphologies 
with some differences in dimensions. This spatial segregation based 
on the radial axis could represent a general principle that, in rodents, 
is implemented by the deep and superficial PCs that act increasing 
the capacity to compute and to perform different tasks in parallel52. 
Accordingly, the distribution of PCs in our scaffold, by following a 
medio-lateral gradient running from deep to superficial layers could 
instantiate parallelized computation. Furthermore, this organization 
implies that (1) pyramidal apical and basal dendrites are sparsely organ-
ized within the SP, and (2) inhibitory neurons and neurites should be 
reorganized to quench the activity of excitatory neurons in a way that 
it is largely unknown. In this work we hypothesize that human interneu-
rons, as well as PCs, maintain their morphology features adapting the 
size and sparsely populating the different layers in compliance with 
an inhomogeneous cellular density distribution. Starting from the 
experimental data reported in ref. 53 (see Fig. 7 in ref. 53 on the primate 
CA1 cellular layer organization), only deep PCs project their basal 

dendrites to the SO and only superficial PCs project their apical den-
drites to the SR and stratum lacunosum-molecularis (SLM). Thus, we 
hypothesize that dedicated classes of interneurons populating the SO 
or the SR will target more specifically pyramidal apical or basal tufts, 
while what we called perisomatic interneurons inhibit the PC popula-
tion acting generically on perisomatic dendrites (basal or apical). We 
can conclude that the choice of modelling seven different classes of 
interneurons provides the basis for translating knew knowledge into 
the model, as it will be available, starting from the plausible assump-
tion that human interneurons should have different morphologies to 
provide dedicated inhibition.

The sparseness of data at the cellular resolution in human brain 
research has compelled the generalization of the model through 
arbitrary assumptions that were instead largely inspired by rodents 
cyto-architecture. Furthermore, the parameterization of the model 
with a few features for each neuronal class could expand the pos-
sible network configurations. Our assumption, beside the choice of 
specific geometrical shape mimicking neuronal morphologies, was 
dictated by the experimental observations that PCs show a scale fac-
tor of 1.5 from mouse to human. The same value has been translated 
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Fig. 5 | Indegree and outdegree. a, Probability density of the number of neurons 
contacted by every neuron (outdegree). The integration of inhibitory synapses 
in the network (blue histogram) shifts the peak of the curve (from 1,100 contact 
with 0.0148 probability density to 1,600 contacts with 0.0126 probability 
density) and induces an increase of the probability density at larger numbers 
of contacts (note the prevalence of a blue profile at larger number of contacts). 
b, Probability density of the number of contacts received by every neuron 

(indegree). The degree distribution shows a peak of incoming input of 2,400 
units. Including inhibitory synapses in the network, the curve increases and the 
peak slightly shifts (from 2,400 to 3,300). c, Probability density of connection 
lengths. Note the shape closely resembling results obtained from rodents42,43. In 
the presence of inhibitory synapses, connection length distribution shifted to 
right (from 1,100 to 1,900 μm).
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Fig. 6 | Full-scale network simulation. Snapshots from a demo movie 
(Supplementary Movie 1) illustrating a simulation of a purely excitatory network 
in which the activity was evoked by a single pulse stimulation delivered to about 
6,500 PCs in a 500 μm radius sphere near the CA2 region. Note that activity 

initially propagates in the transversal (medio-lateral) direction to subsequently 
spread longitudinally (antero-posterior). Scale bar, 2 mm. Neuronal firing is 
coded by single neurons turning white (spiking) from blue (silent). Images 
generated with ViSimpl (https://vg-lab.es/visimpl/).
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to morphological parameters of interneurons. It should be noted 
that changing network configuration either by randomizing con-
nectivity or by changing morphological parameters has a marked 
effect mainly on the size of the CA1 connectome, which becomes 
unrealistic when the network is randomized. Halving or doubling PC 
axons and dendrites impacts the total number of connections while 
poorly conditioning the indegree and outdegrees and the connection 
lengths probability distribution.

The proposed model together with the computational method is 
a starting point for generating more sophisticated models incorpo-
rating the functional characteristics that are required to simulate the 
entire hippocampus. As a starting point the model suffers for some 
limitations: (1) the image analysis has been performed on images 
obtained with a low resolution and low specificity method; (2) the 
choice of the parameters is based on the assumption of similarity 
between mouse and human, which is currently unknown; (3) the use 
of geometrical probability density functions rather than realistic 
morphologies is a strong generalization; (4) the absence of the CA1 
layers as automatic internal landmarks required to adopt a division of 
CA1 surface in a deep and a superficial side. The generation of a model 
describing a complicated biological system like the human brain 
requires assumptions and reductions that progressively scale up with 
the complexity of the system. The current model could be therefore 
expanded and refined by (1) using updated morphological data in 
particular of human inhibitory neurons; (2) analysing human samples 
to obtain updated values for human morphologies; (3) refining prob-
ability density functions to obtain a more sophisticated morphological 
representation of neuronal classes or, alternatively, creating realistic 
synthetic neurons; (4) labelling CA1 layers to be adopted as additional 
internal landmarks. Finally, among the differences between the rodent 
and human hippocampus, the anatomical organization of the human 
CA1 closely resembles cortical structures where gyrification allows to 
expand the grey matter area maintaining the volumetric size. From 
a computational perspective, this structural organization, whose 
alterations have been correlated to the occurrence of neurological 
disorders such as autism54, remarkably expands the complexity of 
the tissue and hampers any chance to implement models based on 
randomized connectivity strategies. Conversely, the proposed con-
nectivity method and the generated scaffold model take into account 
the geometric convolution of CA1 by developing axons following CA1 
surface and potentially preserving the functional consequences of 
gyrification such as the emergence of cognitive functions55. Moreo-
ver, the proposed model reproduces the antero-posterior gradient 
of neuronal density that has been experimentally observed53 and 
theoretically predicted22. This aspect is paramount, since external 
connections impinging onto CA1 are non-homogeneously distributed 
and follow an antero-posterior gradient52 that recalls the anisotropy 
in cellular distribution.

In conclusion, this scaffold model of a CA1 human hippocampus, if 
properly equipped with realistic models of neurons and synapses, will 
promote the development of a full model of the human hippocampus 
allowing the investigation of its function and providing a valuable 
digital tool for the development of better treatments for neurologi-
cal diseases.

Methods
The automatic detection of 2D cell body was designed to analyse single-
channel marker microscopy images, labelled for the identification 
of the hippocampal subregions. The algorithm, written in MATLAB 
(v 2019b; The MathworksInc), was conceived to be applied to silver-
stained sections. The staining procedure, which darkens cell bodies 
in an unspecific way, did not allow us to assign a specific neuronal 
labelling to a given population.

A two-step procedure has been implemented to analyse labelled 
and raw images: image labelling and image segmentation.

Image labelling
The BigBrain imaging dataset29 is a high-resolution microscopic full 
human brain scan at a resolution of 20 μm and labelled for the different 
hippocampal subregions. The manual labelling, which is available at a 
40 μm isotropic voxel resolution, was upsampled to the original 20 μm 
resolution, using nearest neighbour interpolation. Images labelled 
for the different hippocampal regions were analysed to reconstruct 
the meshes that were adopted as anatomical landmarks for the auto-
matic orientation of the axonal and dendritic probability function. The 
algorithm implemented morphological operation using the built-in 
function bwconncomp, regionprop2 and bwperim to identify, depend-
ing on the resulting binary mask areas, single cells or closely packed 
somas and connect them. Once the labelled regions were identified, 
the algorithm performed the 3D reconstruction of the images obtained 
from different planes.

Image segmentation
The transformation of the intensity greyscale images consisted of 
applying rectangular region of interests of variable size corresponding 
to the localization of the hippocampal formation. A contrast enhance-
ment filter responsible for remapping the image intensity values to the 
full display range was then performed. This procedure sharpened the 
differences between stained cells and background. A dynamic Otsu 
thresholding56 to generate binary masks for each coronal image was 
then adopted. The optimal threshold was automatically selected by 
referring to the average intensity value of the SLM layer, which is known 
to be poorly populated. The estimated size of PCs soma is between 
20 μm and 25 μm in diameter, each non-zero pixel was therefore associ-
ated to cell soma coordinates.

Furthermore, given the pixel size, neuronal classes could not be 
differentiated according to morphological features such as soma diam-
eter. The reconstruction of the 3D neuronal placement was achieved by 
assigning the x and y coordinates as the pixel indices (rows, columns) 
multiplied by pixel resolution, whereas the z coordinate was obtained 
by multiplying the index of the stacked image by vertical resolution.

The full-scale model was obtained by randomly pruning the 3D 
coordinates that resulted from image analyses to the putative num-
ber of PCs estimated in ref. 32 and respecting the ratio of 10% between 
inhibitory (Inh) and excitatory (Exc). The final neuronal population 
distribution was 4.8 million PCs and 480,000 inhibitory neurons 
(Supplementary Table 3 and Fig. 2). The overall neuronal population 
(Exc/Inh) was further divided in eight classes (1 Exc, 7 Inh) (Fig. 2 and 
Supplementary Table 1). The 3D surface of the hippocampal volume 
resulting from image labelling has been divided into a superficial and 
a deep side corresponding respectively to SR and to the SO (Fig. 2b,c) 
through a custom-made nearest neighbour algorithm. Subsequently, 
inhibitory population was divided in two main classes depending 
on the relative position from SO and SR calculated as the minimum 
Euclidean distance. The interneurons predominantly laying in SR and 
SLM (IVY-like and NGF-like) were shifted radially to account for the fact 
that image labelling has been performed by considering only SO and 
SP. The complete scaffolding of the neurons in the 3D volume resulted 
from the placement procedure was visualized with the visualization 
software Mayavi (v4.8.1; https://hal.science/hal-00502548).

Neuronal density analysis
The cell density associated to the 3D neuronal distribution was 
obtained by adopting an Octree family algorithm that recursively 
partitioned the 3D points of the neuronal placement into subvolumes 
(300 × 300 × 300 μm3) returning the number of neurons in each voxel. 
The density gradient in the transversal direction was obtained by slicing 
the CA1 volume along medio-lateral dorso-ventral planes and analysing 
the cell densities in three different concentric lines running in parallel 
to the CA1 internal and external surfaces and approximately corre-
sponding to SO, SP and SR. The procedure was repeated by creating 
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ten slices at different antero-posterior positions to create an average 
trend (Fig. 3c). The density gradient in the antero-posterior direction 
was obtained by sampling 25 voxels (white circles in Fig. 3d) from the 
anterior to the posterior part. Each voxel sampling was repeated 13 
times to account for local density variability. This number resulted 
from the need to map the cell density in the whole CA1 volume which 
is estimated in 547 mm3 (see main text). Given the size of a single voxel, 
this volume can be obtained with about 20 repetitions of 25 samplings. 
However, the morphology of CA1 is not uniform and the CA1 is progres-
sively thinner going from the anterior to the posterior part. To account 
for this variation, we have reduced the number of repetitions down to 13 
allowing one to cover the CA1 posterior tip with little overlap of voxels.

Neuronal morphology
The rule to generate neuronal connection pairs was implemented 
assuming that neuronal classes are characterized by specific mor-
phological properties. These properties, derived from literature36,39 
or public databases, have been modelled as geometrical probability 
volumes mimicking the cross-section volume of axons and dendrites. 
Every neuron belonging to a specific class has been associated with 
a series of parameters accounting for its position and its orientation 
with respect to the three canonical axes (transverse, longitudinal and 
horizontal) allowing a proper orientation. The algorithms were writ-
ten in MATLAB and were identified as ‘positional-morpho-anatomical’ 
modelling25. All cells were associated with their relative distances from 
CA2, subiculum and internal subregions (landmarks identification), 
by calculating the minimum Euclidean distances. The CA2 and sub-
iculum landmarks allowed the modelling of the orientations of PC and 
interneurons observed in the rodent CA1 hippocampus. In particular, 
the minimum distance vectors between CA1 neurons and CA2 surface, 
or between CA1 neurons and subiculum surface, were primarily used to 
generate the transversal plane adopted to orient the PC axonal branch 
extent (see ‘Tubes’ section).

The axonal and dendritic arborizations of PCs have been modelled 
as a combination of tubes (see ‘Tubes’ section) and cones (see ‘Cones’ 
section), respectively, while the interneuron axonal and dendritic 
arborizations were modelled as a combination of ellipsoids (see ‘Ellip-
soid’ section) and cones. The variable size of the different geometrical 
volumes is reported in Supplementary Table 1 and rescaled by a factor 
of 1.5 according to the values adopted in ref. 25.

PCs
According to experimental findings in rodents39, the axons of PCs pro-
ject into the SO to bifurcate transversally towards the subiculum with 
poor divergence to the CA2. We have therefore created a single tubular 
volume (see ‘Tubes’ section) to describe axonal density function of 
PCs since their somas lay in the SP and axons emerge from somas and 
project to the SO. The apical and basal dendritic probability density 
functions were automatically oriented in the directions projecting to 
SLM and SO, respectively.

Tubes
PC axonal branches have been modelled as tubular probability volumes 
according to the points resulting from the intersection between the 
transversal planes and the deeper region of the CA1 (SO group of CA1 
surface) (Fig. 4b,c). A dedicated routine has been generated to wrap a 
cylinder (tube) of radius r along any 3D curve defined by a [3, N] vector 
of points coordinates, where N varied according to the numerosity of 
the intersecting points. This procedure allowed the generation of a 
tubular axonal branch extension with custom cross-section (diameter 
of 300 μm) running with good approximation in parallel to the sur-
face bending. Extending observations from animal models, PC axons 
projected unidirectionally towards the subiculum with a limited back-
propagation to the CA2 proportional to the geodesic distance from the 
CA2 and with a maximum length of 500 μm.

Cones
Apical and basal dendritic arborization of PCs have been modelled as 
conical point volumes with extent and orientation based on morpho-
anatomical constraints (Fig. 4d). To parameterize conical probability 
density functions, we assumed that u and v are two orthogonal vectors 
that lie in the plane of the circle forming the basis of the cone. To build 
a cone between point O (apex) and base centre point (P) with a given 
radius R, we determined the norm of the cone base plane, which is 
given by d = P − O. The probability density functions associated with 
the cone were then modelled as scattered tridimensional points fol-
lowing equation (5).
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where H = |P − O| = d.
Basal and apical dendrites were oriented towards the directions 

connecting cell placement with minimum distance to deep (SO) and 
superficial (SR) CA1 surface, respectively.

Interneurons
According to the variability of rodent interneuron morphologies36,37, 
we have assumed seven classes of GABAergic cells representing clus-
ters of different interneurons sharing analogous morphological fea-
tures. The choice of seven classes was dictated by data availability in 
public repositories and published articles that were used to calculate 
morphological parameters (Supplementary Table 1). In particular, 
the modelled classes are representative of 11 different interneuron 
subtypes described below:

Perisomatic-like. These cells, which can be traced back to rodents 
PV+ and CCK+ basket cells and axo-axonic cells36, have somas laying in 
the SP, axonal cloud projecting within the SP and dendrites crossing 
the entire CA1 from SO to SLM. The axon was modelled as an ellipsoid, 
while both apical and basal dendrites were modelled as two cones 
(Supplementary Fig. 1 and Supplementary Table 1). Cell somas were 
distributed randomly in the CA1 volume.

OLM-like. These cells, which can be traced back to rodents SO-OLM 
and back-projecting cells, have somas confined in the SO. The axon 
projects a thin filament to the SLM where generates a dense plexus 
while the dendrite spreads in the SO36. A combination of ellipsoids was 
used to model both axons and dendrites (Supplementary Fig. 1 and 
Supplementary Table 1). Cell somas were selected in the outer part of 
the SO interneuron subgroup.

IVY-like. These cells, which can be traced back to rodents IVY and bis-
tratified cells, have cell bodies mainly distributed within SP and SR, but 
they also populate SO36. Axons and dendrites are predominantly located 
within SR, SP and SO with protrusion within the SLM for cells located in 
the superficial SR36. Furthermore, dendrites are preferentially confined 
inside axonal clouds. Single ellipsoids have been used to model both 
neurites (Supplementary Fig. 1 and Supplementary Table 1), while cell 
somas were selected in the outer part of the SR interneuron subgroup.

TRI-like. These cells, which can be traced back to rodents trilaminar 
cells, have somas in the SO with axons crossing CA1 layers36 and den-
drites preferentially confined in the proximity of the soma36. Ellip-
soids were used to model both axons and dendrites (Supplementary 
Fig. 1 and Supplementary Table 1). Cell somas were selected in the SO 
interneuron subgroup.
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SCA-like. These cells, which can be traced back to rodent Schaffer 
collateral-associated cells, have somas in the SR, axons projecting 
to the SO and dendrites projecting to the SLM36. Eccentric ellipsoids 
have been used to model both axons and dendrites. Cell somas were 
positioned by selecting 3D coordinates from the outer part of the SR 
subgroup, subsequently somas were shifted towards the SLM direction 
proportionally to the distance between soma and SR border (Supple-
mentary Fig. 1 and Supplementary Table 1).

PPA-like. These cells, which can be traced back to rodent perforant 
pathway-associated cells, have somas in the SR, axons are confined in 
the SR and SLM and dendrites project in both directions and extend 
towards the SP36,57. A large ellipsoid was used to model the axon, and 
two cones were adopted for dendrites (Supplementary Fig. 1 and Sup-
plementary Table 1). Cell somas were selected from the outer part of 
the SR interneuron subgroup and shifted towards the SLM direction 
proportionally to the distance between soma and SR border.

NGF-like. These cells, which can be traced back to rodent neuroglia-
form, represented the most abundant GABAergic population in the 
whole CA1. They have somas and a short dendritic tree well confined 
in the SLM. Conversely, a large axon is directed towards the SO with 
projections in the SR39,58. Ellipsoids were used to represent both 
axonal and dendritic probability density functions (Supplementary 
Fig. 1 and Supplementary Table 1). Cell somas were selected in the 
outer part of the SR interneuron subgroup and shifted towards the 
SLM direction proportionally to the distance between soma and 
SR border. The shifting length was larger than the one adopted for 
neurons in the SR.

The sizes of all the probability density functions (Supplementary 
Fig. 1) have been generated by calculating the average rodent axonal 
and dendritic extension from literature36,37 and from public repositories 
(www.neuromorpho.org). A 1.5 scale factor was introduced to com-
pensate for the differences observed between rodents and human PC 
dendrites. A normal distribution for each parameter describing cones 
and ellipsoids was then generated and parameters were randomly 
sampled from the distribution to account for cell-to-cell variability.

Ellipsoid
Assuming that any quadratic function f (x1,…, xn) can be written in the 
form XTQX, where Q is a symmetric matrix (Q = QT), given a system of 
eigenvectors (unit vectors) that diagonalize the symmetric matrix, 
any ellipsoid can be described as a volume oriented in the direction 
set by the eigenvectors and elongated along the semi-axis as set by 
the eigenvalues.

The probability ellipsoid representing axonal projections can 
thus be easily parametrized considering an orthonormal system of 
eigenvectors v1, v2, v3 associated, respectively, with the eigenvalues 
λ1, λ2, λ3 of a 3 × 3 symmetric positive matrix M. If

V = [v1, v2, v3] (2)

Then
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VTMV is a diagonal matrix containing the eigenvalues of M and the 
normalized vectors v1, v2, v3 are called the principal axis of M.

Given an arbitrary base of orthonormal vectors u1, u2, u3 (the ori-
entation vectors) determining the matrix U and a diagonal matrix (D) 
of arbitrary eigenvalues (semi-axis lengths), it is possible to obtain the 
symmetric matrix Q with equation (3).

Q = UDUT (4)

The orientation vectors were created by calculating the relative 
positioning of CA1 neurons with respect to other hippocampal regions. 
Transversal planes were generated as planes containing the minimum 
distance vectors connecting CA1 somas with CA2 and subiculum mesh 
points (Fig. 4).

The ellipsoidal probability density function was modelled as scat-
tered points according to the canonical parametric equations:

x = λ1 cos𝜗𝜗 sinφ, y = λ2 cos𝜗𝜗 sinφ, z = λ3 cosφ (5)

where 0 ≤ ϑ < 2π and −π ≤ φ ≤ 0.
The points composing the ellipsoid probability density function 

were obtained by generalizing the canonical parametric equations to 
an arbitrary orientation according to the calculated vectors.

Axons were converted into convex hulls, whereas dendrites into a 
variable number of scattered points. Each point represented a volume 
of about 64,000 μm3, corresponding to a 40 μm side voxel. For exam-
ple, the cones adopted to model apical dendrite of PCs (Supplementary 
Table 1) had an average volume of about 11,780,000 μm3, yielding a 
total of 184 points (11,780,000/64,000).

Neuronal connectivity
Neuronal connectivity was performed between neurons belonging to 
a pre- and a post-synaptic class. The axonal and dendritic probability 
density functions were preliminarily circumscribed within their mini-
mal bounding boxes and to reduce the computational effort, the pre-
synaptic neuron was intersected only against neurons whose dendritic 
bounding boxes overlapped with its axonal bounding box (Extended 
Data Fig. 1). The overlapping between axonal and dendritic bounding 
boxes (BB13D,BB23D) was preliminarily determined by applying the fol-
lowing set of equations:

BB13D = (x ∶ (xmin1, xmax1), y ∶ (ymin1, ymax1) , z ∶ (zmin1, zmax1)) (6)

BB23D = (x ∶ (xmin2, xmax2) , y ∶ (ymin2, ymax2) , z ∶ (zmin2, zmax2)) (7)

overlap3D (BB13D,BB23D) =

overlap1D (BB13D.x,BB23D.x) &

overlap1D (BB13D.y,BB23D.y) &

overlap1D (BB13D.z,BB23D.z)

(8)

where, given BB11D = (xmin1, xmax1) and BB21D = (xmin2, xmax2)

overlap1D (BB11D,BB21D) = xmax1 ≥ xmin2 & xmax2 ≥ xmin1

The intersection was evaluated only on neurons with overlapping 
bounding boxes. Connection pairs were calculated through an iterative 
algorithm assessing the inclusion of at least one dendritic point into the 
axonal convex hull. The final number of connection pairs was obtained 
following a pruning procedure which was performed according to the 
number of estimated contacts between the two neuronal classes. This 
number was adapted from rodents and was obtained by multiplying 
the synaptic connection probability and the total number of neurons 
composing the two classes (see hippocampome.org, Supplementary 
Table 2).

The total time required to estimate the connectivity matrix 
depended on (1) the number of points in each dendritic probability 
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density function, (2) the number of potential intersections and (3) the 
numerosity of each neuronal class. Only the first parameter was set a 
priori and could be adjusted to limit the computation time.

The positional-morpho-anatomical modelling algorithm was 
parallelized to run on a supercomputer, and the full network was gener-
ated in a period of 240 h on 20 CPUs. The CA1 network with 5.28 million 
neurons generated ∼40 billion synapses, and it was created on the 
Lyra server available at labcsai (http://www.labcsai.unimore.it) and 
equipped with an Intel Xeon 20 core 6230 2.1 GHz with 40 processors.

Data analysis
The similarity between distributions has been estimated with the KL 
divergence method, quantifying how much one probability distribu-
tion differs from another probability distribution. Given the distribu-
tions P and Q, the KL divergence can be calculated as the negative sum 
of probability of each event in P multiplied by the log of the probability 
of the event in Q over the probability of the event in P. The KL divergence 
score is large when the probability for an event from P is large, but the 
probability for the same event in Q is small, there is a large divergence.

Statistics are reported as mean ± standard error of the mean 
(s.e.m.) unless otherwise specified.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source data for Figs. 3–5 are available with this manuscript. Source 
images are available from the BigBrain repository29. The scaffold model 
resulting from the analysis of the images is available in the EBRAINS 
knowledge graph59 in the form of a text file with Global Identification 
(GID) numbers and x,y,z coordinates that can be used to reproduce  
Figs. 2 and 6. At the same link59 the connection pairs can be downloaded 
as a collection of multiple text files containing the GID numbers of the 
presynaptic and postsynaptic neurons and a hdf5 file was generated to 
allocate each txt file as an hdf5 key.

Code availability
The codes allowing to implement the computational pipeline for a 
subset of PCs and interneurons are released as a Code Ocean capsule60.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Workflow for the generation of human CA1 circuit. 
Gray boxes represent the adopted procedural blocks. Red boxes represent 
computational functions. Green box represents non elaborated data obtained 
from public repositories (external source). 1 Neuronal placement: Cells 
coordinates have been downloaded from the BigBrain image database in the 
form of grayscale images. Images have been segmented and hippocampus 
subregions have been isolated (CA1, CA2, CA3, CA4, Subiculum). Putative cell 
soma positions have been isolated through image analysis. Subsequently, a 
pruning procedure allowed to assign the 3D coordinates to excitatory (1) and 
inhibitory (7) classes according to their relative positions in CA1 layers (OUT1a). 
CA2 and Subiculum surface meshes have been generated (OUT1b). 2 Neuronal 

morphologies: Geometrical shapes were generated by assigning morphological 
parameters to dendritic and axonal features. Neurons were oriented according 
to external landmarks and axonal convex hulls (OUT2a) and dendritic point 
volumes (OUT2b) were generated. 3 Network connectivity; Bounding boxes for 
axons and dendrites were generated and an iterative algorithm calculated the 
intersections of axonal hull with dendrites showing overlapping bounding boxes. 
A connection pair (OUT3) was generated when at least one dendritic point fell 
into the axonal hull. 4 Network simulation. The scaffold and connectivity matrix 
were loaded into NEST simulator to simulate CA1 activity. The PMA algorithm is 
represented by blocks 2 and 3.
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