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Evolving scattering networks for engineering 
disorder

Sunkyu Yu     

Network science provides a powerful tool for unraveling the complexities of 
social, technological and biological systems. Constructing networks using 
wave phenomena is also of great interest in devising advanced hardware 
for machine learning, as shown in optical neural networks. Although most 
wave-based networks have employed static network models, the impact of 
evolving models in network science provides strong motivation to apply 
dynamical network modeling to wave physics. Here the concept of evolving 
scattering networks for scattering phenomena is developed. The network 
is defined by links, node degrees and their evolution processes modeling 
multi-particle interferences, which directly determine scattering from 
disordered materials. I demonstrate the concept by examining network-
based material classification, microstructure screening and preferential 
attachment in evolutions, which are applied to stealthy hyperuniformity. 
The results enable independent control of scattering from different length 
scales, revealing superdense material phases in short-range order. The 
proposed concept provides a bridge between wave physics and network 
science to resolve multiscale material complexities and open-system 
material design.

Evolving network models—the models that characterize the mecha-
nisms of time-varying networks—have stimulated substantial advances 
in network science and related disciplines. One of the most important 
achievements in this field is the discovery of scale-free networks using 
the Barabási–Albert model1,2, which describes the evolution process 
with stochastic network growth and the preferential attachment of 
new nodes to more connected ones. The model has been extended to 
other evolution processes to describe different forms of dynamics, 
such as the node fitness3, accelerated growth4 and aging models5,6. The 
pathway towards the resulting network of a given evolution process 
is not unique in general, as shown in scale-free networks developed 
by the deterministic process7 or static models8. However, finding an 
underlying evolution process of a class of complex networks unveils 
their hidden traits and topologies, as demonstrated in the unique 
features of scale-free networks distinct from those of Erdős–Rényi 
random networks, such as power-law degree distributions1, robustness 
to random failure9, enhanced controllability10 and ultrasmall-world 

properties11. Recently, there has been a surge of interest in devising 
evolution processes for machine learning to impose more flexibility 
on neural networks for artificial general intelligence12.

The use of network science is widespread throughout physics, 
as shown in quantum graph theory13–16 and the network modeling of 
material states3, potential landscapes8 and interacting quantum proces-
sors10. In addition to understanding physics in material or structural 
networks, realizing networks defined by wave–matter interactions 
has received considerable attention associated with recent efforts 
to implement wave neural networks17–25. Such a wave network is com-
posed of a set of wave ‘nodes’—wave behaviors inside a unit element 
such as waveguides19,26, resonators21,27 and scatterers20,28,29—where 
wave interactions between the nodes determine wave ‘links’. From 
this perspective, important achievements have brought a wider set of 
wave-based network structures, such as multiport interferometers for 
universal linear optics26,30, diffractive multilayers for artificial neural 
networks20 and engineered disorder for wave manipulations29,31,32. 

Received: 26 September 2022

Accepted: 22 December 2022

Published online: 13 February 2023

 Check for updates

Intelligent Wave Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea.  
 e-mail: sunkyu.yu@snu.ac.kr

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-022-00395-x
http://orcid.org/0000-0001-8667-6404
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-022-00395-x&domain=pdf
mailto:sunkyu.yu@snu.ac.kr


Nature Computational Science | Volume 3 | February 2023 | 128–138 129

Article https://doi.org/10.1038/s43588-022-00395-x

which satisfies S1(k) = 1 and Sn(k) = Sn(–k). In this simplified model, wave 
scattering is governed by Sn(k), which represents the spatial ordering 
of a material. Note that there is a one-to-many relationship between the 
structure factor and a set of particle positions50, as shown in the loss 
of phase information due to the modulus in equation (1). Therefore, 
it is natural to classify materials with their scattering responses32, for 
example, leading to the forward (Fig. 1b), backward (Fig. 1c) and zero  
(Fig. 1d) scattering states for the impulse-type spatial order 
Sn(k) = δ(k – k′), where δ(k) is the Dirac delta function (Methods and 
Supplementary Note 2). Such a classification underlines the necessity 
of engineering each regime of Sn(k) independently. For this purpose, I 
develop an evolution model for scattering phenomena (see Methods 
for criteria of the evolution model).

Because Sn(k) of a material determines wave scattering, realizing 
an evolution of Sn(k) corresponds to designing the evolution of an 
n-particle material and its scattering responses. Similar to the growth 
in evolving networks1,2,51,52, suppose an evolution model that describes 
the inclusion of a new particle to an existing n-particle material (Fig. 1e) 
according to a specific evolution process. By examining the evolution 
of the structure factor (Methods and Supplementary Note 3), I develop 
the network modeling of material and its scattering responses by defin-
ing the ‘scattering network’ composed of scatterer nodes, which are 
connected to each other through interference links: cos[k ∙ (rp – rq)] 
between the pth and qth nodes (Fig. 1f). Because a material generally 
provides diverse k components32,50, it is necessary to estimate the 
collective contribution of Sn(k) in the reciprocal space to character-
ize the overall scattering responses of a given material. Therefore, a 
more rigorous definition of the link weight between the pth and qth 
nodes should be:

wp,q
K = 1

VK
∫

K
cos [k ⋅ (rp − rq)]dk, (2)

where K is the region of interest in the reciprocal space and VK is the 
volume of the space K.

In terms of the network structure, the proposed scattering network 
is fully connected with undirected and weighted links wp,q

K because the 
interference originating from a particle affects all the existing particles 
reciprocally and differently. Another feature of the scattering network 
is that wp,q

K does not vary monotonically with the spatial distance due 
to the k-dependent periodicity of cos[k ∙ (rp – rq)] (Fig. 1f), in sharp 
contrast to other macroscopic or microscopic real-space networks, 
such as airline systems2 or potential energy landscapes8. Such unique-
ness highlights the necessity of wave-specific network modeling and 
evolution processes to engineer the material network topology and 
the consequent wave scattering.

From equation (2), the node degree—the connectivity of the pth 
node to the entire network52—becomes wp

K = ∑q≠pwp,q
K, which allows for 

the network-based interpretation of scattering:

⟨Sn⟩K = 1
VK

∫
K
Sn(k)dk = 1 + 1

n

n
∑
p=1

wp
K. (3)

Equation (3) shows that the scattering averaged in the K space 
⟨Sn⟩K is determined by the average node degrees. This result inspires 
the engineering of each node degree wp

K while preserving ∑wp
K through 

the designed evolution, similar to finding hub nodes in network 
science1,51,52.

The features of an evolving network are determined by its evolu-
tion process52. For example, in the Barabási–Albert model1,2, the prefer-
ential attachment of a new node to the existing nodes with higher node 
degrees—the rich get richer rule—results in the power-law scaling in 
node linkages, constructing scale-free networks. In evolving scattering 
networks, my goal is to engineer the network structure and the cor-
responding wave scattering by devising the proper rule to determine 

Notably, quantum graphs provide an analytical tool to fully describe the 
interactions between wave nodes13–16. However, extracting the kernel 
of a wave network requires platform-specific simplification, as shown 
in the reflectionless and single-channel assumptions for the network 
modeling of guided19,27,33 and diffractive20 systems. In this context, the 
efficient network modeling of scattering phenomena with complex 
interferences from multiple particles is still an open question.

In terms of network classes, previous studies on wave networks 
have utilized static network models, which have a fixed number of wave 
nodes and use material perturbation to control the network structure. 
Although some evolutionary algorithms34,35 have provided numerical 
tools for structural optimization, these methods lack the underlying 
concepts of evolving network models, such as the evolution process 
defined by the time-varying network topologies of the designed struc-
tures. Therefore, fundamental issues for a deeper understanding of 
wave networks—preferential attachment, evolving degree distributions 
and the impact of evolving models on engineering wave–matter inter-
actions—remain open questions. When considering the revolutionary 
success of evolving models in network science, designing network-
based evolution processes for wave–matter interactions will provide 
an insight into complex materials and artificial neural networks in 
photonics, acoustics and quantum graphs.

Here I propose the concept of evolving scattering networks—open-
system wave-network models with a dynamically changing number of 
particles inside a system—which provides a tool for multiscale material 
design with target scattering responses. To offer a bridge between net-
work science and wave physics, I define nodes, weighted links, degree 
distributions and evolution processes based on scattering theory. 
The suggested network model characterizes wave scattering as the 
network depending on the length scale of interest, which is suitable 
for designing materials with unique length-scale-dependent natures. 
As a representative example, I develop the evolution process towards 
stealthy hyperuniformity (SHU), which indicates the structural char-
acteristics from the bounded suppression of density fluctuations at 
long-range scales32,36–39 and has been studied in numerous natural or 
engineered systems, such as cosmological models40, avian photorecep-
tors41, amorphous silica42, space partitioning43, prime numbers44, band-
gap materials31,45,46 and sunlight absorbers47. The proposed evolution 
process enables the network-based classification of material phases 
and the screening of existing materials with SHU states. By realizing 
the preferential attachment for the SHU evolution, I demonstrate the 
engineering of the degree distribution of scattering networks, achiev-
ing unconventional material states such as effectively denser or sparser 
particle distributions for short-range order while preserving long-
range order of crystals or Poisson processes. The approach provides 
the network-based interpretation of wave phenomena, extending the 
candidate platforms for wave neural networks.

Results
Evolving scattering networks
To develop an evolving network model for waves, I start with the 
relationship between wave scattering and spatial ordering, widely 
employed in crystallography48, statistical mechanics49 and disordered 
photonics32. Consider a material composed of n identical point par-
ticles located inside the finite-size spatial domain Ω (Fig. 1a), where 
the jth particle is at position rj ∈ Ω (j = 1, 2, …, n). Under some assump-
tions (Methods), the scattering intensity measured at position R is 
In(k; R) = nI1(k; R)Sn(k) (Supplementary Note 1), where k = kS – kI is 
the wavevector shift between incident (kI) and scattering (kS) waves 
(|kI| = |kS| = ko and |k| = k), I1 is the scattering intensity from a single par-
ticle and Sn(k) is the structure factor:

Sn(k) =
1
n
||||

n
∑
j=1

e−ik⋅rj
||||

2

, (1)
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the position of the (n + 1)th particle in an existing n-particle material. 
I develop the evolution process for scattering networks (Methods), 
which is defined by the K-dependent cost function ρn

K(r) for the nth 
evolution:

ρn
K(r) = 1

n

n
∑
p=1

Π(wp
K) [ 1

VK
∫

K
cos [k ⋅ (rp − r)]dk], (4)

where Π(wp
K) is the preference function, which characterizes the pref-

erential attachment to the pth node. The minimum of ρn
K(r) represents 

the best position for the (n + 1)th particle. Because the term in the square 
brackets is the link weight between the pth node and the (n + 1)th node 
at r, ρn

K(r) directly denotes the node degree of the (n + 1)th node when 
Π(wp

K) = 1, leading to the evolving change of ⟨Sn⟩K in equation (3). The 
control of Π(wp

K) differentiates the importance of each existing node 
in altering ⟨Sn⟩K, eventually imposing the ‘preference’ on each node 
during the evolution process. By changing K, can also manipulate wave 
scattering across different scattering states in Fig. 1b–d (see Supple-
mentary Algorithm 1 for pseudo-code form of the evolution process). 
I also generalize the evolving network concept to inhomogeneous 
materials in Methods and Supplementary Note 4.

Figure 2 describes the evolution process, designing the material 
inside the real space Ω to achieve ⟨Sn⟩K → 0 (see Methods for the pre-
conditions and parameters of the evolution process). I employ the 
Monte Carlo method to sample both real (r ∈ Ω) and reciprocal (k ∈ K) 
spaces (Fig. 2a,b and Supplementary Note 5), which allows for the 
statistically homogeneous and isotropic evaluation of both spaces. 

The evolution of the cost function ρn
K(r), which illustrates the probabil-

ity map of placing a new particle, demonstrates that the evolution 
process consumes the finite real space Ω as the ‘resource’ to suppress 
wave scattering (Supplementary Notes 6 and 7 and Supplementary 
Video 1). Through the sequential finding of rn+1 from this process  
(Fig. 2c,d), the target evolution of Sn(k) is then successfully achieved 
(Fig. 2e,f and Supplementary Note 7). The relationship between the 
random defects in the designed particle positions {rp} and the following 
perturbation of ⟨Sn⟩K is analyzed in Supplementary Note 8. The analysis 
shows that the particles with highly negative node degrees wp

K, which 
correspond to more important particles in realizing the SHU state, have 
stronger defect immunity at the weak defect regime. It is in sharp 
contrast to the fragile hub nodes in network science2,52, demonstrating 
the uniqueness of the proposed scattering networks.

In the following sections, I examine the listed concepts of evolv-
ing scattering networks in a step-by-step manner with the examples 
of (1) classifying microstructures with a wave-network viewpoint, (2) 
screening microstructures using evolution processes and (3) control-
ling long-range and short-range order independently using preferential 
attachment.

Material classification with degree distributions
I employ the concept of scattering networks to classify material micro-
structures. To focus on the criteria for classification, I assume the most 
straightforward form of the evolution process without preferential 
attachment as Π(wp

K) = 1, which imposes statistical homogeneity on all 
existing nodes. The evolution process leads to (Supplementary Note 9):

a Ω
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Fig. 1 | Evolution of scattering networks. a, A material composed of n identical 
point particles in the spatial domain Ω. b–d, Three different states of impulse 
scattering responses depending on the spatial ordering of materials: forward 
(|k′| < √2ko for 0 ≤ θ ≤ π/2 or 3π/2 ≤ θ ≤ 2π) (b), backward (√2ko ≤ |k′| < 2ko for 
π/2 ≤ θ ≤ 3π/2) (c) and zero (|k′| ≥ 2ko) (d) scattering states. Yellow points denote 
the impulse Sn(k) = δ(k – k′). Red arrows represent the allowed incident and 
scattering wavevectors connected through the impulse scattering response ±k′. 
Red, white and black solid circles have the radii of ko, √2ko and 2ko, respectively, 
where the red one represents the light cone. Red dashed circles are the shifted 
light cones due to the scattering events described by Sn(k) = δ(k – k′). e, An 
(n + 1)-particle material evolved from the material in a, by adding the (n + 1)th 

point particle (blue sphere). f, Network modeling of wave scattering from a 
material with scatterer nodes and k-dependent links. Orange and green arrows 
denote incident and scattering waves, respectively. Red and blue solid lines 
represent the positive and negative signs of existing link weights defined by 
equation (2), respectively. Red and blue arrows also represent the positive and 
negative signs of newly included link weights after adding the (n + 1)th particle, 
respectively. Only the links with large values of |wp,q

K| are assumed to be plotted 
because a scattering network is fully connected. The black arrow describes the 
k-impulse component cos[k ∙ (rp – rq)] of the link weight between the pth and qth 
particles. The transparency of the solid lines and arrows denotes the magnitude 
of the weights.
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ρn
K(rn+1 = rmin) = min (n + 1

n ⟨Sn+1⟩K − ⟨Sn⟩K −
1
n ) , (5)

which has the thermodynamic limit of lim
n→∞

ρn
K(rmin) = min

(⟨Sn+1⟩K − ⟨Sn⟩K) that results in the suppressed scattering in K.

Although various materials can be developed with different K  
(Fig. 2b), one of the most insightful examples obtained with equa-
tion (5) is hyperuniform materials32,36,39, which require Sn(k) → 0 when 
|k| → 0 in the thermodynamic limit n → ∞. Such suppression of infi-
nite-wavelength density fluctuations has generalized the long-range 
order32,39,43,53–55 of crystals, quasicrystals and correlated disorder, also 
revealing hidden order in photoreceptors41 and jamming56. A stricter 
condition of SHU32,37–39, requiring the bounded suppression of density 
fluctuations for the threshold kth as Sn(k) ≈ 0 for |k| < kth, has attracted 
considerable attention to elucidate complete bandgaps31,46 (backscat-
tering only in Sn(k); Fig. 1c) and transparency57 (zero scattering only in 
Sn(k); Fig. 1d) in disordered materials.

To realize SHU materials with the evolution process, I define the 
reciprocal space for long-range order KL = {k | kmin ≤ |k| ≤ kth}, where kmin 
reflects numerically insuppressible scattering of near-infinite wave-
lengths due to the finite-range real space Ω. I also define the reciprocal 
space for short-range order KS = {k | kth < |k| ≤ kc} to develop network 
quantities as another microstructural descriptor at shorter length 
scales. With this reciprocal-space design process, I revisit the compari-
son among the uncorrelated Poisson disorder (Fig. 3a), evolving SHU 
material (Fig. 3b) and square-lattice crystal having a similar SHU condi-
tion to that of the evolving material (Fig. 3c) to interpret the length-
scale natures of each material state with the network concept (see 
Methods for parameters and Supplementary Note 10 for the crystals 
of different n). The SHU materials are obtained with the evolution by 
minimizingρn

KL (r), eventually suppressing ⟨Sn⟩KL.
Although Fig. 3a–c shows a well-known structure factor of each 

material phase, Fig. 3d–i demonstrates that node degree distributions 
of evolving scattering networks operate as a useful tool for character-
izing microstructures at the length scale of interest, bridging network 
analysis and material statistics. First, Poisson materials show Gaussian-
like broad degree distributions around wp

KL ,KS = 0 at both long-range 
(Fig. 3d) and short-range (Fig. 3g) scales. In contrast, the crystal shows 
the opposite signs of the narrowband node degrees at long-range 
(wp

KL < 0; Fig. 3f) and short-range (wp
KS > 0; Fig. 3i) scales, which are 

determined by the first Bragg peaks (Supplementary Note 10). The 
network quantities clarify the uniqueness of SHU materials, exhibiting 
the crystal-like, narrowband negative degrees at the long-range scale 

(Fig. 3e) and the Poisson-like, broad degree distribution at the short-
range scale (Fig. 3h). Such network quantities can be described by the 
intuitive illustration of microstructures using node degrees (Fig. 3j–l), 
which clearly shows the contribution of each particle to scattering in 
terms of the strength and phase of interference. I also investigate the 
evolution of averaged scattering ⟨Sn⟩KL and ⟨Sn⟩KS for the Poisson and 
SHU processes (Supplementary Note 11), presenting the effect of the 
finite real space on the evolution and uniqueness of SHU materials in 
terms of particle density.

Evolving material screening
Figure 3 describes the role of degree distributions in analyzing micro-
structures. However, the results in Fig. 3 do not show the potential of 
evolving scattering networks, as shown in the same features of evolv-
ing SHU materials (Fig. 3b) and conventional SHU materials39, such 
as crystal-like long-range order and Poisson-like short-range order. 
Notably, the material design based on evolving scattering networks 
possesses open-system natures similar to dynamical additions of nodes 
and edges in graph neural networks58, allowing for the alteration of 
matter (that is, an increasing particle number) and energy (that is, 
minimizing the cost function) inside the design domain. Therefore, 
the properties of evolving networks should be clarified with dynamical 
open systems1,2,4–6,52. As the first example, I investigate the evolution 
process applied to existing materials, especially focusing on the SHU 
evolution process to achieve the ‘screening’ of the microstructural 
properties of existing materials (see Methods for the comparison with 
traditional methods).

To examine the screening effect, I compare the scattering responses 
from different sequences of the Poisson process and the SHU process 
with non-preferential attachment (see Methods for parameters). While 
the ‘SHU → Poisson’ sequence (Fig. 4a–c) represents a simple combina-
tion of the material states in Fig. 3a,b, the ‘Poisson → SHU’ sequence  
(Fig. 4d–f) corresponds to the further growth of a Poisson material 
through the SHU evolution process using equation (5).  
I also compare different configurations by changing the allowed real 
spaces for each process: SHU mixing with the overlapped spaces  
(Fig. 4a,d), SHU core (Fig. 4b,e) and cladding (Fig. 4c,f) with the sepa-
rated spaces. Despite the same number of particles for each configura-
tion, all the results in Fig. 4a–f demonstrate the efficient suppression 
of long-range scattering using evolving scattering networks, as shown 
in the decrease of wp

KL > 0 in Fig. 4d–f (reduced blue markers) com-
pared with Fig. 4a–c. This efficient suppression, successfully ‘screening’ 
the microstructural property of Poisson materials, is also proved with 
the evolutions of averaged long-range scattering ⟨Sn⟩KL (Fig. 4g,h) for 
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Fig. 2 | Evolution process. a,b, The Monte Carlo discretization of the real  
(Ω; a) and reciprocal (K; b) spaces of interest. kc is the upper limit of the spatial 
frequency of interest for calculating Sn(k), which is determined by the number 
of particles (Methods). c, The evolution of material in the real space. d, The 

resulting material with 500 particles. e, The evolution of the structure factor 
Sn(k), corresponding to each material in c. f, S500(k) of the material in d. Π(wp

K) = 1 
in this example. See Supplementary Video 2 for the evolutions of c and e.
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an ensemble of realizations, showing much smaller values of ⟨S500⟩KL 
in Fig. 4h than those of Fig. 4g (Supplementary Note 12). Because ⟨Sn⟩K 
directly reflects the average node degrees in K, Fig. 4g,h represents the 
dynamical evolutions of scattering network structures in terms of 
long-range and short-range order, which show the contrasting network 
structures between the simple SHU–Poisson combination (Fig. 4g) and 
the evolution-based screening (Fig. 4h), with positive and negative 
average node degrees in KL, respectively.

Preferential attachment
Although Fig. 4 shows one of the interesting applications of evolving 
scattering networks, the employed evolution process maintains the 
non-preferential attachment with Π(wp

K) = 1. Historically, the critical 
impact of evolving networks has originated from preferential attach-
ment, as demonstrated in the discovery of scale-free networks using the 
rich get richer rule1,2. Similarly, by engineering the preference function 
Π(wp

K), I can manipulate evolving scattering networks through the 
designed evolution rule, such as ‘strong scatterers get stronger (or 

weaker)’, where the scattering strength of each particle is quantified by 
the node degree wp

K from equation (3). Because the size and value of the 
array {wp

K | p = 1, 2, …, n} changes during the evolution, the preferential 
attachment is a dynamical process, in sharp contrast to the static or 
generative methodologies with preassigned rules, such as the collective 
coordinate method37,57,59 or its extension to molecular dynamics38,60.

As an example, I examine the tangent hyperbolic preference 
function:

Π(wp
K) = Π0 − Π1 tanh [α (wp

K −wc
K)] , (6)

where Π1 > 0 and α determine the variation amplitude and slope of 
the function, wc

K is the center degree and Π0 is set to min[Π(wp
K)] = 1. 

I apply equation (6) to the SHU process, again trying to suppress the 
fluctuation in the long-range scale by setting K = KL.

In Fig. 5, I examine opposite forms of preference in the evolution 
process (insets in Fig. 5b,e,h); weak scatterers get weaker (α > 0; Fig. 5a–f)  
and strong scatters get weaker (α < 0; Fig. 5g–i) in terms of the 
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Fig. 3 | Network-based classification of materials using degree distributions. 
a–l, Three different material phases are analyzed: Poisson materials (a,d,g,j, 
triangles in j), SHU materials obtained from the evolution process (b,e,h,k, 
circles in k) and a square-lattice crystal with 149 particles (c,f,i,l, squares in l). a–c, 
Examples of each material phase and the resulting structure factor. d–i, Node 
degree distributions for the long-range scale with K = KL (d–f) and short-range 
scale with K = KS (g–i), where P(wp

K) represents the probability density 
distribution. The red and blue background colors represent negative (or 

suppressing) and positive (or enhancing) contributions to scattering, 
respectively. The red dashed lines in f and i are the results of e and h, respectively. 
When calculating degree distributions, a random ensemble of 100 realizations 
each with 500 particles is investigated each for Poisson and SHU material. j–l, 
Visualizations of materials with the node degrees for KL, where the orange and 
blue markers denote the negative and positive node degrees, respectively. The 
size of a marker represents the magnitude of the node degree |wp

KL |. See 
Methods for detailed parameters.
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long-range scale KL. The former (Fig. 5a–f) corresponds to preferential 
attachment, while the latter represents anti-preferential attachment. 
To examine scattering with network quantities, I separately calculate 
the degree distributions of long-range (K = KL; Fig. 5b,e,h) and short-
range (K = KS; Fig. 5c,f,i) scales.

In contrast to the abstract modeling in network science, the finite 
real space Ω restricts the allowed position for including particles 
according to wave interferences (Supplementary Note 6), eventually 
limiting the possible range of scattering strength. Therefore, weak 
preference (Fig. 5a,b) leads to an almost similar result in KL to that 
of non-preferential attachment (Fig. 3e,k). Although strong prefer-
ence derives a ‘long tail’ in wp

K < 0 (large orange circles in Fig. 5d and 
red arrow in Fig. 5e), which corresponds to hub nodes in scale-free 
networks1,2, the attempt to satisfy ‘weak scatterers get weaker’ in the 
finite Ω makes strong scatterers be stronger (large blue circles in  
Fig. 5d and black arrow in Fig. 5e). Similar observations can also be 
found in the scattering from the short-range scale KS, showing mar-
ginally enhanced suppression of scattering in weak scatterers (red 
arrows in Fig. 5c,f) but with increased scattering in strong scatterers 
for enhanced preference (black arrow in Fig. 5f).

Another intriguing example is achieved with anti-preferential 
attachment (Fig. 5g–i). The attempt to suppress strong scatterers 
in the long-range scale maintains the criterion for SHU materials, 
resulting in a similar degree distribution to that of non-preferential 
attachment (Fig. 5h). However, as shown in the clustering of particles in  
Fig. 5g, anti-preferential attachment leads to the substantially 
enhanced scattering in the short-range scale KS (Fig. 5i), which can be 
understood as the side effect of the complete suppression of scatter-
ing in the long-range scale in the finite space Ω. Based on the distinct 
results in Fig. 5, which strongly depend on the form of preferential 
attachment, we can engineer long-range and short-range scatterings 
independently, distinct from the conventional SHU state.

Similar to the finding of novel network topologies using evolving 
networks1,2,52, Fig. 6a shows the impact of evolving scattering networks 
in exploring material phases. Compared with conventional SHU (phase 
I, green shaded region) and crystal (cross markers), weak-preferential 
(phase II) and anti-preferential (phase IV) attachments cover a sub-
stantially extended range of engineering short-range scattering while 
preserving the SHU condition with suppressed long-range scatter-
ing. On the other hand, strong preferential attachment (phase III) not 
only enables the gradual transition from the SHU to the near Poisson 
state but also achieves better short-range scattering over that of the 
Poisson material. These results demonstrate that evolving scattering 
networks with preferential attachment enable the discovery of the 
vast intermediate regime between order and uncorrelated disorder32, 
also achieving unique scattering distinct from crystalline, Poisson and 
conventional SHU materials.

I also examine the evolutions of averaged long-range and short-
range scatterings (Fig. 6b–d and Supplementary Note 13), showing two 
branch points in the material phase transition. The first branch point 
is the particle number nB1 ≈ 125 (black dashed arrows in Fig. 6b–d), 
which gives the upper limit of the spatial frequency kc = 2π/dc smaller 
than kth of the target SHU condition, where dc is the characteristic 
distance defined in Methods. When n < nB1, the effect of the finite Ω is 
negligible, and thus, all the SHU evolutions provide similar behaviors: 
gradual increases of short-range scattering ⟨Sn⟩KS while achieving 
⟨Sn⟩KL → 0. When n > nB1, the preferential attachment starts to govern 
material phases; preference (phases II and III) and anti-preference 
(phase IV) derive the suppressed and enhanced short-range scattering 
⟨Sn⟩KS, respectively, while maintaining the SHU condition. When con-
sidering the scattering responses of the crystals in Fig. 6a (cross sym-
bols), the branch point nB1 leads to the separation of crystal-like SHU 
phases with preferential attachment (phases II and III) and non-crystal-
like SHU phases with anti-preferential attachment (phase IV). The 
second branch point is the particle number nB2 ≈ 350 (red dashed arrows 
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represents the magnitude of the node degree |wp
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g,h, Evolutions of ⟨Sn⟩KL (blue points) and ⟨Sn⟩KS (green points) during the 
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Methods for detailed parameters.
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in Fig. 6b–d), which corresponds to the number of particles when the 
Bragg peaks are getting out of KL (Supplementary Fig. 6b). Too strong 
preference exhausts the ‘resource’—the candidate positions in the real 
space Ω for suppressing long-range scattering—for the evolving pro-
cess after this branch point (n > nB2). The phases of preferential attach-
ment (phases II and III) are then separated, realizing unconventional 
material states that support superior short-range scattering to Poisson 
materials (phase III).

The results in Figs. 3–6 are obtained from the assumption of identi-
cal point particles. I also examine the validity of the theory in another 
aspect by conducting the full-wave analysis (Supplementary Note 14). 
This numerical analysis reflects the effects of finite-size particles and 
multiple scattering events, showing good agreement between the 
theory and full-wave analysis under the first-order Born approxima-
tion. The result also verifies the experimental feasibility of the material 
phases described in Fig. 6, which can be implemented with optical or 
radio-frequency dielectric scatterers having geometric parameters 
accessible with conventional photolithography or direct laser writing.

Discussion
The independent manipulation of short-range and long-range scatter-
ing provides immediate applications in photonics, phononics, solid-
state physics and other fields related to scattering phenomena. For 

example, because realizing hyperuniform patterns defined by structure 
factors is one of the necessary conditions for the complete bandgap by 
guaranteeing the unique existence of backscattering states, control-
ling short-range fluctuations while preserving suppressed long-range 
fluctuations can be applied to manipulate the reflection efficiency and 
defect-induced energy confinement in bandgap materials61. Super-
scattering states of phases IV and V compared with crystals or Pois-
son materials also reveal effectively superdense material phases for 
waves with a given spatial range Ω and particle number. Notably, the 
first-order Born approximation employed in this work restricts the 
range of materials that can be described by scattering networks. To 
extend the independent control of short-range and long-range order 
to strong scattering conditions, the concept of evolving scattering 
networks needs to be generalized to higher-order Born series to cover 
multiple and resonant scattering, and to full-vectorial wave equations 
for three-dimensional structures.

The demonstrated evolving scattering networks obtained from 
different preference functions are just a few illustrative examples. 
As widely studied in network science52, the careful manipulation of 
evolution processes leads to notable changes in network topology 
and signal processing performances. Because higher preference can 
be considered the selective activation of particles according to their 
node degree, I envisage the use of widely used activation functions62 to 
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Fig. 5 | Evolving scattering networks with preferential attachment. a–c, Weak 
preference (α = 0.2). d–f, Strong preference (α = 0.6). g–i, Strong anti-preference 
(α = –0.6). a,d,g, Visualizations of node degrees for the long-range scale KL, 
where the orange and blue markers denote the negative and positive node 
degrees, respectively. The size of a marker represents the magnitude of the node 
degree |wp

KL |. b,c,e,f,h,i, Node degree distributions for the long-range scale KL 
(b,e,h) and short-range scale KS (c,f,i). Red dashed lines denote the results from 

the SHU materials with non-preferential attachment (Fig. 3e,h). Red and black 
arrows denote the changes of P(wp

K) in the negative and positive ranges of wp
K, 

respectively, according to the introduction of preference or anti-preference. 
Insets in b, e and h show the preference function Π(wp

K). For all cases, Π0 = 2.5, 
Π1 = 1.5 and n = 500. wc

K = −0.926, which is the value of the peak in Fig. 3e. A 
random ensemble of 100 realizations is investigated for each preference 
function. All the other parameters are the same as those in Fig. 3b.
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the preference function Π(wp
K), such as softmax, rectified linear unit 

(ReLU), Gaussian error linear unit (GELU) or swish functions instead 
of tangent hyperbolic functions employed here. The target or initial 
material states do not have to be the SHU material inside the circular 
real space, which can be freely tunable by changing the designed recip-
rocal space K or real space Ω.

In terms of material science, network science and neural networks, 
there are many topics for future research on evolving scattering net-
works. In engineering disorder for waves32, it is critical to retain the 
design space as broad as possible while preserving a specific wave 
quantity because the other wave quantities can be manipulated in the 
desired manner. Although I applied the deterministic rule to the cost 
function and achieved a random ensemble with different Monte Carlo 
realizations, the cost function can be directly employed to describe 
the probabilistic attachment of particles, which will allow further 
extension of design space for engineering disorder. In including par-
ticles to scattering networks, the finite space Ω corresponds to the 
finite resource (or ability to generate links) the particle can utilize. 
Because the sequences of the evolution process gradually consume 
the resource, the evolution trend has to be changed in closed sys-
tems when increasing the particle number, which gives an insight to 
numerous similar situations in physics: fermionic systems with the 
Pauli exclusion and hysteresis responses with optical nonlinearity. In 
terms of realizing wave neural networks17–23, the input (that is, incident 
waves) and output (that is, scattering waves) of the proposed scatter-
ing network are connected through the dynamical weight distribution 
(that is, k-dependent interference), which is determined by evolving 
spatial ordering. Because all of the existing wave neural networks have 
treated static networks17–23, and traditional evolutionary algorithms 
lack the network model for characterizing interacting neurons34,35, 
the concept of evolving scattering networks inspires the realization 
of neuroevolution12 in wave physics.

Evolving network models are not the exclusive path to disclosing 
the secrets of complex networks, as already demonstrated in scale-free 
networks obtained with the deterministic process7 or static conditions8. 
Correspondingly, I can envisage various different static methodologies 
in achieving similar material states shown in this work, such as defining 
the cost function including short-range and long-range scattering while 
preserving the number of particles. However, as demonstrated in the 

critical impact of evolving network model—unveiling the dynamics 
of time-varying networks—evolving scattering networks provide a 
multifaceted tool for engineering dynamical wave phenomena with a 
bridge to network science.

Methods
Assumptions in defining scattering networks
To focus on the effect of spatial ordering, I assume that each particle 
and the space between particles is composed of isotropic media, while 
the distribution of the particles rj is inhomogeneous in general. When 
an incident wave with the wavevector kI scatters off of a given mate-
rial, I set the far-field measurement of the scattering wave having the 
wavevector kS (|kI| = |kS| = ko). As described in Supplementary Note 1, 
I also assume the weak scattering regime, allowing for the first-order 
Born approximation in the Lippmann–Schwinger equation.

Classification of materials with impulse scattering responses
To classify materials in terms of their scattering responses32, it is instruc-
tive to examine the impulse scattering response from Sn(k) = δ(k – k′), 
where δ(k) is the Dirac delta function. As an illustrative example, I 
show two-dimensional scattering problems in Fig. 1b–d (yellow points 
for ±k′). At a given wave frequency, a light cone (red solid circles in  
Fig. 1b–d) determined by the background material specifies the allowed 
states in reciprocal space. From the shift kS = kI + k and the reciprocity 
Sn(k) = Sn(–k), the scattering from Sn(k) = δ(k – k′) results in two k′-
shifted light cones (red dashed circles in Fig. 1b–d). Because scattering 
waves share the same light cone with the incident one, the intersec-
tions between the original and shifted light cones correspond to the 
allowed pairs of the incident and scattering wavevectors (red arrows in  
Fig. 1b–d) for the material of Sn(k) = δ(k – k′). The allowed kS for |k′| < 2ko 
is given by (Supplementary Note 2):

kS =
1
2 (I + [(2ko

k′
)
2

− 1]
1/2

R±𝜋𝜋/2)k′, (7)

where I and R±π/2 are the identity and ±π/2 rotation operators, respec-
tively. Equation (7) shows that impulse scattering responses are clas-
sified into three regimes: forward scattering (|k′| < √2ko for 0 ≤ θ ≤ π/2 
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Fig. 6 | Material phases of evolving scattering networks with preferential 
attachment. a, Phase diagram defined by the scattering from KL and KS. Each 
marker denotes a realization, and its color represents the form of preferential 
attachment characterized by α (from −0.6 to −0.2 and from +0.2 to +0.6 with 0.1 
intervals). Phase I with green markers represent the SHU material with non-
preferential attachment (α = 0) in Fig. 3b. Phases II, III and IV have α = +0.2, +0.6 
and –0.6, respectively. Phase V with black markers represent the Poisson material 
in Fig. 3a. The cross markers denote crystal structures, and the numbers next to 
them indicate the numbers of the particles in each crystal. b–d, Evolutions of 

⟨Sn⟩KL (blue points) and ⟨Sn⟩KS (green points) during the processes for the phases 
II (b), III (c) and IV (d). Black and red dashed arrows denote two branch points nB1 
and nB2 in the material phase transition, respectively. Blue and green dashed lines 
denote the results of the SHU material with non-preferential attachment. Black 
arrows represent the relative change of scattering due to preferential and 
anti-preferential attachment. A random ensemble of 100 realizations each with 
500 particles is investigated for all cases except the crystal. In b–d, circles and 
error bars represent the mean value and one standard deviation of each ensemble 
of 100 realizations.
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or 3π/2 ≤ θ ≤ 2π; Fig. 1b), backward scattering (√2ko ≤ |k′| < 2ko for 
π/2 ≤ θ ≤ 3π/2; Fig. 1c) and zero scattering (|k′| ≥ 2ko; Fig. 1d) (Supple-
mentary Note 2), where θ denotes the angle between incident and 
scattering waves.

Criteria for evolving scattering networks
The first step to applying network science to wave phenomena is to 
define network parameters that can provide simplified and systematic 
interpretations of complex wave–matter interactions while main-
taining physical validity. Although some guided19,27,33 or diffractive20 
systems have been interpreted as network structures by defining the 
transmissive19–21,33 or evanescent21,27 links neglecting reflections, the 
network interpretation of scattering phenomena handling complex 
interferences from multiple particles is still challenging. For example, 
quantum graphs enable the network modeling of scattering through 
the graph edges defined by the metric graph between particles and 
the governing Hamiltonian, and the graph vertices for field boundary 
conditions13–16. Although the quantum graph model for scattering cor-
responds to the network interpretation of a rigorous scattering matrix, 
this rigorous modeling, at the same time, hinders the extraction of 
the kernel part of scattering networks, especially when participating 
elements are numerous, such as scattering from disordered materials.

I also note that all the previous network structures applied to wave 
phenomena19–21,27,33, including quantum graphs13–16, have employed 
static or generative models with time-independent network sizes, 
lacking the design principle for open systems that allow for material 
exchanges with the system environment. From the analysis of wave 
scattering using the Lippmann–Schwinger equation that allows for 
extracting kernel parts of scattering with the Born series63, I develop 
an evolution model for wave–matter interactions as the analogy of 
evolving networks1,51,52, which derives the suitable definition of wave 
networks for scattering phenomena.

Evolution of the structure factor
From equation (1), I derive the evolution of the structure factor (Sup-
plementary Note 3):

Sn+1(k) =
nSn(k) + 1

n + 1 + n
n + 1 ξn(k, rn+1), (8)

where ξn(k, rn+1) is the core function governing the evolution process 
with the following form:

ξn(k, rn+1) =
2
n

n
∑
j=1

cos [k ⋅ (rj − rn+1)]. (9)

The material evolution then leads to the evolving change of the 
scattering intensity, as In+1(k; R) = In(k; R) + I1(k; R)[1 + nξn(k, rn+1)]. Equa-
tions (8) and (9) present the underlying concept of evolving scattering 
networks. When ξn(k, rn+1) ≈ 0, equation (8) composes the recurrence 
relation Sn+1 = (nSn + 1)/(n + 1), which gives lim

n→∞
Sn = S1 = 1. Therefore, 

the alteration of Sn(k) from the initial state originates from ξn(k, rn+1) of 
which the cosine function represents the interference newly generated 
by the (n + 1)th particle. This result demonstrates the definition of the 
interference link cos[k ∙ (rp – rq)] between the pth and qth nodes.

Evolution process
To determine the position of a new particle, I introduce the K-depend-
ent cost function ρn

K(r) for the nth evolution, where the minimum of 
ρn

K(r) represents the best position for the (n + 1)th particle. As an anal-
ogy of the evolution process in network science1,2,52, ρn

K(r) should reflect 
the network connectivity after the evolution and also include the rule 
for the preference, for example, the preferential attachment to the 
particles having higher node degrees. First, when a new particle is 
deposited at r, the link weight between the pth particle and a new 

particle is (1/VK) ∫Kcosk ⋅ (rp − r)dk according to equation (2), quantify-
ing the network connectivity after the nth evolution. Second, because 
it is natural to determine the preference for the pth particle with its 
node degree1,2,52, I define the preference function as Π(wp

K), which 
characterizes the preferential attachment to the pth node. The cost 
function ρn

K(r) is then defined by using two terms listed above, leading 
to equation (4).

Generalization to inhomogeneous materials
In the evolving wave-network modeling of scattering phenomena, I 
apply the identical point particle assumption. This assumption pro-
vides an excellent insight due to its simplicity while preserving a good 
level of modeling in the regime of the first-order Born approximation 
with homogeneous constituents. For a more rigorous description of 
evolving scattering networks and a better accuracy of the modeling, I 
also extend the evolving network concept to inhomogeneous materials 
in Supplementary Note 4, generalizing the link weight and node degree 
of evolving scattering networks, the cost function for the evolution 
process, and their relations to the structure factor and inhomogeneous 
wave scattering. The result of Supplementary Note 4 demonstrates 
that the concept of evolving scattering networks is also valid for inho-
mogeneous materials. Notably, the inhomogeneity and finite sizes of 
particles are reflected in network parameters by the cross-correlation 
and autocorrelation of the potential landscapes, respectively, as shown 
in Supplementary Table 1.

Preconditions and parameters for evolution processes
Because of the positive initial state S1 = 1 from equation (1), I focus 
on the evolving suppression of wave scattering using equation (4), 
targeting the minimization of the cost function: finding rn+1 = rmin for 
min[ρn

K(r)] = ρn
K(rmin) when Π(wp

K) ≥ 0. In analyzing non-preferen-
tial and preferential attachment for evolving scattering networks  
(Figs. 2–6), I set the entire spatial domain Ωtot to be the circle of radius 
Rmax. For an n-particle scattering network, the average unit area of 
each particle becomes πRmax

2/n, which determines the characteristic 
radius rc = Rmax/n1/2 and the characteristic distance dc = 2rc. I then set 
the reciprocal space Ktot to be the circle of radius kc = 2π/dc, where kc 
is the upper limit of the spatial frequency of interest in calculating the 
structure factor. In the optimization process, I divide the real space Ωtot 
into the region of interest Ω and its complementary space Ωc, while the 
reciprocal space Ktot is also divided into the region of interest K and its 
complementary space Kc. A newly included particle is located inside 
the space Ω, where the specific position is determined to minimize the 
scattering inside the reciprocal space K.

Specific values of parameters in classifying materials
In Fig. 3, I investigate the uncorrelated Poisson materials and evolving 
SHU materials having n = 500 particles for a single realization of Rmax = 1 
and dc = 0.0894. The Poisson materials are achieved by randomly select-
ing the positions of n particles from the 104 candidate positions in the 
real space obtained by the Monte Carlo method. In constructing evolv-
ing SHU materials, I focus on the SHU condition satisfying Sn(k) ≈ 0 for 
|k| < 0.50kc, where kc = 70.248. To reflect numerically insuppressible 
scattering of near-infinite wavelengths, I set kmin = 0.05kc, resulting in  
KL = {k | 0.05kc ≤ |k| ≤ 0.50kc} and KS = {k | 0.50kc < |k| ≤ kc}. The 100 reali-
zations of each ensemble are obtained by applying the Poisson process 
and evolution process to different realizations of the real-space Monte 
Carlo discretization by controlling the seed for pseudorandom num-
ber generators. I employ different seeds also for the reciprocal-space 
Monte Carlo discretization in constructing evolving SHU materials, 
examining 2,475 reciprocal states of KL in calculating equation (4). The 
crystal has the x and y periodicity of Λ = 1/7 for Rmax = 1, possessing 149 
particles inside Ωtot. The periodicity is determined to obtain the first 
Bragg peak |kBragg| = 2π/Λ = 0.626kc inside KS, to achieve similar scat-
tering responses with those of evolving materials, as Sn(k ∈ KL) ≈ 0 and 
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Sn(k ∈ KS) ≫ 0. The properties of other crystals with different periodici-
ties are discussed in Supplementary Note 9.

Comparison with traditional approaches
The traditional strategy to achieve hyperuniform point patterns is 
the collective coordinate method37,57,59 or its extension to molecular 
dynamics38,60, which minimizes the potential energy defined by par-
ticle positions and the wavevector k. Compared with the evolving 
scattering network model, the collective coordinate method does not 
explicitly consider an underlying network structure for wave physics. 
Furthermore, because the potential energy in the collective coordi-
nate method is defined for the system of a fixed number of particles, 
the method does not allow varying particle numbers in its current 
implementation, similar to generative models in network science52, 
which update the network structure according to the predefined rule 
for degree distribution. Considering the impacts of evolving network 
models compared with generative models52, such as characterizing 
time-varying network topologies and revealing the origin of network 
properties, I explore the SHU evolution process to achieve the ‘screen-
ing’ of existing materials in the main text.

Specific values of parameters in evolving material screening
In Fig. 4, I investigate the SHU mixing, core and cladding configurations 
for n = 500 particles in a single realization, which is composed of 300 
particles obtained from the SHU process and 200 particles obtained 
from the Poisson process. In the SHU mixing (Fig. 4a,d), the entire real 
space Ωtot is shared with the SHU and Poisson processes. In the core 
and cladding configurations, I define the real-space subsets of Ωtot: Ω 
for the SHU evolution and Ωc for the Poisson evolution. Each subset is 
defined to maintain the statistical density of particles over the entire 
space, by dividing Ω (red shaded area) and Ωc (blue shaded area) with 
the circle boundaries of the radii 0.7746 and 0.6325 for core and clad-
ding configurations, respectively.

Data availability
The datasets for particle distributions, structure factors, and network 
parameters supporting the findings of this study are available at https://
doi.org/10.5281/zenodo.7471426 in Zenodo64. Source data are provided 
with this paper.

Code availability
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