Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantum algorithms for quantum dynamics

Abstract

Among the many computational challenges faced across different disciplines, quantum-mechanical systems pose some of the hardest ones and offer a natural playground for the growing field of quantum technologies. In this Perspective, we discuss quantum algorithmic solutions for quantum dynamics, reporting on the latest developments and offering a viewpoint on their potential and current limitations. We present some of the most promising areas of application and identify possible research directions for the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-exhaustive timeline visualizing the development of decomposition and variational quantum algorithms for quantum dynamics and respective further developments.
Fig. 2: Assessment of the practicability of quantum algorithms for quantum dynamics and progress of applications grouped into sub-areas.

Similar content being viewed by others

References

  1. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  Google Scholar 

  2. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  MATH  Google Scholar 

  3. Wiesner, S. Simulations of many-body quantum systems by a quantum computer. Preprint at https://arxiv.org/abs/quant-ph/9603028 (1996).

  4. Zalka, C. Efficient simulation of quantum systems by quantum computers. Fortschr. Phys. Prog. Phys. 46, 877–879 (1998).

    Article  Google Scholar 

  5. Tacchino, F., Chiesa, A., Carretta, S. & Gerace, D. Quantum computers as universal quantum simulators: state-of-the-art and perspectives. Adv. Quantum Technol. 3, 1900052 (2020).

    Article  Google Scholar 

  6. Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article  Google Scholar 

  7. Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).

    Article  Google Scholar 

  8. Motta, M. & Rice, J. Emerging quantum computing algorithms for quantum chemistry. WIREs Comput. Mol. Sci. 12, e1580 (2021).

    Google Scholar 

  9. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2020).

    Article  Google Scholar 

  10. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).

    Article  MATH  Google Scholar 

  11. Schuch, N. & Verstraete, F. Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5, 732–735 (2009).

    Article  Google Scholar 

  12. O’Gorman, B., Irani, S., Whitfield, J. & Fefferman, B. Intractability of electronic structure in a fixed basis. PRX Quantum 3, 020322 (2022).

    Article  Google Scholar 

  13. Nielsen, M. A., Bremner, M. J., Dodd, J. L., Childs, A. M. & Dawson, C. M. Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces. Phys. Rev. A 66, 022317 (2002).

    Article  Google Scholar 

  14. Aharonov, D. & Ta-Shma, A. Adiabatic quantum state generation and statistical zero knowledge. In Proc. Thirty-fifth Annual ACM Symposium on Theory of Computing 20–29 (ACM, 2003); https://doi.org/10.1145/780543.780546

  15. Wiebe, N., Berry, D., Høyer, P. & Sanders, B. C. Higher order decompositions of ordered operator exponentials. J. Phys. A 43, 065203 (2010).

    Article  MATH  Google Scholar 

  16. Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter error with commutator scaling. Phys. Rev. X 11, 011020 (2021).

    Google Scholar 

  17. Babbush, R., McClean, J., Wecker, D., Aspuru-Guzik, A. & Wiebe, N. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91, 022311 (2015).

    Article  Google Scholar 

  18. Raeisi, S., Wiebe, N. & Sanders, B. C. Quantum-circuit design for efficient simulations of many-body quantum dynamics. New J. Phys. 14, 103017 (2012).

    Article  MATH  Google Scholar 

  19. Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    Article  Google Scholar 

  20. Poulin, D., Qarry, A., Somma, R. & Verstraete, F. Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. Phys. Rev. Lett. 106, 170501 (2011).

    Article  Google Scholar 

  21. Wiebe, N., Berry, D. W., Høyer, P. & Sanders, B. C. Simulating quantum dynamics on a quantum computer. J. Phys. A 44, 445308 (2011).

    Article  MATH  Google Scholar 

  22. Childs, A. M., Ostrander, A. & Su, Y. Faster quantum simulation by randomization. Quantum 3, 182 (2019).

    Article  Google Scholar 

  23. Zhang, C. in Monte Carlo and Quasi-Monte Carlo Methods 2010 (eds Plaskota, L. & Woźniakowski, H.) 709–719 (Springer, 2012); https://doi.org/10.1007/978-3-642-27440-4_42

  24. Campbell, E. Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett. 123, 70503 (2019).

    Article  Google Scholar 

  25. Chen, C.-F., Huang, H.-Y., Kueng, R. & Tropp, J. A. Concentration for random product formulas. PRX Quantum 2, 040305 (2021).

    Article  Google Scholar 

  26. Berry, D. W., Childs, A. M., Su, Y., Wang, X. & Wiebe, N. Time-dependent Hamiltonian simulation with L1-norm scaling. Quantum 4, 254 (2020).

    Article  Google Scholar 

  27. Chin, S. A. Multi-product splitting and runge-kutta-nyström integrators. Celest. Mech. Dyn. Astron. 106, 391–406 (2010).

    Article  MATH  Google Scholar 

  28. Low, G. H., Kliuchnikov, V. & Wiebe, N. Well-conditioned multiproduct Hamiltonian simulation. Preprint at https://arxiv.org/abs/1907.11679 (2019).

  29. Endo, S., Zhao, Q., Li, Y., Benjamin, S. & Yuan, X. Mitigating algorithmic errors in a Hamiltonian simulation. Phys. Rev. A 99, 012334 (2019).

    Article  Google Scholar 

  30. Vazquez, A. C., Hiptmair, R. & Woerner, S. Enhancing the quantum linear systems algorithm using richardson extrapolation. ACM Trans. Quantum Comput. 3, 1–37 (2022).

    Article  Google Scholar 

  31. Vazquez, A. C., Egger, D. J., Ochsner, D. & Woerner, S. Well-conditioned multi-product formulas for hardware-friendly Hamiltonian simulation. Preprint at https://arxiv.org/abs/2207.11268 (2022).

  32. Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015).

    Article  Google Scholar 

  33. Childs, A. M. & Wiebe, N. Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 12, 901–924 (2012).

    MATH  Google Scholar 

  34. Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Exponential improvement in precision for simulating sparse Hamiltonians. In Proc. Forty-sixth Annual ACM Symposium on Theory of Computing 283–292 (ACM, 2014).

  35. Berry, D. W., Childs, A. M. & Kothari, R. Hamiltonian simulation with nearly optimal dependence on all parameters. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science 792–809 (IEEE, 2015); https://doi.org/10.1109/FOCS.2015.54

  36. Kieferová, M., Scherer, A. & Berry, D. W. Simulating the dynamics of time-dependent Hamiltonians with a truncated dyson series. Phys. Rev. A 99, 042314 (2019).

    Article  Google Scholar 

  37. Chen, Y.-H., Kalev, A. & Hen, I. Quantum algorithm for time-dependent Hamiltonian simulation by permutation expansion. PRX Quantum 2, 030342 (2021).

    Article  Google Scholar 

  38. Low, G. H. & Wiebe, N. Hamiltonian simulation in the interaction picture. Preprint at https://arxiv.org/abs/1805.00675 (2019).

  39. Childs, A. M. Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009).

    Article  Google Scholar 

  40. Childs, A. M. On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 581–603 (2009).

    Article  MATH  Google Scholar 

  41. Berry, D. W. & Childs, A. M. Black-box Hamiltonian simulation and unitary implementation. Quantum Inf. Comput. 12, 29–62 (2012).

    MATH  Google Scholar 

  42. Low, G. H. & Chuang, I. L. Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017).

    Article  Google Scholar 

  43. Wang, C. & Wossnig, L. A quantum algorithm for simulating non-sparse Hamiltonian. Quantum Information and Computation 20, 597–615 (2020).

    Article  Google Scholar 

  44. Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).

    Article  Google Scholar 

  45. Dong, Y., Meng, X., Whaley, K. B. & Lin, L. Efficient phase-factor evaluation in quantum signal processing. Phys. Rev. A 103, 042419 (2021).

    Article  Google Scholar 

  46. Berry, D. W., Gidney, C., Motta, M., McClean, J. R. & Babbush, R. Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization. Quantum 3, 208 (2019).

    Article  Google Scholar 

  47. Lee, J. et al. Even more efficient quantum computations of chemistry through tensor hypercontraction. PRX Quantum 2, 030305 (2021).

    Article  Google Scholar 

  48. Elfving, V. E. et al. How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? Preprint at http://arxiv.org/abs/2009.12472 (2020).

  49. Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. Annual ACM Symposium on Theory of Computing 193–204 (ACM, 2019); https://doi.org/10.1145/3313276.3316366

  50. Martyn, J. M., Rossi, Z. M., Tan, A. K. & Chuang, I. L. A grand unification of quantum algorithms. PRX Quantum 2, 040203 (2021).

    Article  Google Scholar 

  51. Martyn, J. M., Liu, Y., Chin, Z. E. & Chuang, I. L. Efficient fully-coherent Hamiltonian simulation. Preprint at https://arxiv.org/abs/2110.11327 (2021).

  52. Rajput, A., Roggero, A. & Wiebe, N. Hybridized methods for quantum simulation in the interaction picture. Quantum 6, 780 (2021).

    Article  Google Scholar 

  53. Yuan, X., Endo, S., Zhao, Q., Li, Y. & Benjamin, S. C. Theory of variational quantum simulation. Quantum 3, 191 (2019).

    Article  Google Scholar 

  54. Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).

    Google Scholar 

  55. Yao, Y.-X. et al. Adaptive variational quantum dynamics simulations. PRX Quantum 2, 030307 (2021).

    Article  Google Scholar 

  56. Bharti, K. & Haug, T. Quantum assisted simulator. Phys. Rev. A 104, 042418 (2020).

    Article  Google Scholar 

  57. Lau, J. W. Z., Bharti, K., Haug, T. & Kwek, L. C. Quantum assisted simulation of time dependent Hamiltonians. Preprint at http://arxiv.org/abs/2101.07677 (2021).

  58. Miessen, A., Ollitrault, P. J. & Tavernelli, I. Quantum algorithms for quantum dynamics: a performance study on the spin-boson model. Phys. Rev. Res. 3, 043212 (2021).

    Article  Google Scholar 

  59. Heya, K., Nakanishi, K. M., Mitarai, K. & Fujii, K. Subspace variational quantum simulator. Preprint at http://arxiv.org/abs/1904.08566 (2019).

  60. Cîrstoiu, C. et al. Variational fast forwarding for quantum simulation beyond the coherence time. npj Quantum Inf. 6, 82 (2020).

    Article  Google Scholar 

  61. Commeau, B. et al. Variational Hamiltonian diagonalization for dynamical quantum simulation. Preprint at http://arxiv.org/abs/2009.02559 (2020).

  62. Barison, S., Vicentini, F. & Carleo, G. An efficient quantum algorithm for the time evolution of parameterized circuits. Quantum 5, 512 (2021).

    Article  Google Scholar 

  63. Benedetti, M., Fiorentini, M. & Lubasch, M. Hardware-efficient variational quantum algorithms for time evolution. Phys. Rev. Res. 3, 033083 (2020).

    Article  Google Scholar 

  64. Lau, J. W. Z., Haug, T., Kwek, L. C. & Bharti, K. NISQ algorithm for Hamiltonian simulation via truncated Taylor series. SciPost Phys. 12, 122 (2021).

    Article  Google Scholar 

  65. Zhang, Z.-J., Sun, J., Yuan, X. & Yung, M.-H. Low-depth Hamiltonian simulation by adaptive product formula. Preprint at http://arxiv.org/abs/2011.05283 (2020).

  66. Lin, S.-H., Dilip, R., Green, A. G., Smith, A. & Pollmann, F. Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021).

    Article  Google Scholar 

  67. Barratt, F. et al. Parallel quantum simulation of large systems on small quantum computers. npj Quantum Inf. https://doi.org/10.1038/s41534-021-00420-3 (2021).

    Article  Google Scholar 

  68. Zoufal, C., Sutter, D. & Woerner, S. Error bounds for variational quantum time evolution. Preprint at https://arxiv.org/abs/2108.00022 (2021).

  69. Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M. & Eisert, J. Dissipative quantum Church–Turing theorem. Phys. Rev. Lett. 107, 120501 (2011).

    Article  Google Scholar 

  70. Wang, H., Ashhab, S. & Nori, F. Quantum algorithm for simulating the dynamics of an open quantum system. Phys. Rev. A 83, 062317 (2011).

    Article  Google Scholar 

  71. Han, J. et al. Experimental simulation of open quantum system dynamics via Trotterization. Phys. Rev. Lett. 127, 020504 (2021).

    Article  Google Scholar 

  72. Cleve, R. & Wang, C. Efficient quantum algorithms for simulating Lindblad evolution. Preprint at https://arxiv.org/abs/1612.09512 (2019).

  73. Schlimgen, A. W., Head-Marsden, K., Sager, L. M., Narang, P. & Mazziotti, D. A. Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys. Rev. Lett. 127, 270503 (2021).

    Article  Google Scholar 

  74. Endo, S., Sun, J., Li, Y., Benjamin, S. C. & Yuan, X. Variational quantum simulation of general processes. Phys. Rev. Lett. 125, 010501 (2020).

    Article  Google Scholar 

  75. Kamakari, H., Sun, S.-N., Motta, M. & Minnich, A. J. Digital quantum simulation of open quantum systems using quantum imaginary time evolution. PRX Quantum 3, 010320 (2021).

    Article  Google Scholar 

  76. Cattaneo, M., De Chiara, G., Maniscalco, S., Zambrini, R. & Giorgi, G. L. Collision models can efficiently simulate any multipartite Markovian quantum dynamics. Phys. Rev. Lett. 126, 130403 (2021).

    Article  Google Scholar 

  77. Wang, D.-S., Berry, D. W., de Oliveira, M. C. & Sanders, B. C. Solovay–Kitaev decomposition strategy for single-qubit channels. Phys. Rev. Lett. 111, 130504 (2013).

    Article  Google Scholar 

  78. Hu, Z., Xia, R. & Kais, S. A quantum algorithm for evolving open quantum dynamics on quantum computing devices. Sci. Rep. 10, 3301 (2020).

    Article  Google Scholar 

  79. Head-Marsden, K., Krastanov, S., Mazziotti, D. A. & Narang, P. Capturing non-Markovian dynamics on near-term quantum computers. Phys. Rev. Res. 3, 013182 (2021).

    Article  Google Scholar 

  80. Ramusat, N. & Savona, V. A quantum algorithm for the direct estimation of the steady state of open quantum systems. Quantum 5, 399 (2021).

    Article  Google Scholar 

  81. Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).

    Article  Google Scholar 

  82. Sun, S.-N. et al. Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quantum 2, 010317 (2021).

    Article  Google Scholar 

  83. Cirac, J. I., Pérez-García, D., Schuch, N. & Verstraete, F. Matrix product states and projected entangled pair states: concepts, symmetries, theorems. Rev. Mod. Phys. 93, 045003 (2021).

    Article  Google Scholar 

  84. Glaser, N., Baiardi, A. & Reiher, M. in Vibrational Dynamics of Molecules (ed. Bowman, J. M.) Ch. 3, 80–144 (World Scientific, 2022).

  85. Magnifico, G., Felser, T., Silvi, P. & Montangero, S. Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks. Nat. Commun. 12, 3600 (2021).

    Article  Google Scholar 

  86. Bañuls, M. C. & Cichy, K. Tensors cast their nets for quarks. Nat. Phys. 17, 762–763 (2021).

    Article  Google Scholar 

  87. Werner, P., Oka, T. & Millis, A. J. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys. Rev. B 79, 035320 (2009).

    Article  Google Scholar 

  88. Cohen, G., Gull, E., Reichman, D. R. & Millis, A. J. Taming the dynamical sign problem in real-time evolution of quantum many-body problems. Phys. Rev. Lett. 115, 266802 (2015).

    Article  Google Scholar 

  89. Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    Article  Google Scholar 

  90. Poggi, P. M., Lysne, N. K., Kuper, K. W., Deutsch, I. H. & Jessen, P. S. Quantifying the sensitivity to errors in analog quantum simulation. PRX Quantum 1, 020308 (2020).

    Article  Google Scholar 

  91. Chiesa, A. et al. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys. 15, 455–459 (2019).

    Article  Google Scholar 

  92. Neill, C. et al. Accurately computing electronic properties of a quantum ring. Nature 594, 508–512 (2021).

    Article  Google Scholar 

  93. Kim, Y. et al. Scalable error mitigation for noisy quantum circuits produces competitive expectation values. Preprint at https://arxiv.org/abs/2108.09197 (2021).

  94. Rizzi, M., Montangero, S. & Vidal, G. Simulation of time evolution with multiscale entanglement renormalization ansatz. Phys. Rev. A 77, 052328 (2008).

    Article  Google Scholar 

  95. O’Rourke, M. J. & Chan, G. K.-L. Entanglement in the quantum phases of an unfrustrated Rydberg atom array. Preprint at https://arxiv.org/abs/2201.03189 (2022).

  96. Sharir, O., Shashua, A. & Carleo, G. Neural tensor contractions and the expressive power of deep neural quantum states. Phys. Rev. B 106, 205136 (2022).

    Article  Google Scholar 

  97. Murakami, Y., Golež, D., Eckstein, M. & Werner, P. Photoinduced enhancement of excitonic order. Phys. Rev. Lett. 119, 247601 (2017).

    Article  Google Scholar 

  98. Frías-Pérez, M. & Bañuls, M. C. Light cone tensor network and time evolution. Phys. Rev. B 106, 115117 (2022).

    Article  Google Scholar 

  99. Giudice, G. et al. Temporal entanglement, quasiparticles, and the role of interactions. Phys. Rev. Lett. 128, 220401 (2022).

    Article  Google Scholar 

  100. Smith, A., Kim, M. S., Pollmann, F. & Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5, 106 (2019).

    Article  Google Scholar 

  101. Crippa, L. et al. Simulating static and dynamic properties of magnetic molecules with prototype quantum computers. Magnetochemistry 7, 117 (2021).

    Article  Google Scholar 

  102. Berthusen, N. F., Trevisan, T. V., Iadecola, T. & Orth, P. P. Quantum dynamics simulations beyond the coherence time on NISQ hardware by variational trotter compression. Phys. Rev. Res. 4, 023097 (2022).

    Article  Google Scholar 

  103. Arute, F. et al. Observation of separated dynamics of charge and spin in the Fermi–Hubbard model. Preprint at https://arxiv.org/abs/2010.07965 (2020).

  104. Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    Article  Google Scholar 

  105. Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017).

    Article  Google Scholar 

  106. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  Google Scholar 

  107. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  Google Scholar 

  108. de Léséleuc, S. et al. Accurate mapping of multilevel Rydberg atoms on interacting spin-1/2 particles for the quantum simulation of ising models. Phys. Rev. Lett. 120, 113602 (2018).

    Article  Google Scholar 

  109. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article  Google Scholar 

  110. Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article  Google Scholar 

  111. Endo, S., Kurata, I. & Nakagawa, Y. O. Calculation of the Green’s function on near-term quantum computers. Phys. Rev. Res. 2, 033281 (2020).

    Article  Google Scholar 

  112. Chen, H., Nusspickel, M., Tilly, J. & Booth, G. H. Variational quantum eigensolver for dynamic correlation functions. Phys. Rev. A 104, 032405 (2021).

    Article  Google Scholar 

  113. Baker, T. E. Lanczos recursion on a quantum computer for the Green’s function and ground state. Phys. Rev. A 103, 032404 (2021).

    Article  Google Scholar 

  114. Jamet, F. et al. Krylov variational quantum algorithm for first principles materials simulations. Preprint at https://arxiv.org/abs/2105.13298 (2021).

  115. Rizzo, J. et al. One-particle Green’s functions from the quantum equation of motion algorithm. Phys. Rev. Res. 4, 043011 (2022).

    Article  Google Scholar 

  116. Libbi, F., Rizzo, J., Tacchino, F., Marzari, N. & Tavernelli, I. Effective calculation of the Green’s function in the time domain on near-term quantum processors. Phys. Rev. Res. 4, 043038 (2022).

    Article  Google Scholar 

  117. Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

    Article  Google Scholar 

  118. González Alonso, J. R., Yunger Halpern, N. & Dressel, J. Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling. Phys. Rev. Lett. 122, 040404 (2019).

    Article  Google Scholar 

  119. Joshi, M. K. et al. Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions. Phys. Rev. Lett. 124, 240505 (2020).

    Article  Google Scholar 

  120. Braumüller, J. et al. Probing quantum information propagation with out-of-time-ordered correlators. Nat. Phys. 18, 172–178 (2022).

    Article  Google Scholar 

  121. Pappalardi, S. et al. Scrambling and entanglement spreading in long-range spin chains. Phys. Rev. B 98, 134303 (2018).

    Article  Google Scholar 

  122. Mi, X. et al. Information scrambling in quantum circuits. Science 374, 1479–1483 (2021).

    Article  Google Scholar 

  123. Geller, M. R. et al. Quantum simulation of operator spreading in the chaotic Ising model. Phys. Rev. E 105, 035302 (2022).

    Article  Google Scholar 

  124. Richter, J. & Pal, A. Simulating hydrodynamics on noisy intermediate-scale quantum devices with random circuits. Phys. Rev. Lett. 126, 230501 (2021).

    Article  Google Scholar 

  125. Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    Article  Google Scholar 

  126. Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).

    Article  Google Scholar 

  127. Ho, W. W., Choi, S., Pichler, H. & Lukin, M. D. Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach. Phys. Rev. Lett. 122, 040603 (2019).

    Article  Google Scholar 

  128. Desaules, J.-Y., Pietracaprina, F., Papić, Z., Goold, J. & Pappalardi, S. Extensive multipartite entanglement from SU(2) quantum many-body scars. Phys. Rev. Lett. 129, 020601 (2022).

    Article  Google Scholar 

  129. Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124–130 (2015).

    Article  Google Scholar 

  130. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    Article  Google Scholar 

  131. Benenti, G., Casati, G., Montangero, S. & Shepelyansky, D. L. Efficient quantum computing of complex dynamics. Phys. Rev. Lett. 87, 227901 (2001).

    Article  Google Scholar 

  132. Benenti, G., Casati, G., Montangero, S. & Shepelyansky, D. L. Dynamical localization simulated on a few-qubit quantum computer. Phys. Rev. A 67, 052312 (2003).

    Article  Google Scholar 

  133. Pizzamiglio, A. et al. Dynamical localization simulated on actual quantum hardware. Entropy 23, 654 (2021).

    Article  Google Scholar 

  134. Smith, A., Jobst, B., Green, A. G. & Pollmann, F. Crossing a topological phase transition with a quantum computer. Phys. Rev. Res. 4, L022020 (2022).

    Article  Google Scholar 

  135. Mei, F. et al. Digital simulation of topological matter on programmable quantum processors. Phys. Rev. Lett. 125, 160503 (2020).

    Article  Google Scholar 

  136. Malz, D. & Smith, A. Topological two-dimensional Floquet lattice on a single superconducting qubit. Phys. Rev. Lett. 126, 163602 (2021).

    Article  Google Scholar 

  137. Rodriguez-Vega, M. et al. Real-time simulation of light-driven spin chains on quantum computers. Phys. Rev. Res. 4, 013196 (2022).

    Article  Google Scholar 

  138. Harle, N., Shtanko, O. & Movassagh, R. Observing and braiding topological Majorana modes on programmable quantum simulators. Preprint at https://arxiv.org/abs/2203.15083 (2022).

  139. Stenger, J. P. T., Bronn, N. T., Egger, D. J. & Pekker, D. Simulating the dynamics of braiding of Majorana zero modes using an IBM quantum computer. Phys. Rev. Res. 3, 033171 (2021).

    Article  Google Scholar 

  140. Ippoliti, M., Kechedzhi, K., Moessner, R., Sondhi, S. L. & Khemani, V. Many-body physics in the NISQ era: quantum programming a discrete time crystal. PRX Quantum 2, 030346 (2021).

    Article  Google Scholar 

  141. Mi, X. et al. Observation of time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article  Google Scholar 

  142. Randall, J. et al. Many-body-localized discrete time crystal with a programmable spin-based quantum simulator. Science 374, 1474–1478 (2021).

    Article  Google Scholar 

  143. Frey, P. & Rachel, S. Realization of a discrete time crystal on 57 qubits of a quantum computer. Sci. Adv. 8, eabm7652 (2022).

    Article  Google Scholar 

  144. Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article  Google Scholar 

  145. Endo, S., Benjamin, S. C. & Li, Y. Practical quantum error mitigation for near-future applications. Phys. Rev. X 8, 031027 (2018).

    Google Scholar 

  146. LaRose, R. et al. Mitiq: a software package for error mitigation on noisy quantum computers. Quantum 6, 774 (2022).

    Article  Google Scholar 

  147. Suchsland, P. et al. Algorithmic error mitigation scheme for current quantum processors. Quantum 5, 492 (2021).

    Article  Google Scholar 

  148. Temme, K., van den Berg, E., Kandala, A. & Gambetta, J. Error mitigation is the path to quantum computing usefulness. IBM https://research.ibm.com/blog/gammabar-for-quantum-advantage (2022).

  149. van den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Preprint at https://arxiv.org/abs/2201.09866 (2022).

  150. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    Article  Google Scholar 

  151. García-Pérez, G., Rossi, M. A. C. & Maniscalco, S. IBM Q experience as a versatile experimental testbed for simulating open quantum systems. npj Quantum Inf. 6, 1 (2020).

    Article  Google Scholar 

  152. Del, Re,L., Rost, B., Kemper, A. F. & Freericks, J. K. Driven-dissipative quantum mechanics on a lattice: simulating a fermionic reservoir on a quantum computer. Phys. Rev. B 102, 125112 (2020).

    Article  Google Scholar 

  153. Rost, B. et al. Demonstrating robust simulation of driven-dissipative problems on near-term quantum computers. Preprint at https://arxiv.org/abs/2108.01183 (2021).

  154. Córcoles, A. D. et al. Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits. Phys. Rev. Lett. 127, 100501 (2021).

    Article  Google Scholar 

  155. Potočnik, A. et al. Studying light-harvesting models with superconducting circuits. Nat. Commun. 9, 904 (2018).

    Article  Google Scholar 

  156. Rost, B. et al. Simulation of thermal relaxation in spin chemistry systems on a quantum computer using inherent qubit decoherence. Preprint at https://arxiv.org/abs/2001.00794 (2020).

  157. Weimer, H., Kshetrimayum, A. & Orús, R. Simulation methods for open quantum many-body systems. Rev. Mod. Phys. 93, 015008 (2021).

    Article  Google Scholar 

  158. Kshetrimayum, A., Weimer, H. & Orús, R. A simple tensor network algorithm for two-dimensional steady states. Nat. Commun. 8, 1291 (2017).

    Article  Google Scholar 

  159. Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev. X 10, 041038 (2020).

    Google Scholar 

  160. Barthel, T. & Kliesch, M. Quasilocality and efficient simulation of Markovian quantum dynamics. Phys. Rev. Lett. 108, 230504 (2012).

    Article  Google Scholar 

  161. Helmrich, S., Arias, A. & Whitlock, S. Uncovering the nonequilibrium phase structure of an open quantum spin system. Phys. Rev. A 98, 022109 (2018).

    Article  Google Scholar 

  162. O’Rourke, M. J. & Chan, G. K.-L. Simplified and improved approach to tensor network operators in two dimensions. Phys. Rev. B 101, 205142 (2020).

    Article  Google Scholar 

  163. Fink, J. M., Dombi, A., Vukics, A., Wallraff, A. & Domokos, P. Observation of the photon-blockade breakdown phase transition. Phys. Rev. X 7, 011012 (2017).

    Google Scholar 

  164. Jin, J. et al. Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Phys. Rev. X 6, 031011 (2016).

    Google Scholar 

  165. Vicentini, F., Minganti, F., Rota, R., Orso, G. & Ciuti, C. Critical slowing down in driven-dissipative Bose–Hubbard lattices. Phys. Rev. A 97, 013853 (2018).

    Article  Google Scholar 

  166. Olmos, B., Lesanovsky, I. & Garrahan, J. P. Facilitated spin models of dissipative quantum glasses. Phys. Rev. Lett. 109, 020403 (2012).

    Article  Google Scholar 

  167. Mascarenhas, E., Flayac, H. & Savona, V. Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays. Phys. Rev. A 92, 022116 (2015).

    Article  Google Scholar 

  168. Finazzi, S., Le Boité, A., Storme, F., Baksic, A. & Ciuti, C. Corner-space renormalization method for driven-dissipative two-dimensional correlated systems. Phys. Rev. Lett. 115, 080604 (2015).

    Article  Google Scholar 

  169. Hartmann, M. J. & Carleo, G. Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett. 122, 250502 (2019).

    Article  Google Scholar 

  170. Nagy, A. & Savona, V. Variational quantum Monte Carlo method with a neural-network ansatz for open quantum systems. Phys. Rev. Lett. 122, 250501 (2019).

    Article  Google Scholar 

  171. Yoshioka, N., Nakagawa, Y. O., Mitarai, K. & Fujii, K. Variational quantum algorithm for nonequilibrium steady states. Phys. Rev. Res. 2, 043289 (2020).

    Article  Google Scholar 

  172. García-Pérez, G., Chisholm, D. A., Rossi, M. A. C., Palma, G. M. & Maniscalco, S. Decoherence without entanglement and quantum Darwinism. Phys. Rev. Res. 2, 012061 (2020).

    Article  Google Scholar 

  173. Solfanelli, A., Santini, A. & Campisi, M. Experimental verification of fluctuation relations with a quantum computer. PRX Quantum 2, 030353 (2021).

    Article  Google Scholar 

  174. Melo, F. V. et al. Experimental implementation of a two-stroke quantum heat engine. Phys. Rev. A 106, 032410 (2022).

    Article  Google Scholar 

  175. Iemini, F., Rossini, D., Fazio, R., Diehl, S. & Mazza, L. Dissipative topological superconductors in number-conserving systems. Phys. Rev. B 93, 115113 (2016).

    Article  Google Scholar 

  176. Cattaneo, M., Rossi, M. A. C., García-Pérez, G., Zambrini, R. & Maniscalco, S. Quantum simulation of dissipative collective effects on noisy quantum computers. Preprint at https://arxiv.org/abs/2201.11597 (2022).

  177. Somoza, A. D., Marty, O., Lim, J., Huelga, S. F. & Plenio, M. B. Dissipation-assisted matrix product factorization. Phys. Rev. Lett. 123, 100502 (2019).

    Article  Google Scholar 

  178. Hu, Z., Head-Marsden, K., Mazziotti, D. A., Narang, P. & Kais, S. A general quantum algorithm for open quantum dynamics demonstrated with the Fenna–Matthews–Olson complex. Quantum 6, 726 (2022).

    Article  Google Scholar 

  179. Tazhigulov, R. N. et al. Simulating challenging correlated molecules and materials on the Sycamore quantum processor. Preprint at https://arxiv.org/abs/2203.15291 (2022).

  180. Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

    Article  Google Scholar 

  181. Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009–4037 (2005).

    Article  Google Scholar 

  182. Lischka, H. et al. Multireference approaches for excited states of molecules. Chem. Rev. 118, 7293–7361 (2018).

    Article  Google Scholar 

  183. Westermayr, J. & Marquetand, P. Machine learning for electronically excited states of molecules. Chem. Rev. 121, 9873–9926 (2021).

    Article  Google Scholar 

  184. Goings, J. J., Lestrange, P. J. & Li, X. Real-time time-dependent electronic structure theory. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1341 (2018).

    Article  Google Scholar 

  185. Li, X., Govind, N., Isborn, C., DePrince, A. E. III & Lopata, K. Real-time time-dependent electronic structure theory. Chem. Rev. 120, 9951–9993 (2020).

    Article  Google Scholar 

  186. Chan, G. K.-L. & Zgid, D. The density matrix renormalization group in quantum chemistry. Annu. Rep. Comput. Chem. 5, 149–162 (2009).

    Article  Google Scholar 

  187. Baiardi, A. J. Chem. Theory Comput. 17, 3320–3334 (2021). Electron dynamics with the time-dependent density matrix renormalization group.

    Article  Google Scholar 

  188. Wang, Z., Peyton, B. G. & Crawford, T. D. Accelerating real-time coupled cluster methods with single-precision arithmetic and adaptive numerical integration. Preprint at https://arxiv.org/abs/2205.05175 (2022).

  189. Meyer, H. D., Gatti, F. & Worth, G. A. Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley, 2009); https://doi.org/10.1002/9783527627400

  190. Baiardi, A. & Reiher, M. Large-scale quantum dynamics with matrix product states. J. Chem. Theory Comput. 15, 3481–3498 (2019).

    Article  Google Scholar 

  191. Persico, M. & Granucci, G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133, 1526 (2014).

    Article  Google Scholar 

  192. Worth, G. A., Robb, M. A. & Lasorne, B. Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems. Mol. Phys. 106, 2077–2091 (2008).

    Article  Google Scholar 

  193. Ben-Nun, M., Quenneville, J. & Martínez, T. J. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000).

    Article  Google Scholar 

  194. Lasorne, B., Robb, M. A. & Worth, G. A. Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Implementation details and test case. Phys. Chem. Chem. Phys. 9, 3210–3227 (2007).

    Article  Google Scholar 

  195. Richings, G. W. & Habershon, S. MCTDH on-the-fly: efficient grid-based quantum dynamics without pre-computed potential energy surfaces. J. Chem. Phys. 148, 134116 (2018).

    Article  Google Scholar 

  196. Abedi, A., Maitra, N. T. & Gross, E. K. U. Exact factorization of the time-dependent electron-nuclear wave function. Phys. Rev. Lett. 105, 123002 (2010).

    Article  Google Scholar 

  197. Mátyus, E. & Reiher, M. Molecular structure calculations: a unified quantum mechanical description of electrons and nuclei using explicitly correlated Gaussian functions and the global vector representation. J. Chem. Phys. 137, 024104 (2012).

    Article  Google Scholar 

  198. Bubin, S., Pavanello, M., Tung, W.-C., Sharkey, K. L. & Adamowicz, L. Born–Oppenheimer and non-Born–Oppenheimer, atomic and molecular calculations with explicitly correlated Gaussians. Chem. Rev. 113, 36–79 (2013).

    Article  Google Scholar 

  199. Pavosevic, F., Culpitt, T. & Hammes-Schiffer, S. Multicomponent quantum chemistry: integrating electronic and nuclear quantum effects via the nuclear–electronic orbital method. Chem. Rev. 120, 4222–4253 (2020).

    Article  Google Scholar 

  200. Yang, M. & White, S. R. Density-matrix-renormalization-group study of a one-dimensional diatomic molecule beyond the Born–Oppenheimer approximation. Phys. Rev. A 99, 022509 (2019).

    Article  Google Scholar 

  201. Muolo, A., Baiardi, A., Feldmann, R. & Reiher, M. Nuclear–electronic all-particle density matrix renormalization group. J. Chem. Phys. 152, 204103 (2020).

    Article  Google Scholar 

  202. Chiesa, A. et al. Digital quantum simulators in a scalable architecture of hybrid spin–photon qubits. Sci. Rep. 5, 16036 (2015).

    Article  Google Scholar 

  203. Tacchino, F., Chiesa, A., LaHaye, M. D., Carretta, S. & Gerace, D. Electromechanical quantum simulators. Phys. Rev. B 97, 214302 (2018).

    Article  Google Scholar 

  204. Macridin, A., Spentzouris, P., Amundson, J. & Harnik, R. Electron–phonon systems on a universal quantum computer. Phys. Rev. Lett. 121, 110504 (2018).

    Article  Google Scholar 

  205. McArdle, S., Mayorov, A., Shan, X., Benjamin, S. & Yuan, X. Digital quantum simulation of molecular vibrations. Chem. Sci. 10, 5725–5735 (2019).

    Article  Google Scholar 

  206. Sawaya, N. P. D. et al. Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians. npj Quantum Inf. 6, 49 (2020).

    Article  Google Scholar 

  207. Ollitrault, P. J., Baiardi, A., Reiher, M. & Tavernelli, I. Hardware efficient quantum algorithms for vibrational structure calculations. Chem. Sci. 11, 6842–6855 (2020).

    Article  Google Scholar 

  208. Tacchino, F., Chiesa, A., Sessoli, R., Tavernelli, I. & Carretta, S. A proposal for using molecular spin qudits as quantum simulators of light–matter interactions. J. Mater. Chem. C 9, 10266–10275 (2021).

    Article  Google Scholar 

  209. Chan, H. H. S., Meister, R., Jones, T., Tew, D. P. & Benjamin, S. C. Grid-based methods for chemistry modelling on a quantum computer. Preprint at https://arxiv.org/abs/2202.05864 (2022).

  210. Ollitrault, P. J., Mazzola, G. & Tavernelli, I. Nonadiabatic molecular quantum dynamics with quantum computers. Phys. Rev. Lett. 125, 260511 (2020).

    Article  Google Scholar 

  211. Mitarai, K., Kitagawa, M. & Fujii, K. Quantum analog–digital conversion. Phys. Rev. A 99, 012301 (2019).

    Article  Google Scholar 

  212. Woerner, S. & Egger, D. J. Quantum risk analysis. npj Quantum Inf. 5, 15 (2019).

    Article  Google Scholar 

  213. Häner, T., Roetteler, M. & Svore, K. M. Optimizing quantum circuits for arithmetic. Preprint at https://arxiv.org/abs/1805.12445 (2018).

  214. Ollitrault, P. J. et al. Quantum algorithms for grid-based variational time evolution. Preprint at http://arxiv.org/abs/2203.02521 (2022).

  215. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    Article  Google Scholar 

  216. de Jong, W. A. et al. Quantum simulation of non-equilibrium dynamics and thermalization in the Schwinger model. Phys. Rev. D 106, 054508 (2022).

    Article  Google Scholar 

  217. Lamm, H., Lawrence, S. & Yamauchi, Y. (NuQS Collaboration) General methods for digital quantum simulation of gaugetheories. Phys. Rev 100, 034518 (2019).

    Google Scholar 

  218. Kan, A. et al. Investigating a (3+1)D topological θ-term in the Hamiltonian formulation of lattice gauge theories for quantum and classical simulations. Phys. Rev. D 104, 34504 (2021).

    Article  Google Scholar 

  219. Kan, A. & Nam, Y. Lattice quantum chromodynamics and electrodynamics on a universal quantum computer. Preprint at http://arxiv.org/abs/2107.12769 (2021).

  220. González-Cuadra, D., Zache, T. V., Carrasco, J., Kraus, B. & Zoller, P. Hardware efficient quantum simulation of non-abelian gauge theories with qudits on Rydberg platforms. Preprint at https://arxiv.org/abs/2203.15541 (2022).

  221. Mathis, S. V., Mazzola, G. & Tavernelli, I. Toward scalable simulations of lattice gauge theories on quantum computers. Phys. Rev. D 102, 094501 (2020).

    Article  Google Scholar 

  222. Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    Article  Google Scholar 

  223. Bauer, C. W. et al. Quantum simulation for high energy physics. Preprint at https://arxiv.org/abs/2204.03381 (2022).

  224. Wack, A. et al. Quality, speed, and scale: three key attributes to measure the performance of near-term quantum computers. Preprint at https://arxiv.org/abs/2110.14108 (2021).

  225. Bauer, B., Wecker, D., Millis, A. J., Hastings, M. B. & Troyer, M. Hybrid quantum–classical approach to correlated materials. Phys. Rev. X 6, 031045 (2016).

    Google Scholar 

  226. Rossmannek, M., Barkoutsos, P. K., Ollitrault, P. J. & Tavernelli, I. Quantum HF/DFT-embedding algorithms for electronic structure calculations: scaling up to complex molecular systems. J. Chem. Phys. 154, 114105 (2021).

    Article  Google Scholar 

  227. Layden, D. et al. Quantum-enhanced Markov chain Monte Carlo. Preprint at https://arxiv.org/abs/2203.12497 (2022).

  228. Flannigan, S. et al. Propagation of errors and quantitative quantum simulation with quantum advantage. Preprint at https://arxiv.org/abs/2204.13644 (2022).

  229. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article  Google Scholar 

  230. Childs, A. Quantum Information Processing in Continuous Time. PhD thesis, Massachusetts Institute of Technology (2000); https://dspace.mit.edu/handle/1721.1/16663

Download references

Acknowledgements

We thank M. Motta for insightful discussions and constructive comments on the final manuscript. Furthermore, we thank T. Angelides, I. Burghardt, A. C. Vázquez, S. Carretta, A. Chiesa, D. Gerace, S. Kühn, S. Maniscalco, R. Martinazzo, N. Marzari, V. Savona and C. Zoufal for insightful and useful discussions. We acknowledge financial support from the Swiss National Science Foundation (SNF) through grant number 200021-179312. IBM, the IBM logo and ibm.com are trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. The current list of IBM trademarks is available at https://www.ibm.com/legal/copytrade.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, writing and editing of this manuscript.

Corresponding author

Correspondence to Ivano Tavernelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miessen, A., Ollitrault, P.J., Tacchino, F. et al. Quantum algorithms for quantum dynamics. Nat Comput Sci 3, 25–37 (2023). https://doi.org/10.1038/s43588-022-00374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00374-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing