Abstract
Machine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The Absolut! database is available at https://greifflab.org/Absolut and in the NIRD research data archive113. Source data for Figs. 2–5 is available with this paper.
Code availability
The Absolut! package is freely available at https://github.com/csi-greifflab/Absolut/ and on Zenodo114.
References
Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).
Barlow, D. J., Edwards, M. S. & Thornton, J. M. Continuous and discontinuous protein antigenic determinants. Nature 322, 747–748 (1986).
Sivalingam, G. N. & Shepherd, A. J. An analysis of B-cell epitope discontinuity. Mol. Immunol. 51, 304–309 (2012).
Akbar, R., Robert, P. A., Pavlovic, M. & Jeliazkov, J. R. A compact vocabulary of paratope–epitope interactions enables predictability of antibody–antigen binding. Cell Rep. 34, 108856 (2021).
Xu, J. L. & Davis, M. M. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).
Kunik, V., Ashkenazi, S. & Ofran, Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 40, W521–W524 (2012).
Ferdous, S. & Martin, A. C. R. AbDb: antibody structure database-a database of PDB-derived antibody structures. Database 2018, (2018).
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).
Raybould, M. I. J., Kovaltsuk, A., Marks, C. & Deane, C. M. CoV-AbDab: the coronavirus antibody database. Bioinformatics 37, 734–735 (2020).
Wardemann, H. & Busse, C. E. Novel approaches to analyze immunoglobulin repertoires. Trends Immunol. 38, 471–482 (2017).
Shiakolas, A. R. et al. Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nat. Biotechnol. 40(8):1270-1275 https://doi.org/10.1038/s41587-022-01232-2 (2022).
Laustsen, A. H., Greiff, V., Karatt-Vellatt, A., Muyldermans, S. & Jenkins, T. P. Animal immunization, in vitro display technologies, and machine learning for antibody discovery. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2021.03.003 (2021).
Kanyavuz, A., Marey-Jarossay, A., Lacroix-Desmazes, S. & Dimitrov, J. D. Breaking the law: unconventional strategies for antibody diversification. Nat. Rev. Immunol. 19, 355–368 (2019).
Hoffecker, I. T., Shaw, A., Sorokina, V., Smyrlaki, I. & Högberg, B. Stochastic modeling of antibody binding predicts programmable migration on antigen patterns. Nat. Comput. Sci. 2, 179–192 (2022).
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods https://doi.org/10.1038/s41592-019-0666-6 (2019).
Pedotti, M., Simonelli, L., Livoti, E. & Varani, L. Computational docking of antibody–antigen complexes, opportunities and pitfalls illustrated by influenza hemagglutinin. Int. J. Mol. Sci. 12, 226 (2011).
Yin, R., Feng, B. Y., Varshney, A. & Pierce, B. G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Science. 2022; 31(8):e4379. https://doi.org/10.1002/pro.4379 (2021).
Raybould, M. I. J., Wong, W. K. & Deane, C. M. Antibody–antigen complex modelling in the era of immunoglobulin repertoire sequencing. Mol. Syst. Des. Eng. 4, 679–688 (2019).
Norman, R. A. et al. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief. Bioinform. https://doi.org/10.1093/bib/bbz095 (2019).
Brown, A. J. et al. Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Mol. Syst. Des. Eng. 4, 701–736 (2019).
Greiff, V., Yaari, G. & Cowell, L. Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. Curr. Opin. Syst. Biol. https://doi.org/10.1016/j.coisb.2020.10.010 (2020).
Fischman, S. & Ofran, Y. Computational design of antibodies. Curr. Opin. Struct. Biol. 51, 156–162 (2018).
Sormanni, P., Aprile, F. A. & Vendruscolo, M. Third generation antibody discovery methods: in silico rational design. Chem. Soc. Rev. 47, 9137–9157 (2018).
Burton, D. R. What Are the Most Powerful Immunogen Design Vaccine Strategies?: Reverse Vaccinology 2.0 Shows Great Promise. Cold Spring Harb. Perspect. Biol. 9, a030262 (2017).
Daberdaku, S. & Ferrari, C. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics 35, 1870–1876 (2019).
Liberis, E., Velickovic, P., Sormanni, P., Vendruscolo, M. & Liò, P. Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics 34, 2944–2950 (2018).
Eguchi, R. R., Anand, N., Choe, C. A. & Huang, P.-S. IG-VAE: Generative Modeling of Immunoglobulin Proteins by Direct 3D Coordinate Generation. bioRxiv 2020.08.07.242347 (2020) https://doi.org/10.1101/2020.08.07.242347
Jespersen, M. C., Mahajan, S., Peters, B., Nielsen, M. & Marcatili, P. Antibody specific B-cell epitope predictions: leveraging information from antibody–antigen protein complexes. Front. Immunol. 10, 298 (2019).
Liu, G. et al. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics 36, 2126–2133 (2020).
Marks, C. & Deane, C. M. How repertoire data is changing antibody science. J. Biol. Chem. https://doi.org/jbc.REV120.010181 (2020).
Friedensohn, S. et al. Convergent selection in antibody repertoires is revealed by deep learning. Preprint at bioRxiv https://doi.org/10.1101/2020.02.25.965673 (2020).
Ripoll, D. R., Chaudhury, S. & Wallqvist, A. Using the antibody–antigen binding interface to train image-based deep neural networks for antibody-epitope classification. PLoS Comput. Biol. 17, e1008864 (2021).
Ruffolo, J. A., Sulam, J. & Gray, J. J. Antibody structure prediction using interpretable deep learning. Patterns Volume 3, Issue 2,100406 (2022).
Del Vecchio, A., Deac, A., Liò, P. & Velickovic, P. Neural message passing for joint paratope–epitope prediction. Preprint at https://arxiv.org/abs/2106.00757 (2021).
Deac, A., Velickovic, P. & Sormanni, P. Attentive cross-modal paratope prediction. J. Comput. Biol. 26, 536–545 (2019).
Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00699-9 (2021).
Sela-Culang, I., Ofran, Y. & Peters, B. Antibody specific epitope prediction—emergence of a new paradigm. Curr. Opin. Virol. 11, 98–102 (2015).
Nimrod, G. et al. Computational design of epitope-specific functional antibodies. Cell Rep. 25, 2121–2131.e5 (2018).
Xu, J. Distance-based protein folding powered by deep learning. Proc. Natl Acad. Sci. USA 116, 16856–16865 (2019).
AlQuraishi, M. End-to-end differentiable learning of protein structure. Cell Syst. 8, 292–301.e3 (2019).
Sverrisson, F., Feydy, J., Correia, B. & Bronstein, M. Fast end-to-end learning on protein surfaces. Preprint at bioRxiv https://doi.org/10.1101/2020.12.28.424589 (2020).
Narayanan, H. et al. Machine learning for biologics: opportunities for protein engineering, developability, and formulation. Trends Pharmacol. Sci. https://doi.org/10.1016/j.tips.2020.12.004 (2021).
Townshend, R. J. L., Bedi, R., Suriana, P. A. & Dror, R. O. End-to-end learning on 3D protein structure for interface prediction. Preprint at https://arxiv.org/abs/1807.01297 (2018).
Olimpieri, P. P., Chailyan, A., Tramontano, A. & Marcatili, P. Prediction of site-specific interactions in antibody–antigen complexes: the proABC method and server. Bioinformatics 29, 2285–2291 (2013).
Pittala, S. & Bailey-Kellogg, C. Learning context-aware structural representations to predict antigen and antibody binding interfaces. Issue 13, Pages 3996–4003 (2020).
Lu, S., Li, Y., Wang, F., Nan, X. & Zhang, S. Leveraging sequential and spatial neighbors information by using CNNs linked with GCNs for paratope prediction. In IEEE/ACM Trans. Comput. Biol. Bioinform.Volume 19 issue 1 Page(s): 68 - 74 (2021).
Honda, S., Koyama, K. & Kotaro, K. Cross attentive antibody-antigen interaction prediction with multi-task learning. In 2021 ICML Workshop on Computational Biology.
Swindells, M. B. et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–364 (2017).
Rangel, M. A. et al. Fragment-based computational design of antibodies targeting structured epitopes. Preprint at bioRxiv https://doi.org/10.1101/2021.03.02.433360 (2021).
Kang, Y., Leng, D., Guo, J. & Pan, L. Sequence-based deep learning antibody design for in silico antibody affinity maturation. Preprint at https://arxiv.org/abs/2103.03724 (2021).
Akbar, R. et al. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 14, 2008790 (2022).
Prakash, E., Shrikumar, A. & Kundaje, A. Towards more realistic simulated datasets for benchmarking deep learning models in regulatory genomics. Preprint at bioRxiv https://doi.org/10.1101/2021.12.26.474224 (2021).
Cao, Y., Yang, P. & Yang, J. Y. H. A benchmark study of simulation methods for single-cell RNA sequencing data. Nat. Commun. 12, 6911 (2021).
Schuler, A., Jung, K., Tibshirani, R., Hastie, T. & Shah, N. Synth-validation: selecting the best causal inference method for a given dataset. Preprint at https://arxiv.org/abs/1711.00083 (2017).
Sandve, G. K. & Greiff, V. Access to ground truth at unconstrained size makes simulated data as indispensable as experimental data for bioinformatics methods development and benchmarking. Bioinformatics btac612 (2022).
Lavin, A. et al. Simulation intelligence: towards a new generation of scientific methods. Preprint at https://arxiv.org/abs/2112.03235 (2021).
Chen, V. et al. Best practices for interpretable machine learning in computational biology. Preprint at bioRxiv https://doi.org/10.1101/2022.10.28.513978 (2022).
Robert, P. A. & Meyer-Hermann, M. Ymir, A 3D structural affinity model for multi-epitope in silico germinal center simulations. Volume 24 issue 9, 102979 iScience (20201).
Mann, M., Saunders, R., Smith, C., Backofen, R. & Deane, C. M. Producing high-accuracy lattice models from protein atomic coordinates including side chains. Adv. Bioinformatics 2012, 148045 (2012).
Robinson, S. A. et al. Epitope profiling of coronavirus-binding antibodies using computational structural modelling. PLoS Comput Biol 17(12):e1009675 (2021).
Behrens, A-J. et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 14, 2695–2706 (2016).
Miyazawa, S. & Jernigan, R. L. An empirical energy potential with a reference state for protein fold and sequence recognition. Proteins 36, 357–369 (1999).
Ambrosetti, F., Jiménez-García, B., Roel-Touris, J. & Bonvin, A. M. J. Modeling antibody–antigen complexes by information-driven docking. Structure 28, 119–129.e2 (2020).
Greiff, V. et al. Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development. Cell Rep. 19, 1467–1478 (2017).
DeWitt, W. S. et al. A public database of memory and naive B-cell receptor sequences. PLoS ONE 11, e0160853 (2016).
Pires, D. E. & Ascher, D. B. mCSM-AB: a web server for predicting antibody–antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res. 44, W469–W473 (2016).
Ju, F. et al. CopulaNet: learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Preprint at bioRxiv https://doi.org/10.1101/2020.10.06.327585 (2020).
Nogal, B. et al. Mapping polyclonal antibody responses in non-human primates vaccinated with HIV env trimer subunit vaccines. Cell Rep. 30, 3755–3765.e7 (2020).
Adams, R. M., Kinney, J. B., Walczak, A. M. & Mora, T. Epistasis in a fitness landscape defined by antibody–antigen binding free energy. Cell Syst. 8, 86–93.e3 (2019).
Hawkins-Hooker, A. et al. Generating functional protein variants with variational autoencoders. PLoS Comput. Biol. 17, e1008736 (2021).
Angeletti, D. et al. Defining B cell immunodominance to viruses. Nat. Immunol. 18, 456–463 (2017).
Angeletti, D. & Yewdell, J. W. Understanding and manipulating viral immunity: antibody immunodominance enters center stage. Trends Immunol. 39, 549–561 (2018).
Kanduri, C. et al. Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification. Preprint at bioRxiv https://doi.org/10.1101/2021.05.23.445346 (2021).
Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. Preprint at https://arxiv.org/abs/1703.01365 (2017).
Schneider, C., Buchanan, A., Taddese, B. & Deane, C. M. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics 38, 377–383 (2021).
Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J. & Koes, D. R. Protein-ligand scoring with convolutional neural networks. J. Chem. Inf. Model. 57, 942–957 (2017).
Leem, J., Dunbar, J., Georges, G., Shi, J. & Deane, C. M. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8, 1259–1268 (2016).
Schneider, C. Deep Learning Algorithms for Predicting Association between Antibody Sequence, Structure, and Antibody Properties (Univ. Oxford, 2022).
Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. Preprint at https://arxiv.org/abs/1409.0473 (2014).
Vaswani, A. et al. Attention is all you need. Preprint at https://arxiv.org/abs/1706.03762 (2017).
Springer, I., Besser, H., Tickotsky-Moskovitz, N., Dvorkin, S. & Louzoun, Y. Prediction of specific TCR–peptide binding from large dictionaries of TCR–peptide pairs. Front. Immunol. 11:1803.doi: 10.3389/fimmu.2020.01803. eCollection 2020. (2020).
Moris, P. et al. Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. Brief. Bioinform. 22, bbaa318 (2021).
Khan, A. et al. AntBO: Towards real-world automated antibody design with combinatorial Bayesian optimisation. Preprint at https://arxiv.org/abs/2201.12570 (2022).
Akbar, R. et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale. MAbs 14(1):2031482 (2022).
Robert, P. A., Marschall, A. L. & Meyer-Hermann, M. Induction of broadly neutralizing antibodies in germinal centre simulations. Curr. Opin. Biotechnol. 51, 137–145 (2018).
Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nat. Nanotechnol. 14, 184–190 (2019).
Yaari, G. et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front. Immunol. 4, 358 (2013).
Cassioli, A. et al. An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinform. 16, 23 (2015).
Hollingsworth, S. A., Lewis, M. C., Berkholz, D. S., Wong, W.-K. & Karplus, P. A. (f,ψ)2 Motifs: a purely conformation-based fine-grained enumeration of protein parts at the two-residue level. J. Mol. Biol. 416, 78–93 (2012).
Lees, W. D., Stejskal, L., Moss, D. S. & Shepherd, A. J. Investigating substitutions in antibody–antigen complexes using molecular dynamics: a case study with broad-spectrum, influenza A antibodies. Front. Immunol. 8:143(2017).
Rodrigues, J. P. G. L., Teixeira, J. M. C., Trellet, M. & Alexandre, M. J. pdb-tools: a Swiss army knife for molecular structures. F1000Res. 7, 1961 (2018).
Boyoglu-Barnum, S. et al. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat. Commun. 11, 791 (2020).
Ward, A. B. & Wilson, I. A. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol. Rev. 275, 21–32 (2017).
Andrabi, R. et al. Glycans function as anchors for antibodies and help drive HIV broadly neutralizing antibody development. Immunity 47, 524 (2017).
Mosca, R., Céol, A., Stein, A., Olivella, R. & Aloy, P. 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Res. 42, D374–D379 (2014).
Karp, R. M. Reducibility among combinatorial problems. In Complexity of Computer Computations 85–103 (1972).
The PyMOL Molecular Graphics System, Version 1.8 (Schrödinger) (2015); http://www.sciepub.com/reference/159710
Luong, M.-T., Pham, H. & Manning, C. D. Effective approaches to attention-based neural machine translation. Preprint at https://arxiv.org/abs/1508.04025 (2015).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Abadi, M. et al. TensorFlow: a system for large-scale machine learning. (2016). OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation Pages 265–283
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process Manag. 45, 427–437 (2009).
Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Preprint at https://dl.acm.org/doi/10.5555/3454287.3455008 (2019).
Kingma, D. P. & Welling, M. An Introduction to variational autoencoders. Found. Trends Mach. Learn. (2019).
Higgins, I. et al. beta-VAE: learning basic visual concepts with a constrained variational framework. International Conference on Learning Representations (2016).
Dupont, E. Learning disentangled joint continuous and discrete representations. Adv. Neural Inf. Process. Syst. 31, (2018).
Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).
Katanforoush, A. & Shahshahani, M. Distributing points on the sphere, I. Exp. Math. 12, 199–209 (2003).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).
Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Wagih, O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics 33, 3645–3647 (2017).
Robert, P. A., Akbar, R. & Greiff, V. Absolut! in silico antibody–antigen binding database. Nird Research Data Archive https://doi.org/10.11582/2021.00063 (2021).
Robert, P. A., Akbar, R. & Greiff, V. csi-greifflab/Absolut: v2.0 Zenodo https://doi.org/10.5281/zenodo.7415772 (2022).
Acknowledgements
We acknowledge generous support by The Leona M. and Harry B. Helmsley Charitable Trust (#2019PG-T1D011, to V.G.), UiO World-Leading Research Community (to V.G.), UiO:LifeScience Convergence Environment Immunolingo (to V.G., G.K.S. and I.H.H.), EU Horizon 2020 iReceptorplus (#825821) (to V.G.), a Research Council of Norway FRIPRO project (#300740, to V.G.), a Research Council of Norway IKTPLUSS project (#311341, to V.G. and G.K.S.), a Norwegian Cancer Society Grant (#215817, to V.G.), and Stiftelsen Kristian Gerhard Jebsen (K.G. Jebsen Coeliac Disease Research Centre) (to L.S. and G.K.S.). This work was not funded by Marie Skłodowska-Curie Actions while grant writing was supported by the German Arbeitsamt. This work was carried out on Immunohub e-Infrastructure funded by University of Oslo and jointly operated by GreiffLab and SandveLab (the authors) in close collaboration with the University Center for Information Technology, University of Oslo, IT-Department (USIT). We acknowledge T. Malliavin (Institut Pasteur, Paris, France) for comments and suggestions that helped in the analysis of the results, and C. Schneider for helping us reproduce the DLAB-VS pipeline.
Author information
Authors and Affiliations
Contributions
Study conception: P.A.R., V.G.; study design: P.A.R., R.A., E.M., D.T.T.H., F.L.-J., S.H., I.H.H., G.K., G.K.S., V.G.; study implementation: P.A.R., R.A., R.F., M.P., M.W., I.S., A.P., K.A., A.O., A.S., M.C., L.S., I.F.M.; contributed data and analysis tools: E.S., P.R., B.B.M., M.H.V.; performed the analysis: P.A.R., R.A., R.F., I.F.M., K.A., A.O., A.S.; wrote the paper: P.A.R., R.A., R.F., M.P., M.W., I.S., A.S., M.C., L.S., E.S., P.R., B.B.M., M.H.V., I.F.M., G.K.S., V.G.
Corresponding authors
Ethics declarations
Competing interests
E.M. declares holding shares in aiNET GmbH. V.G. declares advisory board positions in aiNET GmbH, Enpicom B.V, Specifica Inc, Adaptyv Biosystems, EVQLV, Omniscope, Diagonal Therapeutics, and Absci. V.G. is a consultant for Roche/Genentech, immunai, and Proteinea. The other authors declare no competing interests.
Peer review
Peer review information
Nature Computational Science thanks Charlotte Deane, Pieter Meysman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Fernando Chirigati, in collaboration with the Nature Computational Science team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Results, Discussion, Figs. 1–24, Algorithms, Tables 1–6 and References.
Source data
Source Data Fig. 2
One tab-separated text file per plot.
Source Data Fig. 3
One tab-separated text file per plot.
Source Data Fig. 4
tab-separated text file per plot + scripts in R.
Source Data Fig. 5
SOne tab-separated text file per plot.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Robert, P.A., Akbar, R., Frank, R. et al. Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction. Nat Comput Sci 2, 845–865 (2022). https://doi.org/10.1038/s43588-022-00372-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-022-00372-4
This article is cited by
-
Adaptive immune receptor repertoire analysis
Nature Reviews Methods Primers (2024)
-
De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model
Nature Communications (2024)
-
Linguistics-based formalization of the antibody language as a basis for antibody language models
Nature Computational Science (2024)
-
Linguistically inspired roadmap for building biologically reliable protein language models
Nature Machine Intelligence (2023)