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Supervised learning of a chemistry 
functional with damped dispersion

Yiwei Liu    1, Cheng Zhang    2, Zhonghua Liu2, Donald G. Truhlar    3  , 
Ying Wang    2   & Xiao He    1,4 

Kohn–Sham density functional theory is widely used in chemistry, but no 
functional can accurately predict the whole range of chemical properties, 
although recent progress by some doubly hybrid functionals comes close. 
Here, we optimized a singly hybrid functional called CF22D with higher 
across-the-board accuracy for chemistry than most of the existing non-
doubly hybrid functionals by using a flexible functional form that combines 
a global hybrid meta-nonseparable gradient approximation that depends on 
density and occupied orbitals with a damped dispersion term that depends 
on geometry. We optimized this energy functional by using a large database 
and performance-triggered iterative supervised training. We combined 
several databases to create a very large, combined database whose 
use demonstrated the good performance of CF22D on barrier heights, 
isomerization energies, thermochemistry, noncovalent interactions, radical 
and nonradical chemistry, small and large systems, simple and complex 
systems and transition-metal chemistry.

The rapid advances of computer capability and the progress of theoreti-
cal methods have significantly increased the accuracy of theoretical 
predictions of chemical, physical, biological, material and atmospheric 
processes. Relative energies, obtained by electronic structure calcula-
tions, are the dominant property controlling molecular and material 
stability and rate processes, and they play a central role in chemical 
modelling. Kohn–Sham density functional theory1,2 (KS-DFT) has played 
a major role as the most popular electronic structure framework for 
modelling the relative energies of large molecules and materials. In 
principle, KS-DFT is exact, given an exact density functional. However, 
in practice, density functional approximations (DFAs) are necessary. 
By adding physical ingredients, enforcing relevant known constraints 
and optimizing against broader databases3–7, DFAs can be made more 
broadly accurate8,9, but existing functionals still leave much room 
for improvement10. Many functionals are accurate only for subsets 
of chemical properties, and only a few functionals (for example, the 

doubly hybrid functionals DSD-BLYP-D3(BJ)11,12, DSD-PBEP86-D3(BJ)13 
and B2GPPLYP-D3(BJ)11,14) can be applied to make equally accurate 
predictions on diverse types of chemical systems, such as main-group 
molecules and transition-metal compounds, large and small systems, 
bonding and noncovalent (NC) interactions, stable molecules and 
transition states or radicals and closed-shell systems3–7.

An alternative approach to obtain relative energies is molecu-
lar mechanics (sometimes called force fields). In this approach, the 
relative potential energies are represented as functions of molecular 
coordinates and (optionally) partial atomic charges. This method has 
been used for more than 70 years, and additional examples are given 
in Supplementary Section 1.2.

A promising approach, mostly very recent, is to use Big Data and 
machine learning to improve energy functionals, of either the molecu-
lar mechanics or the density functional type. Another powerful devel-
opment, also old but having advanced in recent years, is the addition 
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parameters are coefficients in a multi-term energy functional that mini-
mizes a loss function. The loss function used here has two components: 
one measuring errors on a large database of molecular properties, 
which are mainly relative energies, and a second, regularization term 
that promotes the smoothness of the resulting energy functional. 
Supervised learning is used as a key part of the optimization process. 
The final energy functional obtained from this work is called Chemistry 
Functional 2022 with damped Dispersion (CF22D). Our workflow is 
summarized schematically in Fig. 1a.

Results
The functional form of CF22D and a discussion of how we optimized the 
functional are presented in Methods section with additional details in 
Supplementary Section 1. The parameters of the CF22D functional are 
given in Supplementary Table 1. To assess the performance of the CF22D 
functional, we compare the results of CF22D against those obtained 
with other representative functionals on several well-known databases, 
namely GMTKN55 (ref. 4), Minnesota DataBase 2019 (MDB2019)3, 
MGCDB84 (ref. 5) and the transition-metal data sets of CUAGAU42 
(ref. 6) and TMC34 (ref. 7). The consolidated database DDB22 proposed 
in this work is also used for the assessment. All component data sets 
of DDB22 are shown in Fig. 1b with detailed explanations given in Sup-
plementary Data 1.

of molecular mechanics terms to density functionals to form what 
one may call a combined quantum mechanical–molecular mechanical 
energy functional or, for brevity, an energy functional. This broadens 
the search for DFAs to a search for such more broadly defined energy 
functionals that can take advantage of both density functionals and 
molecular mechanics. The present article uses supervised learning 
to optimize such an energy functional. Supplementary Section 1.2 
gives additional references regarding the use of Big Data and machine 
learning to improve energy functionals and the addition of molecular 
mechanics terms to density functionals.

In practice, most modern functionals contain parameters that are 
adjusted in whole or in part to obtain better agreement with experimen-
tal data (or, in limited amounts, high-level theoretical data), and the 
broad advances in the use of machine learning and Big Data now enable 
ways to train density functionals with larger and more complex data 
sets. There are functionals with a variety of different combinations of 
ingredients, and including different ingredients is one way to improve 
the accuracy. The work presented here differs from previous efforts 
in that we start with a functional form (the MN15 functional15) for a 
density functional that has already proved successful when optimized 
with smaller databases, combine it with a molecular mechanics term 
to account for long-range dispersion interactions and use supervised 
learning and a large database organized into multiple data sets to 
simultaneously learn optimum parameters for both components. The 
form of the MN15 functional was selected for its outstanding perfor-
mance in early tests and its flexible functional form of nonseparable 
exchange–correlation energy.

The input to a machine-learning algorithm is a set of physical 
descriptors, and the output is the set of parameters determining the 
energy as a function of the descriptors. In the approach used here, each 
term in the MN15 functional is regarded as a physical descriptor, and 
we also use the molecular geometry as a descriptor. Consequently, the 
input is a set of integrals of various functionals of the electron density 
for a set of molecules and the geometries of these molecules, and the 
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Fig. 1 | Method and database for the development of CF22D. a, The workflow 
of the development of CF22D. The criterion in the validation step is that, if the 
MUE of the trial functional for one data set in the validation set is 30% higher than 
the average MUE of the top five functionals for this data set on the basis of results 
from ref. 5, then this data set is moved from the validation set to the training set 
based on supervised learning. A new training database is thereby obtained, and 
the optimization procedure then goes back to the training step. If the MUE of the 
current training database is converged, and there is no new validation set to be 
moved into the training set, the procedure ends. b, The DDB22 database. Bold 

text indicates data sets belonging to the training set (see Supplementary Data 
1 and Supplementary Table 2 for more details). The orange data sets contain 
barrier heights (BH), the green data sets contain isomerization energies (IE), the 
purple data sets contain noncovalent interactions (NC), the golden data sets 
contain thermochemical properties (TC), the pink data sets contain excitation 
energies (EE), the dark-blue data sets contain molecular structural data (MS), the 
brown data set contains dipole moments (DM) and the others are coloured black 
(transition metals, TM).

Table 1 | The 25 density functionals compared for all 
sub-databases

PBEa PBE-D3(BJ)a TPSSa TPSS-D3(BJ)a M06-La

M06-L-D3(0)a MN15-La ωB97X-Db M11b M11-D3(BJ)b

B3LYPc B3LYP-D3(BJ)c PBE0c PBE0-D3(BJ)c M05-2Xc

M05-2X-D3(0)c PW6B95-D3(BJ)c M06-2Xc M06-2X-D3(0)c M06c

M06-D3(0)c M08-HXc MN15c MN15-D3(BJ)c CF22Dc

aLocal functionals bRange-separated hybrid functionals cGlobal hybrid functionals
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Table 2 | Additional functionals compared for selected sub-databases

DDB22  
(25 functionals)

GMTKN55 (35 functionals) MDB2019  
(29 functionals)

MGCDB84  
(27 functionals)

CUAGAU42 + TMC34  
(30 functionals)

None SCAN-D3(0)a DSD-BLYP-D3(BJ)d revM06-La ωB97X-Vb revM06-La

M11plusb B2GPPLYP-D3(BJ)d revM11b ωB97M-Vb ωB97X-Vb

ωB97X-Vb B2PLYP-D3(BJ)d M06-SXb ωB97M-Vb

ωB97M-Vb MPW2PLYP-D3(BJ)d revM06c M06-SXb

DM21b PWPB95-D3(BJ)d revM06c

aLocal functionals bRange-separated hybrid functionals cGlobal hybrid functionals dDoubly hybrid functionals
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The functionals against which we compare are listed with refer-
ences in Supplementary Table 3, where they are separated into groups 
on the basis of their ingredients. We especially note the category of 
doubly hybrid functionals16,17, which include correlation contribu-
tions based on unoccupied orbitals. This can add accuracy but also 
increases the cost. The functionals considered for each sub-database 
are specified in Tables  1 and 2. Since the doubly hybrid functionals are 
more expensive than the other functionals and the recent deep learning 
functional DM21 is quite different from the other functionals, we first 
compare only the 29 other functionals in Supplementary Table 4. For 
brevity, we call these ordinary functionals.

Performance on the GMTKN55 database
The GMTKN55 database, consolidated by Grimme and coworkers4, 
covers thermochemistry (TC), kinetics and NC interactions of main-
group elements. Morgante and Peverati18 pointed out that GMTKN55 
has more accurate reference values than MGCDB84, because the latter 
was mainly built based on GMTKN30, which is a predecessor version of 
GMTKN55. Therefore, the GMTKN55 database was selected to bench-
mark the performance of CF22D for general chemical properties of 
main-group elements.

The 1,505 data of GMTKN55 can be partitioned into five sub-data-
bases, namely basic properties and reaction energies for small systems 
(the ‘small’ sub-database, comprising 18 data sets with 473 data), reac-
tion energies for large systems and isomerization reactions (‘large’, 
comprising 9 data sets with 243 data), reaction BHs (‘BH’, comprising 
7 data sets with 194 data), intermolecular NC interactions (‘inter-NC’, 
comprising 12 data sets with 304 data) and intramolecular NC interac-
tions (‘intra-NC’, comprising 9 data sets with 291 data). Another clas-
sification is to divide the 55 data sets into two sub-databases: Radical7 
and Nonradical48 (refs. 4,19). The former includes the G21EA, G21IP, 
SIE4x4, ALKBDE10, HEAVYSB11, RC21 and RSE43 data sets, while the 
latter includes the rest of the data sets in GMTKN55.

Goerigk et al. introduced the weighted total mean absolute 
deviation (WTMAD) measures WTMAD-1 and WTMAD-2 (refs. 4,20) for 
comparison of the performance of density functionals on GMTKN55. 
Explanations of WTMAD-1 and WTMAD-2 are given in Supplementary 
Section 2.2. Supplementary Table 6 and Supplementary Data 2 give 
the resulting WTMAD results. Supplementary Table 4 provides the 
mean unsigned error (MUE), and Supplementary Table 7 provides 
the mean of the mean absolute error (MoM). CF22D gives the lowest 
MUE and the second lowest WTMAD-1 and WTMAD-2 among the 29 

ordinary functionals, whereas ωB97M-V gives the second lowest MUE 
and the lowest WTMAD-1 and WTMAD-2. We conclude that the CF22D 
and ωB97M-V functionals perform similarly well on the GMTKN55 
benchmark data for main-group chemistry.

Using the WTMAD-1 and WTMAD-2 measures, we find that CF22D 
is among the five best-performing functionals for each category in 
the five-category partition (small, large, BH, inter-NC and intra-NC) 
among the 29 selected ordinary functionals. In some cases, CF22D 
even shows better results than some doubly hybrid functionals and 
the DM21 functional. For example, for the overall WTMAD-1 results, 
following DSD-BLYP-D3(BJ), B2GPPLYP-D3(BJ), DM21 and ωB97M-V, 
CF22D does better (2.15 kcal mol−1) than B2PLYP-D3(BJ) and MPW2PLYP-
D3(BJ) (2.30 and 2.36 kcal mol−1, respectively). CF22D outperforms all 
five doubly hybrid functionals for the BH category with a WTMAD-1 of 
1.43 kcal mol−1 and is only slightly inferior to DM21 with a WTMAD-1 of 
1.35 kcal mol−1.

For the overall WTMAD-2 analysis, DSD-BLYP-D3(BJ), B2GPPLYP-
D3(BJ), ωB97M-V and CF22D give the four best results among the 35 
compared functionals (the 29 selected ordinary functionals, DM21 
and five doubly hybrid functionals) with WTMAD-2 of 3.07, 3.26, 3.47 
and 3.64 kcal mol−1, respectively. These four functionals outperform 
B2PLYP-D3(BJ), ωB97X-V, DM21, PWPB95-D3(BJ) and MPW2PLYP-D3(BJ) 
(with WTMAD-2 of 3.90, 3.93, 3.97, 3.99 and 4.06 kcal mol−1, respec-
tively). In the WTMAD-2 analysis (Fig. 2a), the results for the DM21 
functional in the Large, BH and Inter categories are not as good as 
those of CF22D.

For the Large category, CF22D is the best-performing functional 
and in particular outperforms all five doubly hybrid functionals and 
the DM21 functional. In this category, it is especially interesting to dis-
cuss the MB16-43 data set in GMTKN55 (ref. 4). MB16-43 was proposed 
in the spirit of ‘mindless benchmarking’21 and contains the energies 
of decomposition of 43 artificial molecules. Among the 29 selected 
ordinary functionals, the average MUE of MB16-43 is 26.77 kcal mol−1, 
and 26 out of those 29 functionals have MUEs that exceed 15 kcal mol−1 
(Supplementary Data 3). The top performing functionals for MB16-
43 are (in order of performance) DM21, PWPB95-D3(BJ), DSD-BLYP-
D3(BJ), PW6B95-D3(BJ), B2GPPLYP-D3(BJ), CF22D and ωB97M-V, with 
MUEs in the range of 6.65–14.82 kcal mol−1. It is especially notable that 
CF22D (10.99 kcal mol−1) shows better performance than ωB97M-V 
(14.82 kcal mol−1), two of the doubly hybrid functionals (B2PLYP-D3(BJ) 
with 16.62 kcal mol−1 and MPW2PLYP-D3(BJ) with 22.08 kcal mol−1) and 
the Minnesota functionals.

The results when using the doubly hybrid functionals and the deep 
learning functional for Radical7 and Nonradical48 are compared with 
ordinary functionals in another way in Fig. 2b. We see that doubly hybrid 
functionals are mostly located in the lower left corner of the graph. 
B2GPPLYP-D3(BJ) and DSD-BLYP-D3(BJ) are the best-performing doubly 
hybrid functionals for the Radical7 and Nonradical48 sub-databases, 
respectively. We also see that CF22D is the only functional without 
doubly hybrid character that lies in the lower left corner, again dem-
onstrating its excellent and balanced performance for both radical and 
nonradical systems. In fact, the performance of CF22D is comparable 
to some of the doubly hybrid functionals. For instance, CF22D gives 
lower MUEs for both Radical7 and Nonradical48 as compared with 
PWPB95-D3(BJ). For Nonradical48, CF22D also performs better than 
the other two examined doubly hybrid functionals (B2PLYP-D3(BJ) and 
MPW2PLYP-D3(BJ)). In addition, as compared with the state-of-the-art 
deep learning functional DM21, CF22D gives better performance for 
both Radical7 and Nonradical48. We conclude that the performance 
of CF22D is competitive with DM21 and CF22D shows high accuracy 
across diverse types of chemical properties.

Performance on the AME418 sub-database
The AME418 sub-database of MDB2019 is in the training set for opti-
mization of the CF22D functional. As shown in Fig. 3, CF22D gives the 
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sub-databases.
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lowest MUE (2.10 kcal mol−1), followed by MN15, revM06, MN15-D3(BJ) 
and MN15-L (all with MUE values <2.30 kcal mol−1). The results of the 
comparisons of CF22D against 28 other functionals on AME418 are 
shown in Supplementary Data 4.

A portion (350 data points) of AME418 was divided into single-
reference systems (SR297) and multi-reference systems (MR53)15,22. For 
SR297, CF22D performs the best (MUE of 1.57 kcal mol−1). For MR53, the 
performance of CF22D ranks eighth with an MUE (5.37 kcal mol−1) that 
is much better than the average (7.97 kcal mol−1) but not as good as the 
best (3.96 kcal mol−1 for MN15-L).

The full AME418 database is next subdivided into eight sub-data-
bases: main-group bond energies (MGBE136), transition-metal bond 
energies (TMBE30), BHs (BH76/18), NC interactions (NC51/18), excita-
tion energies (EE18), isomerization energies (IEs) (IsoE14), hydrocarbon 
TC (HCTC20) and miscellaneous (Misc73). As shown in Supplementary 
Data 4, CF22D gives the second best results for the MGBE136, EE18 
and IsoE14 sub-databases, the third best results for the NC51/18 and 
HCTC20 sub-databases and the fourth best result for the Misc73 sub-
database. On the remaining two sub-databases (TMBE30 and BH76/18) 
it does not rank in the top nine, but its MUEs of 6.61 and 1.53 kcal mol−1 
are still considerably better than the average for these sub-databases 
of 8.79 and 3.31 kcal mol−1, respectively.

Performance on the MGCD84 database
The MGCDB84 database23 has 4,986 data. The data for NC interactions 
and thermochemical properties account for 41.7% and 24.2% of the data-
base, respectively. Portions of MGCDB84 were used in training ωB97M-V 
and CF22D. For MGCDB84, CF22D has an MUE of 0.80 kcal mol−1, behind 
only ωB97M-V (with an MUE of 0.71 kcal mol−1). The MN15 and MN15-
D3(BJ) functionals are the seventh and eighth best in our comparison, 
with MUEs of 1.18 and 1.20 kcal mol−1, respectively. The improvement 
of CF22D with respect to MN15 and MN15-D3(BJ), which share the same 
functional form for the density functional form, is a measure of the 
improvement made by the present supervised learning optimization.

The MGCDB84 database is divided5 into eight sub-databases: NC 
‘easy’ dimers (NCED, 1,744 data), NC ‘easy’ clusters (NCEC, 243 data), NC 
‘difficult’ interactions (NCD, 91 data), ‘easy’ IEs (EIE, 755 data), ‘difficult’ 
IEs (DIE, 155 data), TC ‘easy’ (TCE, 947 data), TC ‘difficult’ (TCD, 258 

data) and BHs (BH, 206 data). The RG10 (569 data) and AE18 (18 data) 
data sets do not fall into any of these sub-databases. Supplementary 
Table 8 presents the MGCDB84 results for 27 functionals (see Table 
2 for details about the compared functionals) listed in order of their 
overall MUEs. CF22D gives the best performance on the NCD, TCE and 
TCD sub-databases and the second lowest MUE for the DIE and BH 
sub-databases. CF22D is among the five best-performing functionals 
for all eight sub-databases.

Performance on the GSE6075 database
Next consider the 6,075 ground-state energies (GSE6075) in DDB22. 
Supplementary Table 9 shows that CF22D outperforms the 24 com-
pared functionals (see Table 1 for details about the compared func-
tionals) with an MUE of 1.03 kcal mol−1. MN15, MN15-D3(BJ), ωB97X-D 
and M06-2X-D3(0) are the next in the ranking (with MUEs of 1.45–
1.52 kcal mol−1). Comparing CF22D with MN15-D3(BJ) reveals the huge 
improvement due to the supervised learning optimization.

Of the 6,075 ground-state energies, 2,866 were used for training 
and 3,209 were used only for testing. Supplementary Table 9 shows 
that CF22D is the best-performing functional for both the training 
and the non-training (testing) sub-databases, with MUEs of 1.34 and 
0.75 kcal mol−1, respectively. The smaller MUE for the non-training 
data as compared with the training data apparently arises because the 
non-training data are easier to predict. The MUE averaged over 25 func-
tionals is 45% smaller for the non-training data, and the corresponding 
percentage for CF22D is 44%. The commensurate performance across 
the two subsets provides evidence that the training does not suffer 
from overfitting and indicates good transferability of the prediction 
accuracy for the ground-state chemical properties.

The data in GSE6075 can be classified into four types of four chemi-
cal properties: BH, NC, IE and TC. Supplementary Table 10 shows that, 
among the 25 functionals compared (see Table 1 for details about the 
compared functionals), CF22D demonstrates the best performance 
for all four classes. For the IE1119 sub-database, CF22D, ωB97X-D and 
PW6B95-D3(BJ) give the top three performances with MUEs of 0.54, 
0.79 and 0.80 kcal mol−1, respectively. For the TC1833 sub-database, 
the three best-performing functionals are CF22D, MN15 and MN15-
D3(BJ) with MUEs of 2.44, 3.50 and 3.57 kcal mol−1, respectively. For the 
BH318 sub-database, the top five performing functionals are CF22D, 
M08-HX, MN15, MN15-D3(BJ) and ωB97X-D, with CF22D having an 
MUE of 1.31 kcal mol−1 and the other four having MUEs in the range 
of 1.50–1.69 kcal mol−1. For the NC2805 category, the two top-per-
forming functionals are CF22D and ωB97X-D with MUEs of 0.27 and 
0.29 kcal mol−1, respectively.

We can divide each of the four classes into training and testing 
data, and Supplementary Table 10 shows that CF22D has the best per-
formance for six of them (BH_test112, NC_training936, IE_training293, 
IE_test826, TC_training1431 and TC_test402 categories), the second best 
for the BH_training206 category and the fifth best for the NC_test1869 
category. The comparisons presented in Supplementary Tables 9 and 
10 show that CF22D gives excellent performance for various types 
of properties and demonstrate that the predictive accuracy of the 
CF22D functional is highly transferable to properties that are not in 
the training set.

For the ground-state energies in DDB22, CF22D is not only the 
best-performing functional for the full set of 6,075 data among the 
25 selected representative functionals but also the best functional 
for each of the four sub-databases NC, TC, BH and IE. We found that 
CF22D also shows excellent transferability on the diverse non-training 
test sets of transition-metal chemistry, including CUAGAU42, TMC34, 
TMBH22 and WCCR9. The MUE of CF22D for the whole set of 107 testing 
transition-metal data (that were not used for training) is 2.77 kcal mol−1 
(Supplementary Table 11), which is the best among all the tested func-
tionals. Especially for the CUAGAU42 and TMC34 data sets, we can 
compare the performance with ωB97M-V (Fig. 4). CF22D gives the 
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best performance on the CUAGAU42 data set and also the best results 
overall. Detailed results for CF22D’s performance on the CUAGAU42 
and TMC34 databases can be found in Supplementary Section 2.5.1.

CF22D is demonstrated to be an excellent energy functional for 
‘complex’ systems with an MUE of 2.84 kcal mol−1 for the 886 data clas-
sified as complex (Supplementary Table 14).

Dispersion interactions
Figure 5a shows the potential energy curves of benzene–Ar calculated 
by three DFAs (M06-SX, revM06 and MN15) and two energy function-
als with molecular mechanics (MN15-D3(BJ) and CF22D). The former 
DFAs, because they do not have nonlocal correlation and hence do not 
have long-range dispersion24, give curves that decay to zero quickly 
from 4.5 to 6.0 Å. The dispersion-corrected functional MN15-D3(BJ) 
shows a negligible long-range tail because the damped dispersion 
term for MN15 was added without re-optimizing the functional form. 
Since MN15 gives reasonably good results in the van der Waals region 
(because it contains a medium-range correlation energy25,26), only a 
small, damped dispersion term was added. CF22D shows good agree-
ment with the reference values both at the equilibrium position and 
in the long-range region in Fig. 5a.

In Fig. 5b, CF22D shows similar good results for benzene–SiH4. This 
figure also shows that B3LYP-D3(BJ) provides a reliable long-range van 
der Waals tail but that, at the equilibrium position, it overestimates the 
benzene–SiH4 binding energy by about 0.21 kcal mol−1. The geometries 
and reference energies of benzene–Ar and benzene–SiH4 are obtained 
from ref. 27. Overall, CF22D provides generally reliable predictions for 
NC interactions, not only for the binding energies near the equilibrium 
distance but also for the weak interactions at long distance.

Other results
Results for electronic excitation energies, dipole moments, molecular 
structures, basis set superposition errors and grid errors, binding ener-
gies of extra-large complexes (ExL7)25, reactions of open-shell single-
reference transition metal complexes (ROST61)28 and the CUAGAU-2 
(ref. 29) data set are presented in Supplementary Tables 16–22. CF22D 

outperforms the selected non-doubly hybrid functionals, especially for 
ExL7 and the CUAGAU-2 data sets (Supplementary Tables 20 and 22). 
For the ROST61 data set, the MUE results for the doubly hybrid function-
als with a molecular-mechanics damped-dispersion term are listed in 
Supplementary Table 21, all being lower than 3 kcal mol−1. The average 
value of the results for the functionals with a molecular-mechanics 
damped-dispersion term is 3.36 kcal mol−1, whereas the average value 
of the results of non-doubly hybrid functionals is 4.64 kcal mol−1. CF22D 
performs well with an MUE of 4.03 kcal mol−1, which is better than the 
average MUE of the non-doubly hybrid functionals.

Discussion
Density functional theory (DFT) is the most popular electronic struc-
ture method, but many functionals are optimized only against limited 
specific groups of chemical properties, and few functionals can be 
applied to accurately predict all the properties required for complex 
chemical applications. We used physical descriptors, broad databases 
and supervised learning for the systematic optimization of a flexible 
functional form including the simultaneous optimization of a molec-
ular-mechanics damped-dispersion term. As shown in Results section, 
CF22D can be recommended for applications involving a broad range 
of bonding and NC interactions of both main-group and transition-
metal compounds, which makes it appropriate for studies of cataly-
sis, functional materials, biochemistry and environmental chemistry. 
However, as a global hybrid functional, CF22D has limitations because 
it contains Hartree–Fock (HF) exchange, even at long range: (1) it is not 
economical for plane wave codes because the treatment of long-range 
HF exchange in plane wave codes requires a fine mesh for integration 
over the Brillouin zone30, (2) long-range HF exchange causes a diver-
gence of the group velocity at the Fermi level for solid-state systems 
(such as metals) that do not have a gap31,32 and (3) HF exchange is known 
to cause a static correlation error33, although this is ameliorated in the 
present functional by parameterization to a training set with a high 
representation of strongly correlated systems. Another limitation is 
that the long-range dispersion terms do not take account of the partial 
atomic charge distributions in the interacting subsystems.

–2

–1.5

–1

–0.5

0

0.5

1

Po
te

nt
ia

l e
ne

rg
y 

(k
ca

l m
ol

–1
)

Benzene–Ar distance (Å)

Reference
CF22D
revM06
M06-SX
MN15
MN15-D3(BJ)

–2

–1.5

–1

–0.5

0

0.5

3 4 5 6 7 4 5 6 7

Po
te

nt
ia

l e
ne

rg
y 

(k
ca

l m
ol

–1
)

Benzene–SiH4 distance (Å)

Reference
CF22D
ωB97M-V
ωB97X-D
MN15-D3(BJ)
B3LYP-D3(BJ)

a b

Fig. 5 | Benzene–Ar and Benzene–SiH4 potential energy curves. a,b, 
Potential energy curves for benzene–Ar (a) and benzene–SiH4 (b) calculated 
using the CF22D and other functionals with the (99, 590) integration grid 
and the def2-QZVPPD basis set, as compared with reference results (black 

curves) from coupled cluster theory with single and double excitations and 
a quasiperturbative treatment of connected triple excitations (CCSD(T)) 
calculations. The geometries and reference energies of benzene–Ar and 
benzene–SiH4 are obtained from ref. 27.
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Equation (1) is an energy functional based on seven features: spin-
up and spin-down electron density, spin-up and spin-down electron 
density gradient, spin-up and spin-down kinetic energy density and 
the set of internuclear distances (which are the geometries of the 
dimers embedded in the molecule). In the future, one may envision 
more general energy functionals in which the energy also depends 
on other variables such as the geometries of the trimers embedded in 
the molecule or other features (for example, ionization potentials) of 
the atoms, dimers and/or trimers embedded in the molecule. Thus, 
the energy functional considered here may be considered to be just 
an example of a move toward more complex energy functionals with 
a greater variety of features. It has been stated that “Feature selection 
methods provides us a way of reducing computation time, improving 
prediction performance, and a better understanding of the data in 
machine learning”34. Therefore, we see a future for density functional 
theory that may involve combining traditional functionals with func-
tionals of other variables to produce machine learning functionals with 
even better combinations of accuracy and efficiency.

Methods
Basing the loss function and the additional testing of the output func-
tional on broad and diverse databases is a key aspect in the present 
work. We train the functional with a database including nearly 3,000 
data. The training data are organized into a variety of energetic data 
sets for different categories of energies, and we also consider sub-
databases encompassing subsets of the data sets. An additional set 
of about 3,800 data not used for training are used as a testing set. The 
testing set includes BHs, NC interactions, TC, IEs, excitation energies, 
bond lengths and dipole moments.

The density functional term
Our energy functional has two kinds of terms: a DFA and a molecular-
mechanics term representing damped dispersion. The functional form 
is

ECF22D = EDF + Edisp, (1)

where the EDF is an exchange–correlation term with the functional 
form of the successful MN15 functional and Edisp is a molecular-
mechanics term that is conventionally called a damped dispersion 
term. Note that the damped dispersion term accounts for more than 
dispersion at short range, and dispersion is not uniquely defined for 
geometries where there is overlap of the wave functions of interact-
ing subsystems.

The parameters in EDF were optimized simultaneously with a 
parameter in Edisp. For EDF, we chose the form of the previously successful 
MN15 functional15. This is a linear combination of the nonlocal single-
determinant exchange energy EHFx , a local nonseparable exchange–cor-
relation energy Enxc and an additional correlation energy Ec:

EDF =
X
100EHFx + Enxc + Ec, (2)

Enxc =

∫dr
β
∑
σ=α

ρσ {εLSDAxσ (ρσ)
3
∑
i=0

3−i
∑
j=0

5−i−j
∑
k=0

aijk{vxσ(ρσ)}i{uxσ(sσ)}j{wσ(ρσ, τσ)}k},

(3)

Ec = ∫drρ εLSDAC (ρα,ρβ) (
8
∑
i=0

bi {w (ρ, τ)}i)

+∫drρHPBE(ρα,ρβ, s) (
8
∑
i=0

ci {w(ρ, τ)}
i),

(4)

where

sσ =
|∇ρσ|
ρ4/3σ

. (5)

X is the percentage of HF exchange EHFx , ρα and ρβ are the up-spin 
and down-spin electron densities at the spatial point r, ρ is their sum, 
τα and τβ are the spin-up and spin-down kinetic energy density and the 
functions vxσ, uxσ, wσ, εLSDAxσ , εLSDAC  and HPBE are the same as used in the 
MN15 functional15 and are therefore not re-explained here. The param-
eters X, aijk, bi and ci in equations (2–4) of CF22D are shown in Supple-
mentary Table 1.

Damped dispersion
The DFT-D3(0) model35 is the starting point for the molecular-mechan-
ics term used here. The D3(0) treatment has rAB

–6 and rAB
–8 terms, where 

rAB is the distance between atoms A and B, but only the rAB
−6 term is used 

in the present work because our goal is to obtain only the longest-range 
dispersion term by molecular mechanics. The term we use has the 
unscaled form

Edisp = − 12∑AB

CAB
6

r6AB
fd,6 (rAB) , (6)

where the sum includes all the atom pairs in the system, CAB
6  is the D3(0) 

dispersion coefficient that depends on the atomic coordination num-
bers CNA and CNB, which depend on the system’s geometry, and

fd,6 (rAB) =
1

1 + 6 (rAB/(sr,6RAB
0 ))

−14 , (7)

where sr,6 is a scaling parameter optimized in the present work and RAB
0  

is the pair-specific cut-off radius parameterized in DFT-D3(0) for the 
4,465 values of all atom pairs AB composed of the first 94 elements of 
the Periodic Table35. The optimization method of sr,6 for CF22D is pre-
sented in Supplementary Section 1, and the resulting value of sr,6 is 
provided in Supplementary Table 1.

The loss function
The loss function is

L =
K
∑
n=1

Rn/In + λ(a + b + c), (8)

in which

a =
3
∑
i=0

3−i
∑
j=0

4−i−j
∑
k=0

(ai,j,k − ai,j,k+1)2, (9)

b =
7
∑
i=0

(bi − bi+1)2, (10)

c =
7
∑
i=0

(ci − ci+1)2, (11)

and K is the number of training data sets, Rn is the r.m.s. error (RMSE) 
for data set n in Supplementary Data 5, In is the inverse weight of subset 
n, λ(a + b + c) is an L2 regularization term that serves as a smoothness 
restraint36,37 and λ is a smoothing coefficient37 that was set to 0.01 for 
CF22D.
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The value of the loss function depends on the inverse weights. 
Our goal in training the energy functional was to obtain small errors 
across the board, that is, relatively small errors for as many data sets 
and sub-databases as possible, not to simply reduce the overall mean 
unsigned error for the entire training data set or the absolute value 
of the loss function. The final selection of the inverse weights was 
therefore determined iteratively by substantial trial and error to obtain 
uniformly good performance across the full collection of data sets, as 
discussed below.

The DDB22 database
In this work, we built a combined database called the Diverse Database 
2022 (DDB22), which includes 155 data sets made up of a total of 6,572 
data. All the component data sets are shown in Fig. 1b, with detailed 
explanations given in Supplementary Data 1. The data sets of the DDB22 
database come from five sources:

•	 The Minnesota DataBase 2019 (MDB2019), a composite and update 
by Verma et al.3,10,38 of an earlier Minnesota database. It contains 
energetic data, geometric data and dipole moments. The energetic 
data include bond energies, reaction energies, proton affinities, 
electron affinities, ionization potentials, NC interaction energies 
and reaction BHs for main-group compounds and transition-metal 
compounds plus total atomic energies and electronic excitation 
energies. The geometric data consist of bond lengths, which are 
equilibrium interatomic distances between bonded atoms. The 
present study omitted the lattice constants in MDB2019 because 
we only consider gas-phase data in the present development. 
A subset, called AME418, of MDB2019 is a set of 418 atomic and 
molecular energies used as components of the training sets for 
the revM11 (ref. 38) and M06-SX39 functionals.

•	 The Main-Group Chemistry Database MGCDB84 database, com-
piled by Mardirossian and Head-Gordon5 “from the benchmarking 
activities of numerous groups, including Hobza, Sherrill, Truhlar, 
Herbert, Grimme, Karton, and Martin”. It comprises 84 data sets 
containing 4,986 data for NC interactions, IEs, TC and BHs. NC 
interactions are especially well represented.

•	 The GMTKN55 database of Goerigk et al.4 for general main-group 
TC, kinetics and NC interactions.

•	 The transition-metal chemistry database TMC34, developed by 
Chan et al.7 as representative of a much larger database of metal–
organic reaction energies, dissociation energies of diatomic tran-
sition-metal species and reaction barriers involving complexes of 
second- and third-row transition metals. It is divided into the TC 
data sets TMD10 and MOR13 and the BH data set TMB11.

•	 The CUAGAU42 database of Chan6 for small copper, silver and gold 
compounds. It contains two data sets: CUAGAU_TC27 for TC and 
CUAGAU_IE15 for IEs.

Data sets from various databases have some degree of overlap. The 
MGCDB84 database includes the GMTKN30 (ref. 40) database (a prede-
cessor of GMTKN55 that is partially represented and partially updated 
in GMTKN55) and previous Minnesota databases, and the GMTKN55 
database also has some overlap with previous Minnesota databases. 
The overlapping data of MDB2019, GMTKN55 and MGCDB84 are shown 
in Fig. 1b (see Supplementary Table 2 for more details on these overlaps 
and how they were resolved to create the consolidated database).

We used the entire DDB22 to compare the performance of the 
CF22D functional with selected other functionals, but only a portion 
of it was used for the training and validation steps. For some of the 
discussion, to better understand the validation and testing tests, we 
divide DDB22 into four sub-databases:

•	 Ground-state energies (sub-database GSE6075, with energies in 
kcal mol−1) that consists of 6,075 data of ground-state energetic 

data from 13 data sets of BHs, 44 NC interaction energy data sets, 
30 IEs data sets and 55 TC data sets (this sub-database contains 
6,057 relative energies and 18 absolute atomic energies)

•	 Excitation energies (EE157, with electronic excitation energies in 
eV), consisting of 157 data of excitation energetic data from ten 
data sets

•	 Molecular structures (MS261, with interatomic distances in Å) 
consisting of 261 data from five molecular structure data sets

•	 Dipole moments (DM79, with dipole moments in Debye) consist-
ing of 79 data from one database of dipole moments

These classifications are specified in detail in Supplementary 
Data 1.

Training
Our learning scheme involves performance-triggered iterative super-
vised training. For brevity, we call this supervised learning. Our super-
vised learning scheme differs from the active learning schemes that 
were developed for labelling problems. In those cases, the machine 
queries the supervisor about troublesome unlabelled data, and the 
supervisor labels the data41. Our application is in the regression and 
prediction area rather than the labelling area. Our supervised learning 
scheme is closer to the active learning method developed by Zhang et 
al.42 for neural net modelling of force fields, but with some differences 
because we group data into data sets of related data and because 
we do not use a neural net. Our method also differs from machine 
learning schemes that divide the data randomly among the training 
and validation sets in that we divide the data in a more organized 
fashion using the data sets. The three steps in our supervised learn-
ing, following the development of the initial model with an initial 
training set, are as follows: (1) wider testing in a step that replaces the 
conventional validation step with one that uses the current model to 
explore additional data sets spanning a broader domain than had been 
used to develop the existing model and identifies poorly fit data sets; 
(2) augmentation, in which we add the troublesome data sets to the 
training set; (3) retraining. The machine develops a model based on 
the augmented data. We then repeat these steps until convergence 
is reached. An active learning scheme with this kind of sequence was 
presented by Schmidt et al.43. They described their active learning 
schemes as follows: “(i) A surrogate model has to be developed; (ii) 
Based on the prediction of the surrogate model, optimal infill points 
have to be chosen in order to retrain the surrogate model and finally 
find the optimum.”.

Our workflow to implement the above supervised learning method 
is summarized schematically in Fig. 1a. Here we provide a detailed 
description:

	1.	 We select 79 data sets (data sets 1–79 from AME418 and 
MGCDB84, listed in Supplementary Data 5) with a total of 1,886 
data as the initial training set. The initial inverse weight of each 
data set in AME418 is the same as the one utilized in the final op-
timization of the M06-SX functional39. The initial inverse weight 
of each selected data set in MGCDB84 is chosen as the average 
MUE for that data set as averaged over 200 exchange–correla-
tion functionals (previously published and developed by many 
different groups) as given in the original MGCDB84 article5. 
Note that Supplementary Data 5 shows 92 data sets with 3,694 
data. Data sets 80–92 with 1,808 data constitute the initial vali-
dation set. We also initialize the sr,6 parameter in the damped dis-
persion. Using the standard notation, data sets 1–79 are training 
data and data sets 80–92 are initially validation data, but some 
of them are converted to training data by the supervised learn-
ing procedure of step 6. The testing data are described in Sup-
plementary Data 1, including test sets in the DDB22 database 
and three additional testing data sets (ExL7 (ref. 25), ROST61 
(ref. 28) and CUAGAU-2 (ref. 29).
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	2.	 The electron densities of all systems in the training set are cal-
culated by using the MN15 functional and applied as the initial 
densities.

	3.	 Each descriptor in the CF22D functional described by equation 
(1) is calculated for all the systems in the training set based on 
the electron densities generated by the functional of the previ-
ous step (step 2 in the first iteration and step 6 in subsequent 
ones). The Rn value of each data set in equation (8) can be ex-
pressed as a function of sr,6 in equation (7) and the coefficients 
in the density functional term, namely X in equation (2), aijk in 
equation (3) and bi and ci in equation (4). Thus, the loss func-
tion of equation (8) is a function of those variables and the In of  
each subset.

	4.	 The loss function of equation (8) is minimized using the general-
ized reduced gradient nonlinear algorithm for a given sr,6 value, 
and the sr,6 value in equation (7) is varied to minimize the MUE 
of the training set. (Initially we vary the value of sr,6 from 1.2 to 
2.1 Å with an initial interval of 0.1 Å, but the interval is gradually 
reduced.) This yields a new value of sr,6, and a new set of density 
functional coefficients is obtained.

	5.	 Using the trial functional obtained from step 4, the energies of 
all systems in the training and validation sets are calculated, and 
the MUE for each data set in the training and validation sets is 
calculated.

	6.	 This is the supervised learning step. If the MUE of the trial 
functional for one data set in the validation set is 30% higher 
than the average MUE of the top five functionals for this data 
set based on the results from ref. 5, then this data set is moved 
to the training set with the inverse weight determined by the 
same method as used in step 1. We then modify selected inverse 
weights (both the ones inherited from previous steps and the 
new ones) to improve, if possible, the performance on the vari-
ous sub-databases where we wish to reduce the error to obtain 
small errors across the board. The final selection of inverse 
weights in this step is determined by substantial trial and er-
ror to try to obtain uniformly good performance across the full 
collection of data sets.

	7.	 If a validation data set is moved into the training set in step 3, the 
electron densities of all the systems in the training set are recal-
culated, and we return to step 3. If no new data set is moved in 
step 6, we compare the MUE of the training set with the value in 
the previous iteration. If the MUE is not converged, the electron 
densities of all systems in the training set are recalculated, and 
we return to step 3. If the MUE of the training database is con-
verged, we proceed to step 8.

	8.	 At convergence, the results of CF22D for all the training and 
test data sets are calculated and compared with other density 
functionals.
After five rounds of iteration and validation, the supervised learn-

ing added ten data sets containing 1,033 data (data sets 80–89 in Sup-
plementary Data 5). The data sets added by supervised learning are 
all from the BH76 group (BH76RC and DBH24) and the W4-11 group 
(HAT707MR, HAT707nonMR, BDE99MR, BDE99nonMR, TAE140MR, 
TAE140nonMR, ISOMERIZATION20 and SN13) of the MGCDB84 
database.

In the final iteration, sr,6 = 1.53 Å, with which the overall MUE of 
the selected data sets was the lowest (Supplementary Section 1). The 
optimized parameters of the CF22D functional are given in Supple-
mentary Table 1.

Computational details
The CF22D calculations were performed using a locally modified ver-
sion of Gaussian 16 revision A.03 (ref. 44), while all the calculations with 
the other functionals in this work were performed using the unmodified 
Gaussian 16, revision A.03.

The basis sets, molecular geometries and quadrature grids for the 
calculations on MDB2019 (refs. 3,22,39) were the same as those employed 
in our previous works22,39,45 and can be found in Supplementary Table 
21 of ref. 22. For the calculations on the GMTKN55 (ref. 4) database, 
MGCDB84 (ref. 5) database, transition-metal data sets TMC34 (ref. 7) 
and CUAGAU42 (ref. 6), the settings were the same as those employed 
in the original papers. The basis set is mainly def2-QZVP for GMTKN55 
(diffuse functions were applied to some atoms in some of the data sets, 
and core electrons of heavy elements in some molecules of HEAVYSB11, 
HAL59 and HEAVY28 were replaced by the def2-ECP effective core 
potentials). The basis set is def2-QZVPPD for MGCDB84. The basis sets 
are def2-QZVPP for CUAGAU42, CUAGAU-2 and ROST61, def2-TZVP for 
TMC34, and cc-pVTZ for ExL7.

A (99, 590) grid (99 radial shells with 590 grid points per shell) 
was used for all of the data sets, except AE18 and RG10, for which a 
(500, 974) grid was used.

Additional data and references
Additional data from this study and additional references are provided 
in the Supplementary Information.

Data availability
The optimized parameters of the CF22D functional are available in 
Supplementary Table 1. The MUE results for all the data sets discussed 
in this work can be obtained from Zenodo46. Source data for Figs. 2–5 
are available with this manuscript.

Code availability
The Gaussian 16 program (revision A.03) used in this work is com-
mercially available at http://www.gaussian.com/. The Fortran source 
codes for the CF22D energy functional can be obtained from Zenodo46.
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