Nonadiabatic molecular dynamics is the method of choice for modeling a wide range of excited-state phenomena. Although much progress has been made in improving the usability and efficiency of ground-state calculations, there are still challenges in translating this advance to the excited state.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Nelson, T. R. et al. Chem. Rev. 120, 2215–2287 (2020).
Nikitin, E. E. Annu. Rev. Phys. Chem. 50, 1–21 (1999).
Tully, J. C. J. Chem. Phys. 93, 1061 (1990).
Tully, J. C. J. Chem. Phys. 137, 22A301 (2012).
Barbatti, M., Aquino, A. J. A., Szymczak, J. J. & Lischka, H. Proc. Nat. Acad. Sci. 107, 21453–21458 (2010).
Zobel, J. P. & González, L. J. Am. Chem. Soc. 1, 1116–1140 (2021).
Subotnik, J. E. et al. Annu. Rev. Phys. Chem. 67, 387–417 (2016).
Wang, L., Akimov, A. & Prezhdo, O. V. J. Phys. Chem. Lett. 7, 2100–2112 (2016).
Crespo-Otero, R. & Barbatti, M. Chem. Rev. 118, 7026–7068 (2018).
Curchod, B. F. E. & Martínez, T. J. Chem. Rev. 118, 3305–3336 (2018).
Freixas, V. M. et al. J. Phys. Chem. Lett. 12, 2970–2982 (2021).
Agostini, F. & Gross, E. K. U. Eur. Phys. J. B 94, 179 (2021).
Worth, G. A., Meyer, H.-D., Köppel, H., Cederbaum, L. S. & Burghardt, I. Int. Rev. Phys. Chem. 27, 569–606 (2008).
Keefer, D. et al. Chem. Sci. 12, 5286–5294 (2021).
Agostini, F., Tavernelli, I. & Ciccotti, G. Eur. Phys. J. B 91, 139 (2018).
Marenich, A. V. et al. Chem. Sci. 2, 2143 (2011).
Vincent, J. C. et al. J. Phys. Chem. Lett. 7, 4185–4190 (2016).
Zhang, Y., Nelson, T. & Tretiak, S. J. Chem. Phys. 151, 154109 (2019).
Gelin, M. F. et al. J. Chem. Theory Comput. 17, 2394–2408 (2021).
Morzan, U. N. et al. Chem. Rev. 118, 4071–4113 (2018).
Smith, J. S., Isayev, O. & Roitberg, A. E. Chem. Sci. 8, 3192–3203 (2017).
Zhou, G., Lubbers, N., Barros, K., Tretiak, S. & Nebgen, B. Proc. Nat. Acad. Sci. 119, e2120333119 (2022).
Li, H. et al. Nat. Comput. Sci. 2, 367–377 (2022).
Seritan, S. et al. WIREs Comput Mol Sci. 11, e1494 (2020).
Jumper, J. et al. Nature 596, 583–589 (2021).
Lubbers, N. et al. J. Chem. Phys. 148, 241715 (2018).
Acknowledgements
The work at Los Alamos National Laboratory (LANL) was supported by the LANL Directed Research and Development Funds (LDRD) and the Center for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Science user facility at LANL. S.F.-A. was supported by CONICET, UNQ, and ANPCyT (grant no. PICT-2018-02360). LANL is operated by Triad National Security, LLC, for the US Department of Energy National Nuclear Security Administration under contract no. 89233218CNA000001.
Author information
Authors and Affiliations
Contributions
All authors developed the core manuscript content and outline, wrote the manuscript, and provided revisions. T.R.N. wrote the first manuscript draft. S.T. proposed the illustration concept and T.R.N. created the illustration.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Nelson, T.R., Fernandez-Alberti, S. & Tretiak, S. Modeling excited-state molecular dynamics beyond the Born–Oppenheimer regime. Nat Comput Sci 2, 689–692 (2022). https://doi.org/10.1038/s43588-022-00357-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-022-00357-3