Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dimensionally consistent learning with Buckingham Pi

A preprint version of the article is available at arXiv.

Abstract

In the absence of governing equations, dimensional analysis is a robust technique for extracting insights and finding symmetries in physical systems. Given measurement variables and parameters, the Buckingham Pi theorem provides a procedure for finding a set of dimensionless groups that spans the solution space, although this set is not unique. We propose an automated approach using the symmetric and self-similar structure of available measurement data to discover the dimensionless groups that best collapse these data to a lower dimensional space according to an optimal fit. We develop three data-driven techniques that use the Buckingham Pi theorem as a constraint: (1) a constrained optimization problem with a non-parametric input–output fitting function, (2) a deep learning algorithm (BuckiNet) that projects the input parameter space to a lower dimension in the first layer and (3) a technique based on sparse identification of nonlinear dynamics to discover dimensionless equations whose coefficients parameterize the dynamics. We explore the accuracy, robustness and computational complexity of these methods and show that they successfully identify dimensionless groups in three example problems: a bead on a rotating hoop, a laminar boundary layer and Rayleigh–Bénard convection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the BuckiNet layer for the rotating hoop problem.
Fig. 2: Dimensionless SINDy applied to the rotating hoop problem, showing the angle as a function of time.
Fig. 3: Summary of the dimensionless SINDy approach applied to the rotating hoop problem.
Fig. 4: Learnt Blasius scaling in laminar boundary layer.
Fig. 5: The dimensionless SINDy method applied to the Rayleigh–Bénard convection problem.

Similar content being viewed by others

Data availability

The data that support the findings of this study have been generated by numerically solving the example models proposed in the manuscript. The solvers are available in the GitHub repository (https://github.com/josephbakarji/bucki-data)45, and the data can be found in ‘data/figure-X’, where X is the number of the figure. Source data for Figs. 2, 4 and 5 are also available with this manuscript.

Code availability

The Bucki-Data package is available in the GitHub repository (https://github.com/josephbakarji/bucki-data)45.

References

  1. Barenblatt, G. I. Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics 14 (Cambridge Univ. Press, 1996).

  2. Sterrett, S. G. Physically Similar Systems – A History of the Concept, pp 377–411 (Springer, 2017).

  3. Buckingham, E. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914).

    Article  Google Scholar 

  4. del Rosario, Z., Lee, M. & Iaccarino, G. Lurking variable detection via dimensional analysis. SIAM/ASA J. Uncertain. 7, 232–259 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  5. Jofre, L., del Rosario, Z. R. & Iaccarino, G. Data-driven dimensional analysis of heat transfer in irradiated particle-laden turbulent flow. Int. J. Multiphase Flow 125, 103198 (2020).

    Article  MathSciNet  Google Scholar 

  6. Fukami, K. & Taira, K. Robust machine learning of turbulence through generalized Buckingham pi-inspired pre-processing oftraining data, APS Division of Fluid Dynamics Meeting Abstracts, A31-004 (2021).

  7. Xie, X., Liu, W. K. & Gan, Z. Data-driven discovery of dimensionless numbers and scaling laws from experimental measurements. Preprint at https://arxiv.org/abs/2111.03583 (2021).

  8. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  Google Scholar 

  9. Morris, S. W., Bodenschatz, E., Cannell, D. S. & Ahlers, G. Spiral defect chaos in large aspect ratio Rayleigh–Bénard convection. Phys. Rev. Lett. 71, 2026 (1993).

    Article  Google Scholar 

  10. Shi, X. D., Brenner, M. P. & Nagel, S. R. A cascade of structure in a drop falling from a faucet. Science 265, 219–222 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. Grzybowski, B., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    Article  Google Scholar 

  12. Seminara, A. et al. Osmotic spreading of bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 1116–1121 (2012).

    Article  Google Scholar 

  13. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Ref. Mod. Phys. 65, 851–1112 (1993).

    Article  MATH  Google Scholar 

  14. Callaham, J. L., Koch, J. V., Brunton, B. W., Kutz, J. N. & Brunton, S. L. Learning dominant physical processes with data-driven balance models. Nat. Commun. 12, 1–10 (2021).

    Article  Google Scholar 

  15. Holmes, P. & Guckenheimer, J. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 of Applied Mathematical Sciences (Springer-Verlag, 1983).

  16. Yair, O., Talmon, R., Coifman, R. R. & Kevrekidis, I. G. Reconstruction of normal forms by learning informed observation geometries from data. Proc. Natl. Acad. Sci. 114, E7865–E7874 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Kalia, M., Brunton, S. L., Meijer, H. G., Brune, C. & Kutz, J. N. Learning normal form autoencoders for data-driven discovery of universal, parameter-dependent governing equations. Preprint at https://arxiv.org/abs/2106.05102 (2021).

  18. Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article  Google Scholar 

  19. Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  20. Rudy, S. H., Brunton, S. L., Proctor, J. L. & Kutz, J. N. Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017).

    Article  Google Scholar 

  21. Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218–229 (2021).

    Article  Google Scholar 

  22. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  24. Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).

    Article  Google Scholar 

  25. Brenner, M., Eldredge, J. & Freund, J. Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4, 100501 (2019).

    Article  Google Scholar 

  26. Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357–377 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  27. Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 52, 477–508 (2020).

    Article  MATH  Google Scholar 

  28. Sonnewald, M. et al. Bridging observations, theory, and numerical simulation of the ocean using machine learning. Environ. Res. Lett. 16, 073008 (2021).

    Article  Google Scholar 

  29. Kaiser, B. E., Saenz, J. A., Sonnewald, M. & Livescu, D. Objective discovery of dominant dynamical processes with intelligible machine learning. Preprint at https://arxiv.org/abs/2106.12963.

  30. Sonnewald, M., Wunsch, C. & Heimbach, P. Unsupervised learning reveals geography of global ocean regimes. Earth Space Sci. 6, 784–794 (2019).

    Article  Google Scholar 

  31. Wu, H., Mardt, A., Pasquali, L. & Noe, F. Deep generative Markov state models in Proc. of 32nd Conference on NeuralInformation Processing Systems (eds Bengio, S. et al.) (2018).

  32. Champion, K., Lusch, B., Kutz, J. N. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  33. Bakarji, J., Champion, K., Kutz, J. N. & Brunton, S. L. Discovering governing equations from partial measurements with deep delay autoencoders. Preprint at https://arxiv.org/abs/2201.05136 (2022).

  34. Constantine, P. G., del Rosario, Z. & Iaccarino, G. Data-driven dimensional analysis: algorithms for unique and relevant dimensionless groups. Preprint at https://arxiv.org/abs/1708.04303 (2017).

  35. Udrescu, S.-M. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

    Article  Google Scholar 

  36. Gunaratnam, D. J., Degroff, T. & Gero, J. S. Improving neural network models of physical systems through dimensional analysis. Appl. Soft Comput. 2, 283–296 (2003).

    Article  Google Scholar 

  37. Saha, S. et al. Hierarchical deep learning neural network (HiDeNN): an artificial intelligence (AI) framework for computational science and engineering. Comput. Methods Appl. Mech. Eng. 373, 113452 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  38. Mozaffar, M. et al. Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: current state and perspectives. J. Mater. Process. Technol. 302, 117485 (2021) .

  39. Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC, 2018).

  40. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  41. Pandey, A., Scheel, J. D. & Schumacher, J. Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9, 2118 (2018) .

  42. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon, 1961).

  43. Mortensen, M. Shenfun: High performance spectral Galerkin computing platform. J. Open Source Softw. 3, 1071 (2018).

    Article  Google Scholar 

  44. Loiseau, J.-C. & Brunton, S. L. Constrained sparse Galerkin regression. J. Fluid Mech. 838, 42–67 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  45. Bakarji, J. & Callaham, J. Bucki-Data GitHub repository. Zenodo https://doi.org/10.5281/zenodo.7187741 (2022).

Download references

Acknowledgements

The authors acknowledge support from the Army Research Office (ARO W911NF-19-1-0045) and the National Science Foundation AI Institute in Dynamic Systems (grant no. 2112085). J.C. acknowledges funding support from the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.B, J.C., S.L.B. and J.N.K. designed research. J.B. and J.C. performed research. J.B, J.C., S.L.B. and J.N.K. wrote the paper.

Corresponding authors

Correspondence to Joseph Bakarji, Jared Callaham, Steven L. Brunton or J. Nathan Kutz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Computational Science thanks Zhengtao Gan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Handling editor: Jie Pan, in collaboration with the Nature Computational Science team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Sects. 1–5.

Peer Review File

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakarji, J., Callaham, J., Brunton, S.L. et al. Dimensionally consistent learning with Buckingham Pi. Nat Comput Sci 2, 834–844 (2022). https://doi.org/10.1038/s43588-022-00355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00355-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics