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The recognition that the world is quantum mechanical has 
allowed researchers to embed well established, but classi-
cal, theories into the framework of quantum Hilbert spaces. 

Shannon’s information theory, which is the basis of communica-
tion technology, has been generalized to quantum Shannon theory 
(or quantum information theory), opening up the possibility that 
quantum effects could make information transmission more effi-
cient1. The field of biology has been extended to quantum biology 
to allow for a deeper understanding of biological processes such as 
photosynthesis, smell and enzyme catalysis2. Turing’s theory of uni-
versal computation has been extended to universal quantum com-
putation3, potentially leading to exponentially faster simulations of 
physical systems.

One of the most successful technologies of this century is 
machine learning (ML), which aims to classify, cluster and recognize 
patterns for large datasets. Learning theory has been simultaneously 
developed alongside of ML technology to understand and improve 
upon its success. Concepts such as support vector machines, neural 
networks and generative adversarial networks have impacted sci-
ence and technology in profound ways. ML is now ingrained into 
society to such a degree that any fundamental improvement to ML 
leads to tremendous economic benefit.

Similarly to other classical theories, ML and learning theory 
can in fact be embedded into the quantum-mechanical formal-
ism. Formally speaking, this embedding leads to the field known 
as quantum machine learning (QML)4–6, which aims to understand 
the ultimate limits of data analysis allowed by the laws of physics. 
Practically speaking, the advent of quantum computers, with the 
hope of achieving a so-called quantum advantage (as defined below) 
for data analysis, is what has made QML so exciting. Quantum com-
puting exploits entanglement, superposition and interference to 
perform certain tasks with substantial speedups over classical com-
puting, sometimes even exponentially faster. Indeed, while such 
speedup has already been observed for a contrived problem7, reach-
ing it for data science is still uncertain even at the theoretical level, 
but this is one of the main goals for QML.

In practice, QML is a broad term that encompasses all of the 
tasks shown in Fig. 1. For example, ML can be applied to quantum 
applications such as discovering quantum algorithms8 or optimiz-
ing quantum experiments9,10, or a quantum neural network (QNN) 
can be used to process either classical or quantum information11. 
Even classical tasks can be viewed as QML when they are quan-
tum inspired12. We note that the focus of this Perspective will be on 
QNNs, quantum deep learning and quantum kernels, even though 
the field of QML is quite broad and goes beyond these topics.

After the invention of the laser, it was called a solution in search 
of a problem. To some degree, the situation with QML is simi-
lar. The complete list of applications of QML is not fully known. 
Nevertheless, it is possible to speculate that all the areas shown in 
Fig. 2 will be impacted by QML. For example, QML will likely ben-
efit chemistry, materials science, sensing and metrology, classical 
data analysis, quantum error correction and quantum algorithm 
design. Some of these applications produce data that are inherently 
quantum mechanical, and hence it is natural to apply QML (rather 
than classical ML) to them.

While there are similarities between classical and quantum ML, 
there are also some differences. Because QML employs quantum 
computers, noise from these computers can be a major issue. This 
includes hardware noise such as decoherence as well as statistical 
noise (that is, shot noise) that arises from measurements on quan-
tum states. Both of these noise sources can complicate the QML 
training process. Moreover, nonlinear operations (for example, 
neural activation functions) that are natural in classical ML require 
more careful design of QML models due to the linearity of quantum 
transformations.

For the field of QML, the immediate goal for the near future is 
demonstrating quantum advantage, that is, outperforming classi-
cal methods, in a data science application. Achieving this goal will 
require keeping an open mind about which applications will benefit 
most from QML (for example, it may be an application that is inher-
ently quantum mechanical). Understanding how QML methods 
scale to large problem sizes will also be required, including analysis 
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of trainability (gradient scaling) and prediction error. The availabil-
ity of high-quality quantum hardware13,14 will also be crucial.

Finally, we note that QML provides a new way of thinking about 
established fields, such as quantum information theory, quantum 
error correction and quantum foundations. Viewing such appli-
cations from a data science perspective will likely lead to new 
breakthroughs.

Framework
Data. As shown in Fig. 3, QML can be used to learn from either 
classical or quantum data, and thus we begin by contrasting these 
two types of data. Classical data are ultimately encoded in bits, 
each of which can be in a 0 or 1 state. This includes images, texts, 
graphs, medical records, stock prices, properties of molecules, 
outcomes from biological experiments and collision traces from 
high-energy physics experiments. Quantum data are encoded in 
quantum bits, called qubits, or higher-dimensional analogs. A 
qubit can be represented by the states |0〉, |1〉 or any normalized 
complex linear superposition of these two. Here, the states contain 
information obtained from some physical process such as quan-
tum sensing15, quantum metrology16, quantum networks17, quan-
tum control18 or even quantum analog–digital transduction19. 
Moreover, quantum data can also be the solution to problems 
obtained on a quantum computer: for example, the preparation of 
various Hamiltonians’ ground states.

In principle, all classical data can be efficiently encoded in sys-
tems of qubits: a classical bitstring of length n can be easily encoded 
onto n qubits. However, the same cannot be said for the converse, 
since one cannot efficiently encode quantum data in bit systems; 
that is, the state of a general n-qubit system requires (2n − 1) com-
plex numbers to be specified. Hence, systems of qubits (and more 
generally the quantum Hilbert space) constitute the ultimate 
data representation medium, as they can encode not only clas-
sical information but also quantum information obtained from  
physical processes.

In a QML setting, the term quantum data refers to data that are 
naturally already embedded in a Hilbert space H. When the data 
are quantum, they are already in the form of a set of quantum states 
{|ψj〉} or a set of unitaries {Uj} that could prepare these states on a 
quantum device (via the relation |ψj〉 = Uj|0〉). On the other hand, 
when the data x are classical, they first need to be encoded in a 
quantum system through some embedding mapping xj → |ψ(xj)〉, 
with |ψ(xj)〉 in H. In this case, the hope is that the QML model can 
solve the learning task by accessing the exponentially large dimen-
sion of the Hilbert space20–23.

One of the most important and reasonable conjectures to make 
is that the availability of quantum data will substantially increase 
in the near future. The mere fact that people will use the quantum 
computers that are available will logically lead to more quantum 
problems being solved and quantum simulations being performed. 
These computations will produce quantum datasets, and hence it is 
reasonable to expect the rapid rise of quantum data. Note that, in 
the near term, these quantum data will be stored on classical devices 
in the form of efficient descriptions of quantum circuits that prepare 
the datasets.

Finally, as our level of control over quantum technologies pro-
gresses, coherent transduction of quantum information from the 
physical world to digital quantum computing platforms may be 
achieved19. This would quantum mechanically mimic the main 
information acquisition mechanism for classical data from the 
physical world, this being analog–digital conversion. Moreover, we 
can expect that the eventual advent of practical quantum error cor-
rection24 and quantum memories25 will allow us to store quantum 
data on quantum computers themselves.

Models. Analyzing and learning from data requires a parameter-
ized model, and many different models have been proposed for 
QML applications. Classical models such as neural networks and 
tensor networks (as shown in Fig. 1) are often useful for analyzing 
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Fig. 1 | QML tasks. QML is usually considered for four main tasks. These 
include tasks where the data are either classical or quantum, and where 
the algorithm is either classical or quantum. Top left: tensor networks 
are quantum-inspired classical methods that can analyze classical data. 
Top right: unitary time-evolution data U from a quantum system can be 
classically compiled into a quantum circuit. bottom left: handwritten 
digits can be mapped to quantum states for classification on a quantum 
computer. bottom right: molecular ground-state data can be classified 
directly on a quantum computer. The figure shows the dependence of 
ground-state energy E on the distance d between the atoms.
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Fig. 2 | Key applications for QML. QML has been envisioned to bring 
a computational advantage in many applications. QML can enhance 
quantum simulation for chemistry (for example, molecular ground states110, 
equilibrium states47 and time evolution112) and materials science (for 
example, quantum phase recognition11 and generative design with a target 
property in mind130). QML can enhance quantum computing by learning 
quantum error correction codes11,109 and syndrome decoders, performing 
quantum control, learning to mitigate errors and compiling and optimizing 
quantum circuits. QML can enhance sensing and metrology46,104–107 and 
extract hidden parameters from quantum systems. Finally, QML may speed 
up classical data analysis, including clustering and classification.
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data from quantum experiments. However, due to their novelty, we 
will focus our discussion on quantum models using quantum algo-
rithms, where one applies the learning methodology directly at the 
quantum level.

Similarly to classical ML, there exist several different QML para-
digms: supervised learning (task based)26–28, unsupervised learning 
(data based)29,30 and reinforced learning (reward based)31,32. While 
each of these fields is exciting and thriving in itself, supervised 
learning has recently received considerable attention for its poten-
tial to achieve quantum advantage26,33, resilience to noise34 and good 
generalization properties35–37, which makes it a strong candidate 
for near-term applications. In what follows we discuss two popular 
QML models: QNNs and quantum kernels, shown in Fig. 3, with a 
particular emphasis on QNNs as these are the primary ingredient of 
several supervised, unsupervised and reinforced learning schemes.

Quantum neural networks. The most basic and key ingredient in 
QML models is parameterized quantum circuits (PQCs). These 
involve a sequence of unitary gates acting on the quantum data 
states |ψj〉, some of which have free parameters θ that will be trained 
to solve the problem at hand38. PQCs are conceptually analogous to 
neural networks, and indeed this analogy can be made precise: that 
is, classical neural networks can be formally embedded into PQCs39.

This has led researchers to refer to certain kinds of PQC as 
QNNs. In practice, the term QNN is used whenever a PQC is 
employed for a data science application, and hence we will use the 
term QNN in what follows. QNNs are employed in all three QML 
paradigms mentioned above. For instance, in a supervised classi-
fication task, the goal of the QNN is to map the states in different 

classes to distinguishable regions of the Hilbert space26. Moreover, 
in the unsupervised learning scenario of ref. 29, a clustering task is 
mapped onto a MAXCUT problem and solved by training a QNN to 
maximize distance between classes. Finally, in the reinforced learn-
ing task of ref. 32, a QNN can be used as the Q-function approxima-
tor, which can be used to determine the best action for a learning 
agent given its current state.

Figure 4 gives examples of three distinct QNN architectures 
where in each layer the number of qubits in the model is increased, 
preserved or decreased. In Fig. 4a we show a dissipative QNN40 
which generalizes the classical feedforward network. Here, each 
node corresponds to a qubit, while lines connecting qubits are uni-
tary operations. The term dissipative arises from the fact that qubits 
in a layer are discarded after the information forward-propagates 
to the (new) qubits in the next layer. Figure 4b shows a standard 
QNN where quantum data states are sent through a quantum cir-
cuit, at the end of which some or all of the qubits are measured. 
Here, no qubits are discarded or added as we go deeper into the 
QNN. Finally, Fig. 4c depicts a convolutional QNN11, where in 
each layer qubits are measured to reduce the dimension of the data 
while preserving its relevant features. Many other QNNs have been 
proposed41–45, and constructing QNN architectures is currently an 
active area of research.

To further accommodate the limitation of near-term quantum 
computers, we can also employ a hybrid approach with models that 
have both classical and quantum neural networks46. Here, QNNs act 
coherently on quantum states while deep classical neural networks 
alleviate the need for higher-complexity quantum processing. Such 
hybridization distributes the representational capacity and compu-
tational complexity across both quantum and classical computers. 
Moreover, since quantum states generally have a mixture of classi-
cal correlations and quantum correlations, hybrid quantum–classi-
cal models allow for the use of quantum computers as an additive 
resource to increase the ability of classical models to represent 
quantum-correlated distributions. Applications of hybrid models 
include generating47 or learning and distilling information46 from 
multipartite-entangled distributions.

Quantum kernels. As an alternative to QNNs, researchers have pro-
posed quantum versions of kernel methods26,28. A kernel method 
maps each input to a vector in a high-dimensional vector space, 
known as the reproducing kernel Hilbert space. Then, a kernel 
method learns a linear function in the reproducing kernel Hilbert 
space. The dimension of the reproducing kernel Hilbert space could 
be infinite, which enables the kernel method to be very powerful in 
terms of expressiveness. To learn a linear function in a potentially 
infinite-dimensional space, the kernel trick48 is employed, which 
only requires efficient computation of the inner product between 
these high-dimensional vectors. The inner product is also known 
as the kernel48. Quantum kernel methods consider the computa-
tion of kernel functions using quantum computers. There are 
many possible implementations. For example, refs. 26,28 considered 
a reproducing kernel Hilbert space equal to the quantum state 
space, which is finite dimensional. Another approach13 is to study 
an infinite-dimensional reproducing kernel Hilbert space that is 
equivalent to transforming a classical vector using a quantum com-
puter. It then maps the transformed classical vectors to infinite-
dimensional vectors.

Inductive bias. For both QNNs and quantum kernels, an important 
design criterion is their inductive bias. This bias refers to the fact 
that any model represents only a subset of functions and is naturally 
biased towards certain types of function (that is, functions relating 
the input features to the output prediction). One aspect of achieving 
quantum advantage with QML is to aim for QML models with an 
inductive bias that is inefficient to simulate with a classical model. 
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Fig. 3 | Classification with QML. a, The classical data x, that is, images  
of cats and images of dogs, is encoded into a Hilbert space via some  
map x → |ψ(x)〉. Ideally, data from different classes (here represented by 
dots and stars) are mapped to different regions of the Hilbert space.  
b, Quantum data |ψ〉 can be directly analyzed on a quantum device. Here 
the dataset is composed of states representing metallic or superconducting 
systems. c, The dataset is used to train a QML model. Two common 
paradigms in QML are QNNs and quantum kernels, both of which allow 
for classification of either classical or quantum data. In kernel methods we 
fit a decision hyperplane that separates the classes. d, Once the model is 
trained, it can be used to make predictions.

Nature CoMPutatioNaL SCieNCe | VOL 2 | SePTeMbeR 2022 | 567–576 | www.nature.com/natcomputsci 569

http://www.nature.com/natcomputsci


PersPective NAture ComputAtioNAl SCieNCe

Indeed, it was recently shown49 that quantum kernels with this 
property can be constructed, albeit with some subtleties regarding 
their trainability.

Generally speaking, inductive bias encompasses any assump-
tions made in the design of the model or the optimization method 
that bias the search of the potential models to a subset in the set of 
all possible models. In the language of Bayesian probabilistic the-
ory, we usually call these assumptions our prior. Having a certain 
parameterization of potential models, such as QNNs, or choosing 
a particular embedding for quantum kernel methods13,14,26 is itself 
a restriction of the search space, and hence a prior. Adding a regu-
larization term to the optimizer or modulating the learning rate to 
keep searches geometrically local also adds inherently a prior and 
focuses the search, and thus provides inductive bias.

Ultimately, inductive biases from the design of the ML model, 
combined with a choice of training process, are what make or break 
an ML model. The main advantage of QML will then be to have the 
ability to sample from and learn models that are (at least partially) 
natively quantum mechanical. As such, they have inductive biases 
that classical models do not have. This discussion assumes that the 
dataset to be represented is quantum mechanical in nature, and is 
one of the reasons why researchers typically believe that QML has 
greater promise for quantum rather than classical data.

Training and generalization. The ultimate goal of ML (classical or 
quantum) is to train a model to solve a given task. Thus, under-
standing the training process of QML models is fundamental for 
their success.

Consider the training process, whereby we aim to find the set 
of parameters θ that lead to the best performance. The latter can 
be accomplished, for instance, by minimizing a loss function L(θ) 
encoding the task at hand. Some methods for training QML mod-
els are leveraged from classical ML, such as stochastic gradient 
descent. However, shot noise, hardware noise and unique landscape  

features often make off-the-shelf classical optimization methods 
perform poorly for QML training. (This is due to the fact that 
extracting information from a quantum state requires computing 
the expectation values of some observable, which in practice need 
to be estimated via measurements on a noisy quantum computer. 
Hence, given a finite number of shots (measurement repetitions), 
these can only be resolved up to some additive errors. Moreover, 
such expectation values will be subject to corruption due to hard-
ware noise.) This realization led to development of quantum-aware 
optimizers, which account for the quantum idiosyncrasies of the 
QML training process. For example, shot-frugal optimizers50–53 can 
employ stochastic gradient descent while adapting the number of 
shots (or measurements) needed at each iteration, so as not to waste 
too many shots during the optimization. Quantum natural gradi-
ent54,55 adjusts the step size according to the local geometry of the 
landscape (on the basis of the quantum Fisher information metric). 
These and other quantum-aware optimizers often outperform stan-
dard classical optimization methods in QML training tasks.

For the case of supervised learning, we are interested not only 
in learning from a training dataset but also in making accurate 
predictions on (generalizing to) previously unseen data. This 
translates into achieving small training and prediction errors, 
with the second usually hinging on the first. Thus, let us now con-
sider prediction error, also known as generalization error, which 
has been studied only very recently for QML13,14,35,37,56,57. Formally 
speaking, this error measures the extent to which a trained QML 
model performs well on unseen data. Prediction error depends 
on the training error as well as the complexity of the trained 
model. If the training error is large, the prediction error is also 
typically large. If the training error is small but the complexity of 
the trained model is large, then the prediction error is likely still 
large. The prediction error is small only if training error is itself 
small and the complexity of the trained model is moderate (that 
is, sufficiently smaller than training data size)14,35. The notion of 

CNOT gate

No. of qubits: constant

No. of qubits: increases

No. of qubits: decreases

UjUj

∣0〉⊗No

∣0〉⊗Nh

∣   j〉 ∣   j〉

∣   j〉
a

b c

Fig. 4 | examples of QNN architectures. a, A classical feedforward neural network has input, hidden and output layers. This can be generalized to the 
quantum setting with a dissipative QNN, where some qubits are discarded and replaced by new qubits during the algorithm. Here we show a quantum 
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⊗ |0⟩⊗(Nh+No), where |ψj〉 encodes the input data and Nh (No) is the number of ancilla qubits in the hidden (output) layer, which are initialized to 
the fiduciary state |0〉. As logical operations are performed, the information forward-propagates through the circuit into the ancillary qubits. b, Another 
possible QNN strategy is to keep the qubits fixed, without discarding or replacing them. The circuit represents consecutive application of two-qubit gates 
Uj and controlled-NOT (denoted by CNOT) gates. c, QCNNs measure and discard qubits during the algorithm. The QCNN circuit considered here is built 
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complexity depends on the QML model. We have a good under-
standing of the complexity of quantum kernel methods13,14, while 
more research is needed on QNN complexity. Recent theoreti-
cal analysis of QNNs shows that their prediction performance is 
closely linked to the number of independent parameters in the 
QNN, with good generalization obtained when the number of 
training data is roughly equal to the number of parameters35. This 
gives the exciting prospect of using only a small number of train-
ing data to obtain good generalization.

Challenges in QML
Heuristic fields can face periods of stagnation (or ‘winters’) due to 
unforeseen technical challenges. Indeed in classical ML, there was 
a gap between introducing a single perceptron58 and the multilayer 
perceptron59 (that is, neural network), and there was also a gap 
between attempts to train multiple layers and the introduction of 
the backpropagation method60.

Naturally we would like to avoid these stagnations or winters for 
QML. The obvious strategy is to try to determine all of the chal-
lenges as quickly as possible, and focus research effort on address-
ing them. Fortunately, QML researchers have adopted this strategy. 
Figure 5 showcases some of the different elements of QML mod-
els, as well as the challenges associated with them. In this section 
we detail various QML challenges and how they could potentially  
be avoided.

Embedding schemes and quantum datasets. The access to high-
quality, standardized datasets has played a key role in advancing 
classical ML. Hence, one could conjecture that such datasets will be 
crucial for QML as well.

Currently, most QML architectures are benchmarked using clas-
sical datasets (such as MNIST, Dogs vs Cats and Iris). While using 
classical datasets is natural due to their accessibility, it is still unclear 
how to best encode classical information onto quantum states. 
Several embedding schemes have been proposed22,26,61, and there are 
some properties they must possess. One such property is that the 
inner product between output states of the embedding is classically 
hard to simulate (otherwise the quantum kernel would be classically 
simulable). In addition, the embedding should be practically useful: 
that is, in a classification task, the states should be in distinguish-
able regions of the Hilbert space. Unfortunately, embeddings that 
satisfy one of these properties do not necessarily satisfy the other62. 
Thus, developing encoding schemes is an active area of research, 
especially those that are equipped with an inductive bias containing 
information about the dataset49.

Furthermore, some recent results suggest that achieving a quan-
tum advantage with classical data might not be straightforward49. 
On the other hand, QML models with quantum data have a more 
promising route towards a quantum advantage63–66. Despite this fact, 
there is still a dearth of truly quantum datasets for QML, with just 
a few recently proposed67,68. Hence, the field needs standardized 
quantum datasets with easily preparable quantum states, as these 
can be used to benchmark QML models on true quantum data.

Quantum landscapes. Training the parameters of the QML model 
corresponds in a wide array of cases to minimizing a loss function 
and navigating through a (usually non-convex) loss function land-
scape in search of its global minimum. Technically speaking, the 
loss function defines a map from the model’s parameter space to the 
real values. The loss function value can quantify, for instance, the 
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phenomenon (c). When a QML architecture exhibits a barren plateau, the landscape becomes exponentially flat (on average) as the number of qubits 
increases (seen as a transition from dashed to solid line). The presence of hardware noise has been shown to erase the features in the landscape as well as 
potentially shifting the position of the minima. Here, the dashed (solid) line corresponds to the noiseless (noisy) landscape shown in d.
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model’s error in solving a given task, so our goal is to find the set of 
parameters that minimizes such error. Quantum landscape theory69 
aims to understand QML landscape properties and how to engineer 
them. Local minima and barren plateaus have received substantial 
attention in quantum landscape theory.

Local minima in quantum landscapes. As schematically shown in 
Fig. 5b, similarly to classical ML, the quantum loss landscape can 
have many local minima. Ultimately, this can lead to the overall 
non-convex optimization being NP-hard70, which is again similar 
to the classical case. There have been some methods proposed to 
address local minima. For example, variable structure QNNs71,72, 
which grow and contract throughout the optimization, adaptively 
change the model’s prior and allow some local minima to be turned 
into saddle points. Moreover, evidence of the overparametrization 
phenomenon has been seen for QML73,74. Here, the optimization 
undergoes a computational phase transition, due to spurious local 
minima disappearing, whenever the number of parameters exceeds 
a critical value.

Overview of barren plateaus. Local minima are not the only issue fac-
ing QML, as it has been shown that quantum landscapes can exhibit 
a fascinating property known as a barren plateau57,75–87. As depicted 
in Fig. 5c, in a barren plateau the loss landscape becomes, on aver-
age, exponentially flat with the problem size. When this occurs, the 
valley containing the global minimum also shrinks exponentially 
with problem size, leading to a so-called narrow gorge69. As a conse-
quence, exponential resources (for example, numbers of shots) are 
required to navigate through the landscape. The latter impacts the 
complexity of the QML algorithm and can even destroy quantum 
speedup, since quantum algorithms typically aim to avoid the expo-
nential complexity normally associated with classical algorithms.

Barren plateaus from ignorance or insufficient inductive bias. The 
barren plateau phenomenon has been studied in deep hardware-
efficient QNNs75, where they arise due to the high expressivity of 
the model79. By making no assumptions about the underlying data, 
deep hardware-efficient architectures aim to solve a problem by 
being able to prepare a wide range of unitary evolutions. In other 
words, the prior over hypothesis space is relatively uninformed. 
Barren plateaus in this unsharp prior are caused by ignorance or the 
lack of sufficient inductive bias, and therefore a means to avoid them 
is to input knowledge into the construction of the QNN—making 
the design of QNNs with good inductive biases for the problem at 
hand a key solution.

Fortunately various strategies have been developed to address 
these barren plateaus, such as clever initialization88, pretrain-
ing and parameter correlation80,81. These are all examples of 
adding a sharper prior to the search over the overexpressive param-
eterizations of hardware-efficient QNNs. Below we further dis-
cuss how QNN architectures can be designed to further introduce  
inductive bias.

Barren plateaus from global observables. Other mechanisms have 
been linked to barren plateaus. Simply defining a loss function 
based on a global observable (that is, observables measuring all 
qubits) leads to barren plateaus even for shallow circuits with sharp 
priors76, while local observables (those comparing quantum states 
at the single-qubit level) avoid this issue76,85. The latter is due not to 
bad inductive biases but rather to the fact that comparing objects 
in exponentially large Hilbert spaces requires an exponential preci-
sion, as their overlap is usually exponentially small.

Barren plateaus from entanglement. While entanglement is one of 
the most important quantum resources for information processing 
tasks in quantum computers, it can also be detrimental for QML 

models. QNNs (or embedding schemes) that generate too much 
entanglement also lead to barren plateaus82,84,86. Here, the issue 
arises when the visible qubits of the QNN (those that are measured 
at the QNN’s output) are entangled with a large number of qubits 
in the hidden layers. Due to entanglement, the information of the 
state is stored in non-local correlations across all qubits, and hence 
the reduced state of the visible qubits concentrates around the maxi-
mally mixed state. This type of barren plateau can be solved by tam-
ing the entanglement generated across the QNN.

QNN architecture design. One of the most active areas is devel-
oping QNN architectures that have sharp priors. Since QNNs are 
a fundamental ingredient in supervised learning (deep learning, 
kernel methods), but also in unsupervised learning and reinforced 
learning, developing good QNN architectures is crucial for the field.

For instance, it has been shown that QNNs with sharp priors can 
avoid issues such as barren plateaus altogether. One such example is 
quantum convolutional neural networks (QCNNs)11. QCNNs pos-
sess an inductive bias from having a prior over the space of archi-
tectures that is much sharper than that of deep hardware-efficient 
architectures, as QCNNs are restricted to be hierarchically struc-
tured and translationally invariant. The notable reduction in the 
expressivity and parameter space dimension from this translational 
invariance assumption yields the greater trainability80.

The idea of embedding knowledge about the problem and data-
set into our models (to achieve helpful inductive bias) will be key to 
improve the trainability of QML models. Recent proposals use quan-
tum graph neural networks89 for scenarios where quantum subsys-
tems live on a graph, and potentially have further symmetries. For 
instance, the underlying graph-permutation symmetries of a quan-
tum communication dataset were taken into account by a quantum 
graph convolutional network. Similarly, a quantum recurrent neural 
network has been used in scenarios where temporal recurrence of 
parameters occurs—for example, in the quantum dynamics of a sta-
tionary (time-dependent) quantum dynamical process.

To better understand how to go beyond the aforementioned 
inductive biases from temporal and/or translational invariance in 
grids and graphs, we can take inspiration from recent advances in 
the theory of classical deep learning. In classical ML, the study of the 
group theory behind graph neural networks, namely the concepts of 
invariance and equivariance to various group actions on the input 
space, has led to a unifying theory of deep learning architectures 
based on group theory, called geometric deep learning theory90.

To have a prescription to create arbitrary architectures and 
inductive biases suitable for a given set of quantum physical data, a 
theory of quantum geometric deep learning could be key to design 
architectures with the right prior over the transformation space 
and inductive biases to ensure trainability and generalization. As 
the study of physics is often about the identification of inherent or 
emergent symmetries in particular systems, there is great potential 
for a future unifying theory of quantum geometric deep learning 
to provide consistent methods to create QML model architectures 
with inductive biases encoding knowledge of the basic symmetries 
and principles of the quantum physical system underlying given 
quantum datasets. This approach has been recently explored in refs. 
91–93. Moreover, the works 74,94 have also shown that the Lie algebra 
obtained from the generators of the QNN can be linked to proper-
ties of the QML landscape such as the presence of barren plateaus or 
the overparametrization phenomenon.

Effect of quantum noise. The presence of hardware noise during 
quantum computations is one of the defining characteristics of noisy 
intermediate-scale quantum (NISQ) computing. Despite this fact, 
most QML research neglects noise in the analytical calculations and 
numerical simulations while still promising that the methods are 
near-term compatible. Accounting for the effects of hardware noise 
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should be a crucial aspect of QML analysis if we wish to pursue a 
quantum advantage with currently available hardware.

Noise corrupts the information as it forward-propagates in a 
quantum circuit, meaning that deeper circuits with longer run-
times will be particularly affected. As such, noise affects all aspects 
of the model that make use of quantum computers. This includes 
the dataset preparation scheme as well as circuits used to compute 
quantum kernels. Moreover, when using QNNs, noise can hinder 
their trainability as it leads to noise-induced barren plateaus87,95. 
Here, the relevant features of the landscape become exponentially 
suppressed by noise as the depth of the circuit increases (Fig. 5d). 
Ultimately, the effects of noise translate into a deformation of the 
inductive bias of the model from its original one, and an effective 
reduction of the dimension of the quantum feature space. Despite 
the critical impact of quantum noise, its effects are still largely unex-
plored, particularly its impact on the classical simulability of the 
QML model96,97.

Addressing noise-induced issues will likely require either (1) 
reduction in hardware error rates, (2) partial quantum error cor-
rection98 or (3) employing QNNs that are relatively shallow (that 
is, whose depth grows sublinearly in the problem size)87, such as 
QCNNs. Error mitigation techniques99–101 can also improve perfor-
mance of QML models in the presence of noise, although they may 
not solve noise-induced trainability issues95. A different approach to 
dealing with noise is to engineer QML models with noise-resilient 
properties34,102,103 (such as the position of the minima not changing 
due to noise).

outlook
Potential for quantum advantage. The first quantum advantages in 
QML will likely arise from hidden parameter extraction from quan-
tum data. This can be for quantum sensing or quantum state clas-
sification/regression. Fundamentally, we know from the theory of 
optimal measurement that non-local quantum measurements can 
extract hidden parameters using fewer samples. Using QML, one 
can form and search over a parameterization of hypotheses for such 
measurements.

This is particularly useful when such optimal measurements 
are not known a priori—for example, identifying the measurement 
that extracts an order parameter or identifies a particular phase of 
matter. As the information about this classical parameter is embed-
ded in the structure of quantum correlations between subsystems, 
it is natural that a trained QML model with good inductive biases 
can exhibit an advantage over local measurements and classical 
representations.

Another area of application where classical parameter extraction 
may yield an advantage is in quantum machine perception46,63,104–107, 
that is, quantum sensing, metrology and beyond. Here, leveraging 
the variational search over multipartite-entangled states for input 
to exposure to a quantum signal along with the optimization for 
optimal control and/or over post-processing schemes can find opti-
mal measurements for the estimation of hidden parameters in the 
incoming signal. In particular, the variational approach may be 
able to find the optimal entanglement, exposure and measurement 
scheme that filters signal from noise108, akin to variationally learn-
ing the quantum error correcting code that filters signal from noise, 
but instead applied to quantum metrology.

Beyond classical parameter extraction embedded in quantum 
data, there may be an advantage for the discovery of quantum error 
correcting codes109. Quantum error correcting codes fundamentally 
encode data (typically) non-locally into a subsystem or subspace 
of the Hilbert space. As deep learning is fundamentally about the 
discovery of submanifolds of data space, identifying and decod-
ing subspaces/subsystems from a Hilbert space that correspond to 
a quantum error correction subspace/subsystem is a natural area 
where differentiable quantum computing may yield an advantage. 

This is barely explored, mainly due to the difficulty of gaining 
insights with small-scale numerical simulations. Fundamentally, it 
is akin to a quantum data version of classical parameter embedding/
extraction advantage.

Finally, a quantum advantage for generative modeling may be 
achieved when ground states110, equilibrium states47,111 or quantum 
dynamics112 can be generated using models incorporating QNNs, in 
a situation where the distribution cannot be sampled classically, and 
yields more accurate predictions or more extensive generalization 
compared with classical ML approaches. The nearest-term possibil-
ity for demonstrating such an advantage would likely be from varia-
tional optimization at the continuous time optimal control level on 
analog quantum simulators.

What will quantum advantage look like? When the data originate 
from quantum-mechanical processes, such as from experiments in 
chemistry, material science, biology and physics, it is more likely to 
see exponential quantum advantage in ML. The quantum advantage 
could be in sample complexity or time complexity. An exponen-
tial advantage in sample complexity always implies an exponen-
tial advantage in time complexity, but the reverse is not generally 
true. It was recently shown63,65,113,114 that there is an exponential 
quantum advantage in sample complexity when we can use a quan-
tum sensor, quantum memory and quantum computer to retrieve, 
store and process quantum information from experiments. Such 
a sample complexity advantage can be proven rigorously without 
the possibility of being dequantized12,64,115 in the future, that is, it is 
impossible to find improved classical algorithms such that there is 
no exponential advantage. This substantial quantum advantage has 
recently been demonstrated on the Sycamore processor63 raising the 
hope for achieving quantum advantage using NISQ devices116.

The situation for advantage in time complexity is more subtle. 
Classical simulation of quantum process is intractable in many 
cases, hence exponential advantage in time complexity would be 
expected to be prevalent. However, we should be cautious about 
the availability of data in ML tasks, which makes classical ML 
algorithms computationally more powerful13,117. For instance,  
ref. 117 shows that in the worst case there is no exponential quan-
tum advantage in predicting ground-state properties in geometri-
cally local gapped Hamiltonians. Furthermore, the emergence of 
effective classical theory in quantum-mechanical processes could 
enable classical machines to provide accurate predictions. For 
example, density functional theory118,119 allows accurate prediction 
of molecular properties when we have an accurate approximation 
to the exchange–correlation functionals by conducting real-world 
experiments. It is still likely that an exponential advantage is pos-
sible in physical systems of practical interest, but there are no rigor-
ous proofs yet.

When the data are of a purely classical origin, such as in appli-
cations for recommending products to customers12, performing 
portfolio optimization120,121 and processing human languages122 and 
everyday images123, there is no known exponential advantage115. 
However, it is still reasonable to expect polynomial advantage. 
Furthermore, a quadratic advantage can be rigorously proven124,125 
for purely classical problems. Therefore, we likely have a potential 
impact in the long term when we have fault-tolerant quantum com-
puters, albeit with the speedup notably dampened by the overheads 
of quantum error correction126 for currently known fault-tolerant 
quantum computing schemes.

Transition to the fault-tolerant era and beyond. While QML has 
been proposed as a candidate to achieve a quantum advantage in the 
near term using NISQ devices, we can still pose a question about 
its usability in the future. Here, researchers envision two different 
chronological eras post-NISQ. In the first, which we can refer to 
as ‘partial error corrected’, quantum computers will have enough  
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physical qubits (a couple of hundred), and sufficiently small error 
rates, to allow for a small number of fully error-corrected logical 
qubits. Since one logical qubit is comprised of multiple physical 
qubits, in this era we will have the freedom to trade off and split 
the qubits in the device into a subset of error-corrected qubits along 
with a subset of non-error-corrected qubits. The next era, that is, 
the ‘fault-tolerant’ era, will arise when the quantum hardware has a 
large number of error-corrected qubits.

Indeed, we can easily envision QML being useful in both of these 
post-NISQ eras. First, in the partial error-corrected era, QML mod-
els will be able to execute high-fidelity circuits and thus have an 
improved performance. This will naturally enhance the trainability 
of the models by mitigating noise-induced barren plateaus, and also 
reduce noise-induced classification errors in QML models. Most 
importantly, QML will likely see its most widespread and critical 
use during the fault-tolerant era. Here, quantum algorithms such as 
those for quantum simulation127,128 will be able to accurately prepare 
quantum data, and to faithfully store it in quantum memories129. 
Therefore QML will be the natural model to learn, infer and make 
predictions from quantum data, as here the quantum computer will 
learn from the data themselves directly.

On the further-term horizon, we anticipate it will be possible 
to capture quantum data from nature directly via transduction 
from their natural analog form to one that is quantum digital (for 
example, via quantum analog–digital interconversion19). These data 
will then be able to be shuttled around quantum networks for dis-
tributed and/or centralized processing with QML models, using 
fault-tolerant quantum computation and error-corrected quantum 
communication. At this point, QML will have reached a stage simi-
lar to that where ML is today, where edge sensors capture data, the 
data are relayed to a central cloud and ML models are trained on 
the aggregated data. As the modern advent of widespread classical 
ML arose at this point of abundant data, one could anticipate that 
ubiquitous access to quantum data in the fault-tolerant era could 
similarly propel QML to even greater widespread use.
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