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From two-photon calcium imaging of neuronal activities1,2 and 
high-throughput genetic experiments3,4 to digital recordings of 
human mobility5–7, our ability to observe the dynamic behav-

iour of nodes in complex biological, social and technological systems 
has advanced spectacularly in the past years. The collected observa-
tions, often in the form of time-series data, allow us to extract the 
dynamic patterns of a system’s individual nodes. To gain meaning-
ful insights into the system, however, such a reductionist approach 
of tracking all the individual nodes is insufficient. Indeed, complex 
system behaviour emerges not just from the single nodes but rather 
from the dynamic interactions between the nodes6,8–18. This requires 
us to infer complex network dynamics, that is, to retrieve both self-
nodal dynamics and interaction dynamics from the accumulating 
data of network topological structure and nodes’ activities.

The balance of self versus interaction dynamics is the most natu-
rally captured by a general equation that tracks the activities of all 
the nodes via9

d xi(t)
d t = F (xi(t)) +

n∑

j=1
AijG(xi(t), xj(t)), (1)

where xi(t) ≡ (xi,1(t),…, xi,d(t))T is node i’s d-dimensional activ-
ity, representing, for example, the membrane potential of a neu-
ron in a brain network9,12, the proportion of infected people in a 
country or region5–7, or the state of a component in an oscillator 
network19. These activities are driven by the self-regulation func-
tion F(xi) ≡ (F1(xi),…, Fd(xi))T (designed to describe the dynam-
ics of all the nodes in isolation) and the pairwise function G(xi(t),  
xj(t)) ≡ (G1(xi, xj),…, Gd(xi, xj))T (which captures the dynamic mech-
anisms of interaction between the nodes). Finally, the network Aij, 
an n × n adjacency matrix, denotes the influence or flow from node 
j to i, where n is the number of nodes in the system. As shown in 
another study, with appropriate choices of nonlinear functions F 
and G, equation (1) is able to describe a broad range of complex 
systems9. However, for most real systems, the functions F and G are 

unknown. Hence, a pressing lacuna in the study of complex sys-
tems is a versatile computational toolbox for automatically inferring 
equation (1) from the observed data of network topology Aij and 
nodes’ activities xi(t).

Complex biological, social or technological systems lack the 
fundamental physical rules that govern particle systems; therefore, 
we do not have a priori knowledge of their internal microscopic 
mechanisms20. Therefore, the goal is not to only identify the model’s 
parameters but rather to retrieve the forms of F and G and infer the 
explicit model itself. Despite the recent important progress in devel-
oping methods to infer the governing equations of single- or few-
body dynamics21–27, the task of inferring network dynamics poses 
particular challenges. For example, F and G are usually of differ-
ent types; hence, one cannot obtain their compact forms when only 
using orthogonal basis functions22,23,28,29. Nodes’ activities data are 
noisy and the mappings of network topologies are usually incom-
plete30,31. Collective behaviour, such as synchronization and consen-
sus19, can conceal the specific forms of microscopic mechanisms in 
interaction dynamics. To overcome these challenges, we propose 
here a two-phase inference approach. Our analysis indicates that the 
two-phase strategy allows us to achieve efficient and—most impor-
tantly—highly accurate inference, even in the face of unfavourable 
scenarios, such as noisy or low-resolution data or an only partially 
mapped topology (Fig. 1a).

Results
Overview of the two-phase inference approach. Lacking a priori 
knowledge of the structures of F and G, a natural approach is to 
pre-construct two extensive libraries LF and LG that contain a vari-
ety of elementary functions. The combinations of these elementary 
functions can potentially generate the true network dynamics. In 
this work, the libraries contain not only orthogonal basis functions 
but include polynomial, trigonometric, exponential, fractional, res-
caling, sigmoid and other activation functions frequently used in 
various domains (Supplementary Tables 1 and 2). Large libraries are 
helpful for finding a compact and optimal model to capture network 
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dynamics but they also make the inference problem more difficult; 
due to the lack of orthogonality, the elementary functions can be 
similar with each other and thus less discriminative.

By introducing the time-series data xi(t) (where i = 1, 2,…, n) 
into LF and LG, we obtain two time-varying matrices ΘF(t) ≡ LF(xi(t)) 
and ΘG(t) ≡ LG(xi(t), xj(t)) that encode the patterns of nodes’ activi-
ties imposed by the elementary functions in LF and LG (Fig. 1b). 
Then, the inference problem can be recast to the selection of appro-
priate patterns in ΘF(t) and ΘG(t) that best match the evolution of 
observed system state ẋ(t), that is, to inferring the sparse coeffi-
cients ξF and ξG that best solve

ẋ(t) = Θ̃F(t)ξF + ÃΘ̃G(t)ξG, (2)

where Ã ≡ A⊗ Id, Θ̃F ≡ ΘF ⊗ Id and Θ̃G ≡ ΘG ⊗ Id, where the 
symbol ⊗ denotes the Kronecker product, and Id is the d-dimen-
sional identity matrix. Here we consider the general setting where 
each node state is d dimensional and the network is directed and 
heterogeneous. Consequently, the problem of inferring complex 
network dynamics is high dimensional and irreducible. Indeed, 
the number of elementary functions in LF and LG is approximately 
25, 80 or 140 when the node activity itself has one, two or three 
dimensions, respectively, in the simulation validations below 
(Supplementary Tables 1 and 2).

Our approach is a two-phase procedure consisting of global 
regression and local fine-tuning. In phase I, we approximate the 
derivatives ẋ(t) (Methods) and calculate the matrices Θ̃F(t) and 

Θ̃G(t) and then normalize each of their columns (Fig. 1b). These 
normalized data are used to identify, through regression, the lead-
ing elementary functions that are most probably constituents of true 
F and G (Fig. 1c and Methods). Phase I is able to narrow down the 
model space, but the dynamical equation inferred by such regres-
sion alone lacks generative power (Fig. 1d). Next, in phase II, we 
perform fine-tuning with the original values of ẋ(t), Θ̃F(t) and 
Θ̃G(t), that is, without normalization. We use topological samplings 
(Methods) and the weighted Akaike’s information criterion (wAIC; 
Methods) to sequentially remove the elementary functions with the 
smallest inferred coefficients (Fig. 1e). The final sets of elementary 
functions and their coefficients ξ̂F and ξ̂G compose F̂ and Ĝ, leading 
to the inferred dynamics of complex networks (Fig. 1f).

Inferring complex network dynamics. To validate the effectiveness 
of our approach, we apply it to infer five network dynamics, includ-
ing the Hindmarsh–Rose32 (HR, d = 3) and FitzHugh–Nagumo32 
(FHN, d = 2) neuronal systems, social balance dynamics33 (SB, 
d = 1), Kuramoto dynamics34 (d = 1) and coupled heterogeneous 
Rössler oscillators35 (d = 3); here d is the dimension of each node 
activity. To obtain the nodes’ activities data, we simulate these 
dynamics (Supplementary Table 4) on a variety of topologies, 
including Erdős–Rényi (ER) and scale-free (SF) synthetic net-
works and five empirical networks—cellular-level brain networks 
of Caenorhabditis elegans and Drosophila, Advogato social network, 
and power grids of Northern Europe and United States. The time 
series of node activities and each network topology are the input 
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Fig. 1 | overview of the two-phase inference approach. a, Observation data of network topology Aij, including spurious and missing links, and low-
resolution and noisy data of nodal activities xi(t). b, Mapping the normalized observation data into two matrices ΘF and ΘG that represent the time-varying 
patterns of elementary functions. c, Phase I that narrows down the model space by identifying several leading elementary functions through global 
regression for each dimension of ẋi(t). d, Comparison of trajectories generated by the true network dynamics and the dynamical equation inferred by 
phase I alone. e, Phase II that performs local fine-tuning, by using topological sampling and wAIC, to further determine the optimal number (indicated by 
purple stars) of elementary functions for F̂(xi(t)) and Ĝ(xi(t), xj(t)). f, Comparison of trajectories generated by the true and inferred dynamical equations. 
The example illustrated in c–f is hR neuronal dynamics on a directed Barabási-Albert (BA) network with size n = 100 and average degree 〈k〉 = 5.
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data to our approach. The five specific equations governing these 
dynamics are the ground truths that we aim to infer. These dynami-
cal models and networks are widely used in various domains and 
exhibit different properties (Supplementary Sections II and III), 
which accounted for the diversity of our tests.

Figure 2 illustrates the procedure of inferring FHN neuronal 
network dynamics. Through global regression, phase I identifies 
the ten most relevant elementary functions for each dimension of 
FHN (Fig. 2b); then, by local fine-tuning, phase II autonomously 
learns the compact and optimal form of the dynamical equation as 
well as the most appropriate coefficient for each of the necessary 
elementary functions (Fig. 2c). The form of the inferred equation in 
Fig. 2c perfectly matches the ground truth in Fig. 2a, and the learnt 
coefficients are also highly accurate. Indeed, the relative errors 
∆ = (ξ − ξ̂)/ξ, where ξ and ξ̂ are the true and learnt coefficients, 
respectively, are smaller than 3% (Fig. 2d). The dynamical equation 
inferred by our approach exhibits generative power, being able to 
generate nodes’ activities and trajectories that agree well with the 
observation data (Fig. 2e,f).

Our approach also successfully infers the equations govern-
ing the other four network dynamics. Regarding the accuracy of 
learnt coefficients, the relative errors |Δ| are less than 3% for the HR  
(Fig. 3a) and edge (Fig. 3c) dynamics on both synthetic and empiri-
cal networks. In Kuramoto dynamics and coupled heterogeneous 
Rössler oscillators, the self-dynamics are non-identical, that is, each 
node’s dynamics has its own form (Supplementary Section III). 
Hence, we aim to infer an effective form of equation (1) that mini-
mizes the inconsistency between the inferred and true nodes’ activi-
ties. Even for these more challenging cases, the two-phase approach 
still succeeds with relative coefficient errors |Δ| < 5% or |Δ| < 20% 
(Fig. 3e,g). Both activities and trajectories generated by the effective 

equations exhibit high agreement with the true averaging dynamics 
(Fig. 3f,h,i).

Inferrability of network dynamics. Whether a network dynamics 
is inferrable depends on several factors. Here we explore three key 
factors, namely, synchronized dynamics, dynamical heterogeneity 
and deficient libraries.

Synchronized dynamics: if a network is completely synchronized, 
that is, all its nodes behave in the same manner19,34,35, distinguish-
ing the activities of a node and its neighbours becomes impossible, 
and the microscopic interacting mechanism G(xi, xj) between the 
nodes will be cloaked and undiscoverable. In other words, the more 
synchronized a network, more difficult it is to infer its dynamics. 
Here we tune the coupling strength between the nodes to change 
the degree of network synchronization (that is, order parameter 〈R〉; 
Supplementary Section IV), and test the capability of our two-phase 
approach in inferring partially synchronized network dynamics. 
As shown in Fig. 4a, although the inference inaccuracy increases 
when the system becomes more synchronized, our approach can 
still infer the true FHN equation even when the network is highly 
synchronized (〈R〉 ≈ 0.7). The inference inaccuracy is quantified by 
a symmetric mean absolute percentage error (sMAPE; Methods). 
The more accurate the inference result, the closer the sMAPE value 
is to zero.

Dynamical heterogeneity: equation (1) assumes that nodes have 
the same form F of self-dynamics; yet this is not always true. For 
instance, although the self-dynamics of the Kuramoto model is sim-
ply one elementary function ω representing the natural frequency 
of a node, different nodes can have different values of ω. For such 
non-identical self-dynamics, it is difficult—if not impossible—to 
infer a specific form Fi(xi) for each node i due to an n-fold increase 
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Fig. 2 | inferring FHN neuronal network dynamics on synthetic and real topologies. a, True FhN dynamics used to simulate nodes’ activities data on 
various topologies. Fd and Gd are self- and interaction dynamics of the dth dimension, respectively; xi,d is the dth dimension’s state of node i, and xpi,d is 
the polynomial with order p. b, Ten leading elementary functions identified by phase I for each dimension. c, Necessary elementary functions and their 
coefficients further inferred through phase II on two synthetic networks (directed ER and undirected SF) and one empirical network (Drosophila mushroom 
body), where gFhN denotes the term (xj − xi)/k in

i . d, Relative errors Δ of the inferred elementary functions and their coefficients. Note that the elementary 
functions ruled out from ΘF and ΘG by our approach (whose coefficients are inferred as zero) are not shown. e,f, Nodes’ activities (e) and trajectories (f) 
generated by the true and inferred equations.
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in the dimensionality of potential model space (n is the network 
size). Therefore, we aim to infer an effective equation that best cap-
tures the averaging dynamics (Fig. 3e,g). Here we further explore the 
extent of dynamical heterogeneity that our approach can tolerate. 
To do so, we assign each node a value of ω randomly drawn from a 
normal distribution N (0, σ) and increase the standard deviation σ. 
The inference inaccuracy indeed increases when σ becomes larger, 
and the two-phase approach can tolerate dynamical heterogeneity 
σ ≤ 0.5 (Fig. 4b).

Deficient libraries: although two rather comprehensive librar-
ies of elementary functions are built, it is still possible that some 
elementary functions of the true unknown dynamics are missing. 
Another possibility is that the compact form of true dynamics can-
not be composed by these elementary functions. For these cases, 
our two-phase approach will infer an alternative equation to cap-
ture the system behaviours. We test such capability in gene regula-
tion and HR neuronal dynamics whose true coupling functions are 
intentionally removed from LG. As shown in Fig. 4c, the trajecto-
ries generated by the inferred and true equations are close to each 
other, and the discrepancy is small for all the nodes (Methods and 
Supplementary Section IVB).

Inferring from incomplete and noisy data. The incompleteness of 
mapped network topology and noises of observed nodes’ activities 
are inevitable in real data30,31. Hence, here we validate the robust-
ness of our two-phase approach against low resolution, dynamical 
and observational noises, and spurious and missing links, as well as 
through comparisons with previous methods23,36,37.

Low resolution: experimental and digital recording technolo-
gies often have limited measurement frequencies, inducing low 
resolution of the observed time series. To validate our approach’s 
robustness against low resolution, we numerically simulate the five 
nonlinear network dynamics in Figs. 2 and 3 with a step size of 0.01, 
and then regularly downsample the activity data. We calculate the 
failure ratios in inferring the form of true equations (Supplementary 
Fig. 14a) as well as the inference inaccuracies (Fig. 5a). The results 
show that the two-phase strategy requires only a proportion of 5% 
to 50% data for the inference.

Observational and dynamical noises: observational noises are 
induced by the measuring process and dynamical noises repre-
sent the intrinsic stochasticity in dynamics. To produce the former, 
we add Gaussian noises to the nodes’ activity data and quantify 
the intensity of observational noise with the signal-to-noise ratio 

C g1
HR

C Cg2
HR

–3%

3%

0  Δ

dxi,1/dt

dxi,1/dt dxi,2/dt dxi,3/dt

dx
i,1

/d
t

dxi,1/dt

dxi,2/dt dxi,3/dt

xi,1
3 xi,1

2 x
i,2

x
i,2

x
i,3

x
i,1

x
i,2

x
i,3

x
i,3

x
i,1

x
i,3

xi,1
2 xi,2 xi,3xi,1

a

X Ci gkura

–5%

0  Δ

5%

Cg ross

–3%

3%

0  Δ

P
ow

er
 (U

S
)

S
F

P
ow

er
 (N

or
th

er
n

 E
ur

op
e)

–20%

0  Δ

20%

3

1

–1
0

–5
–1

–10

0

1

2

True Inferred

xi,3

xi,2

xi,1

xi,3

xi,2

xi,1

xi,1

True Inferred

–0.6 0 0.6
–0.8

True Inferred

b

0 0.2 0.4
–1

0

1

2

t

x i
j

True Inferred

–1

0

1

si
n(

x i
,1

)

0 10 20
t

c d e f

g h i

E
R

S
oc

ia
l

S
F

E
R

S
F

E
R

Brain: HR neuronal dynamics

Social: SB dynamics Coupled oscillators: Kuramoto dynamics

Coupled oscillators: heterogeneous Rossler dynamics

10

0
10

0

–10

10

–10

20

0

0.4

–0.2

C
. e

le
ga

ns

True Inferred

S
F

E
R

Fig. 3 | inference accuracy for other four typical nonlinear network dynamics. a,b, Similar to Fig. 2 but for inferring hR neuronal dynamics, where the 
interaction dynamics G(xi, xj) are composed of g HR

1 ≡ 1/(1+ e10(xj−1)) and g HR
2 ≡ xi/(1+ e10(xj−1)). c,d, Relative errors (c) and six edges’ activities (d) 

of the inferred edge dynamics of social balance. e–i, Relative errors of the inferred effective equations for network dynamics of the Kuramoto model and 
coupled Rössler oscillators. In both cases, the self-dynamics are heterogeneous, that is, the intrinsic frequency of each node is not identical but follows a 
normal distribution N (1, σ) with σ = 0.1. The grey curves represent the activity of individual nodes and the black curves represent the averaging activity of 
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(Supplementary Section VA). To imitate the latter, we add a sto-
chastic term of Gaussian white noise with intensity η into the true 
dynamical equations and generate the nodes’ activities data by the 
numerical simulations of these stochastic differential equations 
(Supplementary Section VA). We test the impact of these two types 
of noise on the performance of the two-phase inference approach, 
without any denoising pre-process. As shown in Fig. 5b and 
Supplementary Fig. 14b, the approach can tolerate dynamical noise 
with η ≤ 0.15, meaning that it successfully reconstructs the hidden 
equations when the stochastic intensity is not higher than 15% of 
the average amplitude of true deterministic dynamics. Moreover, 
the approach can tolerate 30 dB observational noise (Fig. 5c and 
Supplementary Fig. 14c).

Spurious and missing links: spurious and missing links in real 
data induce an incomplete network topology Aij, which further 
leads to an inaccurate interaction matrix ΘG. To test the impact of 
these erroneous links, we randomly add or remove a fraction of 
links from the true network topology that was used to simulate the 
nodes’ activities. Owing to the topological sampling in phase II, our 
approach is able to tolerate 25% spurious and 30% missing links 
(Fig. 5d,e and Supplementary Fig. 14d,e).

Comparison with previous methods: the two most illumi-
nating and effective methods for dynamics inference are Sparse 
Identification of Nonlinear Dynamics (SINDy)23 and Algorithm for 
Revealing Network Interactions (ARNI)37. Note that ARNI origi-
nally aimed at inferring network topology but can be transferred 
to infer network dynamics by minor modification (Supplementary 
Section VC). Here we compare our approach with SINDy and 
ARNI from different aspects, including the amount of required data  
(Fig. 5f), robustness against observational noise (Fig. 5g), correlated 
dynamical noise (Fig. 5h and Supplementary Section VA), miss-
ing links (Fig. 5i) and different network sizes (Fig. 5j). Although 
ARNI needs fewer data points if network topologies are complete 
and nodal activities do not have any noise (Fig. 5f), the two-phase 
approach outperforms both SINDy and ARNI in inferring complex 
network dynamics from incomplete and noisy data (Fig. 5g–j). We 
also perform comparisons with SINDy’s variant36 regarding par-
tially synchronized or heterogeneous dynamics (Supplementary 
Figs. 13 and 17). These results indicate that our approach can better 
handle high-dimensional networked systems and better cope with 
incompleteness and noises in data.

Ablation studies: besides the two-phase strategy, our approach 
also involves three important components, namely, normalization 

in the first phase yet non-normalization in the second for solving 
the issue raised by highly skewed observations at different nodes, 
topological sampling for imitating the feature of observed incom-
plete topologies and optimal selection by wAIC for determining the 
most appropriate complexity of inferred dynamics. The essential-
ity of the two-phase strategy and the three abovementioned com-
ponents is demonstrated by ablation studies. Specifically, we ablate 
each phase or component and then assess the performance of the 
degenerated approaches. As shown in Fig. 5k,l and Supplementary 
Section VB, the inference inaccuracy (sMAPE) indeed increases if 
the phases or components are individually ablated.

Inference of empirical systems. To demonstrate the approach’s 
ability of handling empirical systems, we apply it to infer the spread-
ing dynamics of the infectious disease influenza A (H1N1). The 
network underlying this diffusion system is the worldwide airline 
network, which captures human mobility between different coun-
tries or regions and plays a dominant role for global disease spread-
ing5,6. Each entry Aij of the weighted network’s adjacency matrix 
A represents the traffic volume from node j to i, where each node 
denotes a country or region. The total passengers daily are approxi-
mately Φ = 8.9 × 106; taking into account the population Pi of each 
node i, the adjacency matrix is modified to

Âij =
Φ∑n
i=1 Pi

Aij. (3)

The magnitude order of entries in matrix Â is around 10−2 to 
10−3. The nodal activities xi(t) are extracted from the daily reports 
of infected cases in each country or region. Here we consider the 
nodes whose accumulated H1N1 cases are more than 100 and focus 
on the early spreading dynamics, that is, within the 45 days since 
the first case was reported in each node: this captures the system 
behaviour before government control.

Based on these empirical data, our approach successfully infers a 
concise effective dynamical equation

dxi
d t = axi + b

N∑

j=1
Âij

1
1+ e−(xj−xi)

, (4)

where a = 0.074 and b = 7.130 (Supplementary Section VI and 
Supplementary Fig. 18). It is interesting that our approach infers a 

0 4 8 12 16 20

0

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

a b

0 0.2 0.4
σ

0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0
Kuramoto

(heterogeneous
self-dynamics)

In
fe

re
nc

e 
in

ac
cu

ra
cy

 (
sM

A
P

E
)

c

–0
.4

–0
.2 0

0.
2

0.
4

0.
6

x

–0.6

–0.4

–0.2

0

0.2

0.4

dx
/d

t

NED = 0.21

0.6
InferredTrue

HR dynamics

Coupling strength

In
fe

re
nc

e 
in

ac
cu

ra
cy

 (s
M

A
P

E
)

Synchronization (<R>)
Inference inaccuracy (sMAPE)

<R
>

FHN dynamics

T
ra

je
ct

or
ie

s 
di

sc
re

pa
nc

y 
(N

E
D

) 

Gene HR
0

0.2

0.4

0.6

0.8

1.0

Fig. 4 | inferrability of network dynamics. a, Inference inaccuracy represented by sMAPE and synchronization represented by order parameter 〈R〉 versus 
coupling strength between the nodes. b, Inaccuracy of inferred effective equation for Kuramoto network dynamics where the natural frequency ω of each 
node follows a normal distribution N (1, σ). Larger σ indicates higher dynamical heterogeneity. c, NED (Methods) when some true elementary functions 
were deliberately removed from libraries LF and LG. The box–whisker plots are visualized with the Tukey method (the box represents the interquartile range 
(IQR) and the line in the box indicates the median, with whiskers that extend 1.5 times the IQR from the box edges; the outliers are also shown) and the 
sample size is 100. The networks are SF with size n = 100 and average degree 〈k〉 = 5.0. The simulation details are shown in Supplementary Table 4.

NATuRe CompuTATioNAl SCieNCe | VOL 2 | MARCh 2022 | 160–168 | www.nature.com/natcomputsci164

http://www.nature.com/natcomputsci


ArticlesNATure CompuTATIoNAl SCIeNCe

sigmoid (nonlinear) form, rather than the linear form of epidemic 
models, to better capture the interaction dynamics. This might be 
caused by the fact that people usually consciously travel less if their 
countries/regions or the destinations have a higher infection risk. 
Although equation (4) describes the dynamics of all the nodes with 
the same parameters a and b, we also extend it by taking into account 
dynamical heterogeneity in the nodes, that is, to obtain ai and bi from 
each node i’s activity data (Fig. 6b–e and Supplementary Fig. 18).

Because empirical systems lack ground truths, we verify the 
inferred equation (4) by testing its generalizability to the spread of 
severe acute respiratory syndrome (SARS) and coronavirus disease 
2019 (COVID-19). Based on the daily reported numbers within the 

first 45 days in each node, we find that equation (4) is also able to 
capture the early spread of SARS and COVID-19 on the worldwide 
airline network. Indeed, as shown in Fig. 6f–i and Supplementary 
Figs. 19 and 20, evolution of the cumulative numbers of SARS cases 
(for nodes whose eventual infected cases are more than 100) and 
COVID-19 cases (for nodes whose eventual infected cases are more 
than 2,000) agree well with the activities generated by equation (4) 
with heterogeneous parameters ai and bi.

Discussion
Many real networks have been mapped so far, but there are still com-
plex systems whose network structure information is totally missing.  
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For the latter, a possible scheme is inferring their topological struc-
ture, especially directed or causal networks30,37–41, from nodes’ activi-
ties data first and then applying our approach to infer the system 
dynamics. It is worth noting that inferring the network structure 
from nodes’ activities data is also challenging, especially when the 
number of nodes is large42,43, because the number of parameters 
needing to be estimated is about n2 (where n is the network size). 
Therefore, how to simultaneously infer both structure and dynamics 
of large, complex systems is still an outstanding problem.

Our work also raises several questions worthy of future pursuit. 
First, stochasticity in the dynamics of some real complex systems 
might be stronger than that considered in this work. Such highly 
stochastic systems are better described by stochastic differential 
equations29,44–46. Second, our approach does not account for discrete 
or Boolean dynamics, or systems that contain thresholding terms or 
exhibit irregular dynamics with instability properties47. Third, when 
the nodal activity is multidimensional, experimental access might 
be limited to a sub-dimension of the activity vector. The Koopman 
operator and time-delay embedding techniques are helpful for cap-
turing the dynamical properties of sub-dimension observable sys-
tems48. Yet, the problem remains unsolved for complex networked 
systems. Finally, the nodes in a complex system can have higher-
order—beyond pairwise—couplings, and such higher-order inter-
actions may impact the dynamics of networked systems49,50. Hence, 
it is an interesting direction to extend the approach to inferring 
higher-order network dynamics.

methods
Two-phase inference approach. The left-hand side of equation (1) represents the 
time-varying derivative of each node’s activity, which can be numerically obtained 
from xi(t) through the five-point approximation51

ẋt ≈
xt−2δt − 8xt−δt + 8xt+δt − xt+2δt

12δt
, (5)

where δt is the time step. Hence, the specific goal is to infer both exact structure 
and corresponding coefficients of the self-dynamics function F(xi(t)) and the 
interaction dynamics function G(xi(t), xj(t)).

Because we lack a priori knowledge of the forms of F and G, we construct two 
comprehensive libraries, namely, LF and LG, for self- and interaction dynamics, 
respectively, including polynomial, trigonometric, exponential, fractional, rescaling 
and various activation functions (Supplementary Tables 1 and 2). By introducing 
the observed time series of nodes’ activities to the elementary functions in LF and 
LG, we obtain two matrices ΘF(t) = LF(xi(t)) and ΘG(t) = LG(xi(t), xj(t)) that describe 
the corresponding behaviours of these elementary functions (Supplementary  
Fig. 1). To infer the compact forms that best match equation (2), we propose a  
two-phase approach.

Phase I, global regression: the purpose of this phase is to assess the  
relevance of each elementary function in LF and LG to the true, yet unknown, 
network dynamics. Given the observations of xi(t) for all i at time t, we 
approximate the derivatives ẋ(t) and calculate the matrices Θ̃F(t) and Θ̃G(t).  
These values are highly skewed and can span several orders of magnitude 
(Supplementary Fig. 3) due to the skewness of node degrees and nonlinearity  
of system dynamics, which could induce an overestimation of the importance  
for inherently low-value constituents. To eliminate this severe effect, it is  
crucial to normalize each column in ẋ(t), Θ̃F(t) and Θ̃G(t). Then, the  
inference problem described by equation (2) is further recast to an  
optimization formula:
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arg min
ξF ,ξG

∫ T

0

(

∥ Θ̃F(t)ξF + ÃΘ̃G(t)ξG − ẋ(t)∥2
)

dt + λ(∥ξF∥ + ∥ξG∥), (6)

where λ > 0 is a hyper-parameter that regulates the sparsity of coefficient vectors ξF 
and ξG. We employ the regression analysis method of the least absolute shrinkage 
and selection operator to solve equation (6) and perform a fivefold validation to 
obtain the most appropriate value of λ (Supplementary Section IB). The resultant 
ξF and ξG capture the relevance of each elementary function in LF and LG, enabling 
the identification of leading elementary functions that are most probably the 
constituents of the true F and G (Fig. 1c). Consequently, phase I is able to narrow 
down the model space. However, the dynamical equation inferred by such 
regression alone lacks generative power. For instance, as shown in Fig. 1d, the 
trajectory generated by an inferred dynamical equation of phase I deviates from 
that of the true network dynamics.

Phase II, local fine-tuning: to reconstruct generative and concise expressions 
for F and G, we next perform fine-tuning in the reduced model space 
(Supplementary Section IB). In contrast to phase I, we now use the original 
values of ẋ(t), Θ̃F(t) and Θ̃G(t), that is, without normalization, to further 
identify the necessary elementary functions and learn their precise coefficients. 
Since spurious or missing links in the observed network topology have an 
adverse effect on learning, we perform topological sampling (discussed later) 
that imitates the feature of observed—usually incomplete—topologies. Another 
issue is to determine the minimal number of elementary functions required 
for reconstructing F and G. To do so, we sequentially remove the elementary 
functions with the smallest inferred coefficients and calculate, using a weighted 
version of Akaike’s information criterion (wAIC; discussed later), the information 
inconsistency between the observed nodes’ activities and the remaining set of 
elementary functions. This process stops when removing a certain elementary 
function consistently increases the value of wAIC. As shown in Fig. 1e, each curve 
in a plot at the left column represents the information inconsistency versus model 
complexity for one topological sample. We find that, indeed, the joint operation 
with wAIC and topological sampling is helpful for inference from noisy and 
incomplete data (Fig. 5k,l).

The final sets of elementary functions and their coefficients ξ̂F and ξ̂G  
compose the forms F̂ and Ĝ, leading to the successful inference of network 
dynamics described by equation (1). Indeed, as demonstrated in Fig. 1f, the 
trajectory generated by the inferred dynamical equation agrees well with the 
numerical simulations of the true network dynamics. It is worth noting that the 
ground truth, that is, the form of the true equation, remains unknown during 
the whole procedure and is only used to assess the accuracy of the final inferred 
results; hence, our approach works in an autonomous, unsupervised way.

wAIC. The original Akaike’s information criterion (AIC)52 is a frequently 
used method to balance the fitting and complexity of a model with respect to 
the observed data, defined as AIC = nlogMSE + 2p, where n is the number of 
observations, MSE is the mean squared error of the regression result of the model 
and p is the number of variables. By using AIC, one aims to select an optimal 
model that best fits the observations with the fewest variables from the model 
candidates. However, we find that the original AIC does not work well in the 
inference problem we aim to solve in the present work. Hence, we introduce a 
weighted version of AIC (namely, wAIC) as

wAIC =

{
w(n logMSE + 2p), (n logMSE + 2p) ≥ 0,

(n logMSE + 2p)/w, (n logMSE + 2p) < 0,
(7)

which balances the fitting accuracy and model complexity. Here w is the inferred 
coefficient of a term from phase I. A term with a larger w inferred by phase I 
is more likely to be able to capture the properties of the underlying unknown 
dynamics. Thus, multiplying w or 1/w with AIC amplifies the impact of removing 
this term from the equation. The smaller the wAIC, the more consistent is the 
composition of the elementary functions with the observed data and less important 
is this removed term.

To be specific, to evaluate the relevance of term i, we remove this term from the 
equation inferred by phase I and calculate the value of wAICi of the new, shorter 
equation (Supplementary Fig. 2). We repeat this process to obtain the wAIC for 
each term. Then, we sort these terms based on their wAIC values, and remove 
terms one by one with wAIC values from small to large. This operation gives a 
shorter equation at each step, and we calculate the AIC values of these shortened 
equations. The optimal equation is determined at the turning point where the 
curve starts to consistently increase (Fig. 1e, purple stars).

Topological sampling. We perform topological sampling in phase II as follows. 
We randomly choose S nodes from all n nodes, and obtain the activities of these 
S nodes’ partial neighbours. Introducing the sampled ego structures and nodes’ 
activities into libraries LF and LG allows us to construct the self- and interaction 
matrices Θ̃F and Θ̃G, respectively, as well as to further distil the elementary 
functions and their coefficients. We repeat the process to obtain K sets of samples 
and average the coefficients of the elementary functions inferred from the K 
sample sets. In the present work, we set S = 10 and K = 20.

sMAPE. The inference inaccuracy is quantified by sMAPE53:

sMAPE =
1
m

m∑

i=1

|Ii − Ri|

(|Ii| + |Ri|)
, (8)

where m is the cardinal number of the set that contains both inferred and 
true elementary functions and Ii and Ri are the inferred and true coefficients, 
respectively. The range of sMAPE is [0, 1]. The more accurate the inferred 
equation, the lower is the value of sMAPE. Note that if an inferred elementary 
function should not exist in the true equation or a true elementary function is not 
successfully inferred, the value of sMAPE increases. Therefore, sMAPE captures 
not only the errors of inferred coefficients but also the incorrectness of the inferred 
equation form.

NED. To evaluate the discrepancy between the inferred and true dynamics, we 
used the metric of normalized Euclidean distance (NED) that represents the 
distance between the two trajectories generated by the inferred and true dynamical 
equations. That is,

NED (xi, x̂i) =
1

Dmax(T − t0)

T∑

t=t0

√

(xi(t) − x̂i(t))2 + (ẋi(t) − ˙̂xi(t))
2. (9)

Here xi is the true trajectory and x̂i is the trajectory generated by the inferred 
equation; t0 and T are the beginning and ending times, respectively; and Dmax is the 
longest Euclidean distance between a pair of points of the true trajectory.

Data availability
Source data are provided with this paper. The empirical network data include  
C. elegans connectome54–56, the mushroom-body region of Drosophila57, Northern 
Europe power grid58, the US power grid59, Advogato social network60 retrieved from 
https://networkrepository.com/ and worldwide airline network data retrieved from 
OpenFlights (https://openflights.org/data.html). The empirical data of epidemic 
spreading include daily reported numbers of H1N1 and SARS cases available at 
Kaggle (https://www.kaggle.com/lnunes/a-brief-comparative-study-of-epidemics/
data) and the daily reported numbers of COVID-19 cases61.

Code availability
All the source codes are publicly available at the Code Ocean capsule62.
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