Integrating multi-modal features is challenging due to the differences in the underlying distributions of each data type and the nonlinear associations across modalities. The deepManReg model improves the identification and interpretability of associations between modalities defining complex phenotypes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Zhu, C., Preissl, S. & Ren, B. Nat. Methods 17, 11–14 (2020).
Cadwell, C. R. et al. Nat. Protoc. 12, 2531–2553 (2017).
Nguyen, N. D., Huang, J. & Wang, D. Nat. Comput. Sci. https://doi.org/10.1038/s43588-021-00185-x (2022).
Lähnemann, D. et al. Genome Biol. 21, 1–35 (2020).
Joshi, G., Walambe, R. & Kotecha, K. IEEE Access 9, 59800–59821 (2021).
Welch, J. D., Hartemink, A. J. & Prins, J. F. Genome Biol. 18, 1–19 (2017).
Nguyen, N. D., Blaby, I. K. & Wang, D. BMC Genomics 20, 1003 (2019).
Osorio, D. et al. Patterns 1, 100139 (2020).
Efremova, M. & Teichmann, S. A. Nat. Methods 17, 14–17 (2020).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Osorio, D. Interpretable multi-modal data integration. Nat Comput Sci 2, 8–9 (2022). https://doi.org/10.1038/s43588-021-00186-w
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-021-00186-w