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Electron correlation in metals has been a research interest for 
much of the past century. Accurate total energy evaluation in 
metals has therefore been an important milestone to demon-

strate the generalizability of electronic structure methods. When 
it comes to many-body perturbation theories, methods that show 
potential include those that perform resummations to improve 
accuracy and numerical stability1–5. One such method is coupled 
cluster theory, and its success in molecular quantum chemistry has 
led many to start developing these same tools for solids6–15. A crucial 
barrier to the widespread adoption of these methods for calcula-
tions in solids is the finite-size errors that can arise when simulating 
the bulk limit of a material with a supercell7. A method that can 
overcome this barrier would come to play a central role in under-
standing and predicting chemical processes in the gas phase, con-
densed matter systems and on surfaces.

One hurdle on the journey to a universal application of periodic 
coupled cluster theory to all solids is applying the above successes 
to real metals. The quintessential property of a metal—that it has a 
zero gap—has led to the view of coupled cluster calculations being 
intractable. This view comes from experiences in molecular systems 
with small gaps between the highest occupied molecular orbital 
(HOMO) and lowest unoccupied molecular orbital (LUMO); such 
systems are prone to strong correlation effects that are inacces-
sible by single reference methods such as coupled cluster theories. 
However, simulations of metals are also notorious for requiring 
larger supercells than those of insulators. This allows for more 
dense k-point grids to model the effects of long-range correlation. 
An alternative to denser grids is to use twist averaging16,17, which 
averages the energy over all k-point grid offsets (called twist angles); 
however, larger supercells and twist averaging both have a prohibi-
tive cost in computational time.

Here we show that the twist-averaged energy can be found with-
out the need to average over grid offsets directly, with a one or two 
orders of magnitude reduction in computational time. We do so by 
finding a special twist angle using the transition structure factor9, 
which is a map of electronic excitations from the Hartree–Fock 
(HF) wavefunction. We also show that this was a key bottleneck in 

converging coupled cluster theory calculations to the thermody-
namic limit (TDL) by showing examples of coupled cluster theory 
singles and doubles (CCSD) calculations applied to insulators, 
semiconductors and metals. We also converge the TDL and com-
plete basis set limit total energies for two metallic phases of lithium 
and the semiconductor-to-metal transition in silicon. For silicon, 
we compare our results with other calculations and experimental 
measurements of the transition pressure18–24. Overall, this paper 
demonstrates that the success found in the recent treatments of the 
uniform electron gas25–35 can be transferred to solids.

Results
Structure-factor-based twist averaging method. As described 
above, a computational time cost bottleneck in converging coupled 
cluster theory calculations to the bulk limit originates from the 
required density of points used to sample the first Brillouin zone by 
means of a twist-averaging procedure. Each point is a momentum 
vector used to offset k-point grids. The key idea of our approach is 
based on the premise that the electronic transition structure factor 
can be used to find a single special offset for coupled cluster theory 
calculations, achieving the same accuracy as with the twist-averag-
ing procedure. This is based on using a method that uses less com-
puter time than CCSD to calculate a twist-averaged structure factor 
and choosing a specific twist from the same set of random offsets to 
best match the average (this is summarized below with additional 
details in the Methods). In doing so, the number of required cou-
pled cluster theory calculations can be reduced by one or two orders 
of magnitude depending on how many twist angles were required 
for the original twist average. Figure 1a,b illustrate this idea sche-
matically in the workflow of a typical solid-state calculation.

The results of applying our procedure is shown in an illustra-
tive example (Fig. 1c,d) of the transition structure factor of sodium 
metal. Throughout this paper we used second-order Møller–Plesset 
perturbation theory (MP2) and CCSD theory as the low- and high-
level methods, respectively. When twist averaging CCSD (Fig. 1c), 
it can be seen that the error is not converged (indicating unders-
ampling) for fewer than 40 twist angles. When our sfTA scheme is 
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used, the systematic error is of the order 1 meV el–1. By contrast, the 
stochastic error in twist averaging only reached this value when over 
100 twist angles were used (noting here that the reference value used 
to obtain this error is the twist-averaged CCSD (TA-CCSD) energy 
at 100 twist angles). In Fig. 1d, it can be seen that the selected twist 
angle found through MP2 calculations is successful in reproducing 
the TA-CCSD structure factor from one CCSD calculation (mean 
absolute error = 0.08(13)). This small error demonstrates that one 
twist angle is able to reproduce the twist-averaged transition struc-
ture factor. We refer to this method as structure-factor-based twist 
averaging (sfTA) due to the way it reproduces the twist-averaged 
energy on the basis of the best representation of the transition  
structure factor.

The protocol to run sfTA-CCSD is therefore: (1) to run HF and 
MP2 at 100 randomly generated twist angles (random twist angles 
were chosen due to the findings of previous studies17); (2) average 
the transition structure factor and select a twist angle whose transi-
tion structure factor best matches the average (according to equa-
tion (7)); (3) run a CCSD calculation at the selected twist angle. We 
test this for ten systems to validate our protocol (including met-
als, semiconductors and insulators) by comparing the result of the 
sfTA-CCSD with TA-CCSD (from 100 randomly generated twist 
angles). The results of this are shown in Fig. 2, showing good agree-
ment between sfTA-CCSD and TA-CCSD with a mean difference of 
0.003(2) eV per atom averaged across the ten systems (number in 
parentheses is one standard error).

Total energy calculations. A more practical demonstration of how 
this method works comes from studying the energy differences 
between material phases, which requires scrupulous accounting for 
finite basis set, as well as finite system size, errors. We here pres-
ent a summary of our protocol (with concrete examples available 
in the ‘Assembling the total energy’ section in the Supplementary 

Information, as well as Supplementary Tables 1 and 2) in which: 
(1) we run sfTA-CCSD calculations at increasingly dense k-point 
meshes, keeping the number of orbitals (M) per k-point constant. 
(2) Calculations using natural orbitals are performed for a small 
k-point mesh (for example, 2 × 2 × 2), which are then converged 
to the complete basis set (CBS) limit using an extrapolation with a 
1/M power law. The following correction is then found and applied: 
ΔECBS(222) = ECBS(222) − Ecorr(M, 222), where 222 indicates that a 
2 × 2 × 2 mesh is employed throughout; ECBS(222) and Ecorr(M, 222) 
are the correlation energies at the complete basis set (CBS) limit 
and with M basis functions per k-point, respectively. (3) We apply 
finite-size corrections, ΔEFS, to each mesh using an interpolation 
scheme7. (4) We extrapolate the resultant correlation energies to the 
TDL using a power-law of 1/Nk (where Nk is the number of k-points) 
to remove residual finite-size errors. (5) Finally, to find the total 
energy, the correlation energy from steps 1–4 is added to HF cal-
culations, which have been extrapolated to the TDL. As HF is con-
siderably less expensive than CCSD, larger k-point meshes (up to 
6 × 6 × 6) are used for this step. Two parameters have to be chosen in 
this protocol: the small k-point grid (referenced above as 2 × 2 × 2) 
and M. These are chosen to be the largest reasonable choice within 
computer time restrictions. Here we wanted these calculations to 
finish within approximately one day (on an eight-core Intel(R) 
Xeon(R) CPU E5-2680 v4 2.40 GHz processor). In practice, the 
resulting correction is relatively insensitive to this choice29. Details 
on the parameters used for this study are given in the Methods.

Energy difference between two phases of lithium. Figure 3 shows 
the difference between the correlation energies for the face- (fcc) 
and body-centered cubic (bcc) phases of lithium. This figure 
shows the extrapolation to the TDL of sfTA-CCSD correlation 
energies from a variety of k-point meshes. Each point has been 
corrected to the complete basis set limit. Overall, the smoothness 
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of this convergence to the TDL seen in Fig. 3 when compared  
with the calculation from a Γ-centered grid (with a twist angle  
offset of zero) shows a successful application of sfTA.

The TDL HF was then obtained by extrapolating the twist-aver-
aged Hartree–Fock (TA-HF) energies to the TDL (using k-point 
meshes up to 6 × 6 × 6). The HF energy difference in the TDL is 
0.015(5) eV per atom with bcc having the lower energy, where the 
error in parentheses comes from the standard error in the fit param-
eters from extrapolation. Adding this to the correlation energy 
result from Fig. 3, which is −0.0350(9) eV per atom (with fcc lower), 
yields −0.020(5) eV per atom. This number indicates that the elec-
tronic contribution at 0 K slightly favors fcc and the number is also 

statistically significant with respect to extrapolation error. It is also 
noteworthy that the HF and correlation energy contributions are 
opposite in sign.

Equation-of-state curves for silicon. We now apply sfTA to the 
energy–volume curves of silicon in a diamond lattice and β-tin (Sn) 
lattice. These allotropes of silicon are semiconducting and metal-
lic, respectively, constituting an excellent test case for the ability 
of the proposed sfTA technique to treat small-gap systems on the 
same footing. We performed calculations using sfTA-CCSD on a 
2 × 2 × 2 and 3 × 3 × 3 k-point mesh. A complete basis-set correc-
tion was derived from a 2 × 2 × 2 k-point mesh run at each volume7. 
Finite-size corrections were applied using a mesh-interpolation 
scheme and the resultant energies extrapolated using 1/Nk as for 
lithium above. The correlation energies were then added to TDL-
extrapolated TA-HF energies (using k-point meshes up to 5 × 5 × 5) 
to obtain total energies.

The Birch–Murnaghan equation of state was fit to the diamond 
and β-Sn phases of silicon, shown in Fig. 4, allowing us to obtain 
lattice properties including equilibrium volumes and bulk mod-
uli. We can clearly see the minima for both phases, with diamond 
reaching a minimum at around 20 Å3 per atom and β-tin reaching a 
minimum at approximately 15 Å3 per atom. The transition between 
the two phases can clearly be seen to take place between volumes 
of around 15–18 Å3 per atom. In Table 1 the fitting parameters are 
compared with several high-accuracy quantum Monte Carlo meth-
ods from previous studies18–21 and experimental values22–24.

We note that the diffusion quantum Monte Carlo (DMC) find-
ings compiled in Table 1 span a relatively large range for differ-
ent equilibrium properties including equilibrium volumes, as well 
as bulk moduli and their derivatives. The equilibrium volumes 
of silicon diamond in particular range from 19.75 Å3 per atom to 
20.11 Å3 per atom, whereas the experimental equilibrium volume 
was measured to be 20.00 Å3 per atom. The difference in the DMC 
estimates can partly be explained by different approximations used 
to correct finite-size errors and the dependence on the employed 
pseudopotentials. Similar trends as seen for the equilibrium vol-
umes can also be observed for the bulk moduli. The most striking 
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changes between the different DMC calculations can be observed 
for the energy differences between both phases, which reduces 
from 505 meV per atom19 to 329 meV per atom21. Due to the strong 
dependence of the transition pressure between the diamond to β-Sn 
allotropes on the energy difference, the predictions change from 
17.8 GPa to 13.16 GPa, which is a gradual improvement compared 
with the experimental estimates that lie between 11.2 and 12.6 GPa. 
This is corroborated by an independent study using auxiliary-field 
quantum Monte Carlo (AFQMC), which found numbers in good 
agreement with the spread of DMC results20.

We now turn to the discussion of results obtained from coupled 
cluster theory. Recalling that HF (rather than density functional the-
ory (DFT)) is used as a starting point for coupled cluster theory cal-
culations (HF fit parameters are listed in Table 1). These show that 
HF theory strongly overestimates the diamond equilibrium volume 
and bulk modulus compared with experiment and DMC, which can 
mainly be attributed to the neglect of electronic correlation effects. 
Likewise, the energy difference between the diamond and β-Sn 
phase is greatly overestimated, yielding a transition pressure that is 
almost five times larger than the experimental findings. Even with 
this starting point, CCSD theory is generally able to improve on the 
HF description by accounting for correlation effects (once we have 
accounted for finite-size as well as basis-set corrections).

We calculated a CCSD energy difference of 0.562 eV per atom 
between the two phases, which was found to be larger than the largest 
DMC energy difference (0.505 eV per atom) by 0.057 eV per atom. 
The transition pressure, by contrast, is 17.37 GPa and lies within 
the region spanned by DMC. The remaining discrepancy between 
CCSD and DMC is not surprising. Although CCSD forms an impor-
tant step towards chemical accuracy, it is known from quantum 
chemical wavefunction calculations of molecules that the inclusion 
of perturbative triple particle-hole excitation operators (for molecu-
lar and insulating systems) is needed for chemically accurate reac-
tion energies36. However, we have previously shown that coupled 
cluster single and doubles with perturbative triples, CCSD(T), is 
divergent due to its perturbative component33. One alternative pos-
sibility to improve on CCSD theory has recently arisen in the litera-
ture with the distinguishable cluster theory (DCSD)37. When we run 
this at the mid-point volume we find that DCSD lowers the energy 
gap between the phases by 68 meV per atom to 494 meV per atom. 

If this were uniform across the volume curve, this is equivalent to 
lowering the transition pressure to 15.26 GPa. This is promising as 
CCSD is the simplest correction to HF in the coupled cluster hier-
archy of methods and these calculations took only four days (per 
volume point, including every component of the calculation) on a 
maximum number of 16 cores (on an Intel(R) Xeon(R) Platinum 
8168 Processor 3.1/3.9 turbo GHz processor).

Coupled cluster theory singles and doubles theory has a more 
mixed performance with the other parameters. The transition vol-
umes are in reasonable agreement with DMC, but the bulk moduli 
are not improved relative to HF theory. The pressure derivative of 
the bulk modulus improved in β-Sn but not in diamond. We found 
that the parameters were sensitive to the region of the curve that we 
fit and it is possible that our uniform sampling of the curve is the 
cause of the discrepancies (as the DMC studies used more points 
around the equilibrium volume).

Taken together, these numbers are in reasonable agreement with 
the DMC results. Overall, we note a balanced treatment of correla-
tion between the phases using the same protocol (that is we did not 
have to change anything in our protocol to move between a semi-
conductor and a metal). The improvement from CCSD to DCSD 
also demonstrates the way in which quantum chemical wavefunc-
tion methods can be improved. In closing, we do agree with the 
DMC study by Alfè et al.19, who conclude that the numbers from 
electronic structure calculations were only in agreement with exper-
iment after accounting for vibrational and anharmonic effects. In 
practice, this means that the structural transition pressure should 
be a little higher than experiment if the electronic structure is being 
treated appropriately.

Discussion
Periodic coupled cluster theory benefits from an approach to select 
a twist angle more than quantum Monte Carlo for two important 
reasons. The first is that basis-set incompleteness error from a twist-
averaged (or balanced) description of correlation commutes more 
reliably with the electron number. This provides the crucial benefit 
of reducing the basis-set size required to treat metals and materials 
with small bandgaps. The second is that TDL corrections depend 
on the same relationship, and the increased commutivity also 
helps these corrections become more consistent. Taken together, 
the small offset in the k-point grid means calculations that previ-
ously were prohibitively costly in terms of computer time are now  
routinely feasible.

This study generalizes our past work which selected twist 
angles in the uniform electron gas28,30, making it work for real 
materials including metals. In those works, we considered the 
Baldereschi point38 as a candidate for the single twist offset and 
found it to be unsuccessful for our purposes. There have also been 
more recent special twist angles proposed by the QMC commu-
nity39,40. In particular, where the approach by Degrada and col-
leagues40 focuses on minimizing the one-body overall finite-size 
error in a mean-field wavefunction by way of its energy, we are 
focused on minimizing the two-body finite-size error in a cor-
related wavefunction property. This is because we wish to stay 
within the canonical coupled cluster formalism to allow for finite-
size corrections and extrapolation to the TDL (Fig. 1). Overall, we 
believe this paper describes a generalized approach for twist angle 
selection for coupled cluster theory.

We note that a range of DFT calculations of the transition 
pressure of silicon employing approximate exchange-correlation 
functionals have been performed by Xiao and co-workers41. Their 
findings show that DFT transition pressures often agree excellently 
with experiment and perform very well in terms of their trade-off 
between accuracy and computational cost, though performance 
varies considerably across different functionals. Our long-term 
goal would be to benchmark these functionals without having to 
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Fig. 4 | energy–volume curve using sfTA-CCSD for the diamond and β-Sn 
phases of silicon. The main panel shows total energies and the inset shows 
correlation energies. The dashed lines show a fit to the birch–murnaghan 
equation of state for the diamond and β-Sn phases. The fit was used to 
obtain the lattice properties of the phases shown in Table 1. To make a fair 
comparison with previous results for the fit, points represented by open 
circles were omitted (see ‘results’ section). A core-polarization correction 
has been added (methods).
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rely on experiment and to make explicit comparisons with local 
cluster methods12,42.

An important limitation of the study is that we found the param-
eters derived for the silicon phase transition to be relatively sensi-
tive to the energy and volume points of the fit (Fig. 4 and Table 1); 
thus, as there are different twist angles chosen for each point across 
the energy–volume curve, it is possible that this contributes to the 
remaining discrepancies between our calculations and those from 
other methods in a way that is indistinguishable from the intrinsic 
accuracy of CCSD. We were not able to investigate this here through 
direct comparison between twist averaging and sfTA (across the vol-
ume curve) due to the cost in computational time of twist averaging, 
and this will be the topic of a future study. Another limitation of our 
study is that we know that a triples (or beyond) treatment would 
be required for benchmarks to identify optimal DFT functionals43. 
Which approximation to the perturbative triple particle-hole exci-
tation operators achieves CCSD(T)-quality correlation energy for 
metals remains an open question at this point33. We note, however, 
that renormalized coupled cluster approaches44 could be well-suited 
for such situations and will be explored in future work. We believe 
that the selected twist angle method presented here will transfer 
well to higher levels of theory, due to results on twist angle selection 
for model systems30.

Methods
The Hamiltonian. The quantum mechanical many-electron Hamiltonian of 
periodic solids is invariant under any translational symmetry transformation that 
respects the periodicity of the attractive nuclear potential. Crystal momentum 
vectors k that lie in the first Brillouin zone serve as a label for translational 
symmetry transformations. The full Hamiltonian can be written as

Ĥ =

∫
dk

{
ĥ1(k) +

∫∫∫
dk′dk′′dk′′′ĥ2

(
k, k′, k′′, k′′′

)}
, (1)

where the one- and two-electron Hamiltonians for a particular set of k-vectors are 
given in second quantization by

ĥ1(k) =
∑

p(k),q(k)
hpqa†paq (2)

and

ĥ2(k, k′, k′′, k′′′) =
1
2

∑

p(k),q(k′)

∑

r(k′′),s(k′′′)

⟨pq|rs⟩a†pa
†
qaras, (3)

respectively. The indices p, q, r and s refer to occupied and unoccupied one-
electron Bloch states characterized by k; a†p and aq are creation and annihilation 
operators, respectively. The two-electron integrals 〈pq∣rs〉 are non-zero only if 
the corresponding k-vectors conserve total crystal momentum. In practice, the 
TDL—computed by integrating over all k—is approached by sampling the first 
Brillouin zone using a regular k-mesh with an increasing number of k-points, Nk. 
In this study, we focus on the way in which finite-size effects (from these k-meshes) 
arise and can be remedied within a canonical periodic coupled cluster formalism 
with delocalized Bloch orbitals. We recognize that there are alternative methods, 
which have been designed to circumvent finite-size effects in other coupled cluster 
approaches including local cluster approximations12,42, incremental schemes13–15 
and embedding45–49. We believe a canonical approach can be complementary to 
these methods, especially if finite-size effects can be removed for metals as we 
demonstrate here.

Here, by choosing a special shift to the employed k-mesh, we are effectively 
choosing one Hamiltonian of a specific symmetry that can also be applied to 
metals and—in combination with recently proposed finite-size corrections7,50—
yields an even more rapid and numerically stable convergence of correlation 
energies to the TDL. To this end, we approximate the Brillouin zone integrations 
in equation (1) such that 

∫
dkF(k) ≈

∑Nk
i=1

1
NkΩ F(ki + ks). Here, F(k) refers to 

the terms inside the curly brackets in equation (1). The vector ks corresponds to 
an offset of the employed k-mesh with respect to the origin and is referred to as a 
twist angle or offset throughout this work. This shifting of the k-mesh can cause 
the orbital occupations to change and, when they do, this changes the character of 
the reference to yield a substantial change in the coupled cluster wavefunction. By 
contrast, in conventional twist-averaging, a large number of ks vectors are drawn at 
random or from a grid and quantities are averaged over these points. The vectors 
are the set of unique offsets which can be made to the k-mesh which lie in the 
simulation-cell Brillouin zone.

Structure factor twist averaging. Our approach is to select one twist angle at 
which to perform the calculation by considering the twist angle that best represents 
the twist-averaged electronic transition structure factor computed from the 
amplitudes of the first-order perturbed wavefunction used in MP2 theory. This is 
represented schematically in Fig. 1.

The Fourier coefficients of the transition structure factor can be used to express 
the projected correlation energy (Ecorr) obtained from a perturbed wavefunction 
|Ψ⟩ such that

Ecorr = ⟨ΨHF|H − EHF|Ψ⟩ =

′∑
v(G)S(G). (4)

where ΨHF and EHF are the HF wavefunction and HF energy, respectively. Here the 
momentum G corresponds to a plane wave vector that is defined as G = g + Δk, 
where g is a reciprocal lattice vector and Δk is the difference between any two 
crystal momentum vectors that are conventionally chosen to sample the first 
Brillouin zone; v(G) are the Fourier coefficients of Coulomb kernel with the familiar 
form of 4π

G2  for excitations allowed by momentum conservation, and the prime on 
the sum implies that the G = 0 contribution is treated in an approximate fashion7,9.

Table 1 | Lattice properties obtained from the Birch–Murnaghan equation of state for the diamond and β-Sn phases of silicon

Structure property TA-HF sfTA-
CCSD-FS

sfTA-
DCSD-FS

experiments DMCa DMCb DMC + eMp-ppc AFQMC

D-Si Vt (Å3 per atom) 15.52 17.62 – 18.15 – 18.14 17.83 18.15

B0 (GPa) 104 105.1 – 99.2 103.0 98.0 96.2 –

B′0 3.82 3.83 – 4.11 – 4.6 4.19 –

V0 (Å3 per atom) 20.78 20.04 – 20.0 20.11 19.98 19.75 –

β-Sn Si Vt (Å3 per atom) 12.16 13.5 – 13.96 – 13.9 13.81 13.955

B0 (GPa) 112 118.3 – – 114 107 104.2 –

B′0 4.05 4.6 – – – 4.6 4.7 –

V0 (Å3 per atom) 15.96 14.95 – – 15.26 15.2 15.17 –

ΔE (eV per 
atom)

1.302 0.562 0.494 – 0.505 0.424 0.329 0.365d

Pt (GPa) 52.96 17.37 15.26 – 17.8 15.3 13.16 13.9

Pt vib. (GPa) 51.66 16.07 13.96 11.3–12.5 16.5 14.0 12.2 12.6

Lattice properties for the two silicon phases, including the transition volume (Vt), bulk modulus (B0), pressure derivative of the bulk modulus (B0), volume at equilibrium (V0), energy difference between 
the two minima (ΔE), transition pressure (Pt) and fully corrected transition pressures (Pt vib.) (see methods for details). Our TA-HF and sfTA-CCSD energies are compared with those from DmC, AFQmC 
and experiments. The following superscripts distinguish between different DmC studies: aAlfè et al.19, bHennig et al.18 and cmaezono et al.21. AFQmC numbers come from Purwanto et al.20 and to obtain d we 
applied a core-polarization correction ourselves. The column marked DmC + emP-pp used an empirical pseudopotential correction (emP-pp). The energies and transition pressures consistently include 
core-polarization contributions (see methods for details). experimental numbers come from various sources22–24 as organized by Hennig and colleagues18.
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To express the transition structure factor in terms of quantities computed 
by coupled cluster theory, we follow the notation of Liao and Grüneis9 for 
mathematical consistency. The coupled cluster wavefunction has amplitudes that 
can be written Tab

ij = tabij + tai tbj . Here, the i and j indices refer to occupied orbitals, 
whereas a and b indices refer to unoccupied orbitals; tai  and tabij  are singles and 
doubles amplitudes, respectively. The transition structure factor can be recast as:

S(G) =
∑

ki ,kj ,ka

∑
ni ,nj ,na ,nb

Tab
ij

[
2Ca

i (G)Cj∗
b (G) −Cb

i (G)Cj∗
a (G)

]
, (5)

The coefficients Ca
i (G) arise from the Fourier transform of the co-densities of two 

orbitals i and a and the electron repulsion integrals can also be written in terms 
of these intermediates9. We note that this uses a mixed estimator formalism as in 
equation (4). When the structure factor is calculated from an MP2 calculation, 
the amplitudes come from the first-order perturbed wavefunction defined by 
tabij = vabij /(ϵi + ϵj − ϵa − ϵb) (where ϵ are HF eigenvalues and vabij  are electron 
repulsion integrals). The tai tbj  terms are zero for MP2 due to Brillouin’s theorem.

From this, we can define a twist-averaged transition structure factor as follows:

S(G) =
1
Ns

Ns∑

ks

Sks (G) (6)

where Ns is the number of twist angles. This structure factor would then be 
expected to exhibit fewer finite-size effects in common with the twist-averaged 
energy. The benefit of such a transition structure factor is twofold. First, using S(G) 
in equation (4) would lead to an improved energy estimate. Second, a finite-size 
correction9, which we will be using based on S(G), would be similarly improved. To 
circumvent the cost in computational time of evaluating 

∑
ks directly for CCSD, we 

instead find one twist angle that most effectively approximates the twist-averaged 
transition structure factor using MP2 theory. To do this, we find the twist angle, 
which minimizes the residual

r =
∑

G

∣∣S(G) − Sks (G)
∣∣2, (7)

found from a set (here, 100) of MP2 calculations with different twist angles. One 
twist angle is chosen from this set and run at the CCSD level.

This approach is based on the idea that the single twist angle then represents 
the average transition structure factor in a way that can be transferred across 
different methods. In particular, our previous work on model systems has shown 
the transferability of systems to CCSD28 and full configuration interaction quantum 
Monte Carlo30. MP2 theory is a natural choice because it is used as the starting 
point to a CCSD calculation but, in principle, other correlated methods could be 
used. The key feature that determines a good method to use is a method that well 
represents the variation in the structure factor with changing offset. In replacing 
an averaged quantity with a single point, we are suggesting that the mean-value 
theorem for integration will be approximately valid even in the presence of the ∑G 
in equation (7).

Codes and methods. All calculations were performed using VASP 5.4/VASP 6 
(refs. 51,52) and the projector augmented-wave method in a plane wave basis set53. 
The corrections for the finite-size effects for lithium and silicon were performed 
using cc4s interfaced with the VASP code7. Twist averaging was used to obtain 
the HF data. All other calculations were run using the sfTA method. Canonical 
HF orbitals were used for all MP2 calculations. For coupled cluster, we used 
approximate natural orbitals, estimated from MP2 natural orbitals54, for the lithium 
basis-set convergence calculations and all of the silicon phase calculations. The rest 
of the calculations used canonical HF orbitals.

Calculation details. All calculations require a plane wave energy cutoff (ENCUT), 
an auxilliary plane wave basis-set cutoff (ENCUTGW), a k-point mesh, and 
a number of bands in the correlated part of the calculation NBANDS. All 
calculations used a Perdew–Burke–Ernzerhof (PBE) pseudopotential except the 
32-atom sodium supercell calculations in Fig. 1, which used a Ceperley–Alder 
(CA) pseudopotential.

We used an ENCUT of 400 and an ENCUTGW of 150 eV for the 32-atom 
sodium supercell calculations in Fig. 1. The basis set was truncated to 48 orbitals 
per k-point (using the NBANDS input); this calculations was a 1 × 1 × 1 k-point 
mesh supercell.

The ten systems shown in Fig. 2 were run on a k-point mesh of 2 × 2 × 2 with 
a truncated basis set of 32 orbitals per k-point. For the carbon, lithium fluoride, 
magnesium oxide and silicon carbide calculations an ENCUT of 400 and an 
ENCUTGW of 300 were used for the energy cutoffs. For the germanium, lithium 
hydride and cubic-boron nitride calculations an ENCUT of 300 was used. The 
germanium calculations used an ENCUTGW of 250 and lithium hydride and 
cubic-boron nitride calculations used an ENCUTGW of 200. The potassium 
and aluminum calculations used an ENCUT of 200 and an ENCUTGW of 150. 
The sodium calculations used an ENCUT of 80 and an ENCUTGW of 60. These 
correspond to recommended cutoffs listed in the potential files provided in VASP.

The lithium and silicon calculations used an ENCUT of 400 eV. For these 
calculations, ENCUTGW was changed to 400 eV to ensure the initial basis set was 
large enough that the number of orbitals designated by the NBANDS input was the 
limiting factor for truncating the basis set in all calculations.

Different k-point meshes were used for the TDL extrapolations. For lithium, 
k-point meshes of 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 were used. Silicon had k-point 
meshes of 2 × 2 × 2 and 3 × 3 × 3. Each phase used an NBANDS of 48 except lithium 
bcc. The lithium bcc calculations used a different NBANDS of 24 orbitals per 
k-point which is the same number of k-points per atom as fcc. To calculate the 
complete basis-set energy for each lithium and silicon phase, a 2 × 2 × 2 k-point 
mesh was used with NBANDS changed to give 16, 24, 32, 40 and 48 orbitals per 
k-point.

Out of the ~10,000 MP2 calculations performed at random individual twist 
angles, a small number (three) of lithium fcc MP2 calculations (at 3 × 3 × 3) did not 
converge at the HF level due to small gap effects. In these cases, a new twist angle 
was chosen at random and this is unlikely to greatly affect twist angle selection. 
The convergence thresholds used for calculations are tabulated in the institutional 
repository referenced in the Data Availability section.

Lattice information. The following systems had a set volume, V, for each unit 
cell as follows: sodium, V = 70.193 Å3; potassium, V = 151.25 Å3; aluminum, 
V = 63.1399 Å3; germanium, V = 44.95 Å3; lithium hydride, V = 16.002 Å3; cubic-
boron nitride, V = 11.59 Å3; carbon, V = 11.2131 Å3; lithium fluoride, V = 15.67 Å3; 
magnesium oxide, V = 18.38 Å3; silicon carbide, V = 20.52 Å3. Each of these 
systems was run using two atoms per unit cell, except aluminum, which used 
four atoms per unit cell. For each system list above, the phase has been included 
in the label in Fig. 2 using the Strukturbericht symbols, with A1 = face-centered-
cubic, A2 = body-centered-cubic phase, A4 = diamond, B1 = rock-salt and 
B3 = zinc-blende. The 32-atom sodium supercell in Fig. 1 was set to a volume of 
V = 1202.424 Å3. The equilibrium lattice constants, a, for β-Sn silicon and diamond 
silicon (which are a = 4.9 Å and a = 5.761 Å, respectively) were scaled by factors in 
the range 0.85 to 1.1 to produce a range of volumes. Lithium structure information, 
including equilibrium lattice constants (a = 3.436 for bcc and a = 4.305 for fcc), 
were obtained from the NOMAD Encyclopedia database55.

Birch–Murnaghan fits. Energies for Fig. 4 and Table 1 were calculated from 
TA-HF and sfTA-CCSD-FS, followed by extrapolation to the TDL. The fit in Fig. 4 
is a standard Birch–Murnaghan equation of state curve, yielding the parameters in 
the first eight rows of Table 1. From these, the energy difference between the two 
minima (ΔE) was calculated and the slope of a common tangent between Birch–
Murnaghan fits of the two phases was used to find Pt.

We had to apply the following corrections to make the data Table 1 consistent 
between studies: (1) all ΔE (and subsequently Pt) with the exception of HF 
and diffusion Monte Carlo with an empirical pseudopotential correction 
(DMC + EMP-pp) contain a core-polarization correction of 30 meV per atom 
taken from Alfè and colleagues19 whether added by us or by previous authors. For 
DMC + EMP-pp21, we use the data including the core-polarization corrections 
referenced in their paper. (2) The fully corrected transition pressures (Pt vib.) 
contain the corrections for zero-point energy, finite-temperature vibrational 
effects, and core-polarization. We include these vibrational correction terms in 
CCSD following the numbers from Alfè and co-workers19.

Finally, for interested readers, a detailed exploration of the comparisons 
between these data and state-of-the-art DFT numbers are given by Hennig et al.18 
and Xiao and colleagues41.

Numerical analysis. Graphs were plotted using matplpotlib with Python 3.7.3. 
Box-and-whisker plots are constructed using matplotlib.pyplot.boxplot. For the 
extrapolations to the TDL and the Birch–Murnaghan fits the numpy and scipy 
libraries were used with Python 3.7.3. Error bars on the TDL extrapolations reflect 
standard error in the fit parameters.

Data availability
The Supplementary Information contains information on how the data were 
assembled into total energies for silicon and lithium in ‘Assembling the total 
energy’, with examples shown in Supplementary Tables 1 and 2. Data for this study 
was generated using VASP 5.4/6 and the sfTA code at Zenodo and https://github.
com/shepherd-group/sfTA (ref. 56). The inputs and datasets from this study are 
available at the Iowa Research Online (IRO) repository at https://doi.org/10.25820/
data.006153 (ref. 57). We have also written a guide for how readers can re-use our 
data in the Supplementary Section entitled ‘Where to find/how to use data’. Source 
Data are provided with this paper.

Code availability
The sfTA scripts to calculate the twist angles, including an example, appear at the 
Zenodo repository56 (https://doi.org/10.5281/zenodo.5553436) and on GitHub 
(https://github.com/shepherd-group/sfTA). We have also included a utility 
script for using VASP. This repository will be maintained after publication and 
prospective future users are invited to contact the corresponding author with any 
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additional requests. This is an open-source code released under an MIT licence. 
The modifications of the VASP code used to calculate the transition structure 
factor and CCSD energies were made in a local repository based on VASP 5.4/
VASP 6. The code CCSD.F will be merged into a later release of VASP. VASP and its 
source code is software available for purchase. The pseudopotentials used for these 
calculations are distributed with VASP.
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