Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergence of urban growth patterns from human mobility behavior

Abstract

Cities grow in a bottom-up manner, leading to fractal-like urban morphologies characterized by scaling laws. The correlated percolation model has succeeded in modeling urban geometries by imposing strong spatial correlations; however, the origin of the underlying mechanisms behind spatially correlated urban growth remains largely unknown. Our understanding of human movements has recently been revolutionized thanks to the increasing availability of large-scale human mobility data. This paper introduces a computational urban growth model that captures spatially correlated urban growth with a micro-foundation in human mobility behavior. We compare the proposed model with three empirical datasets, discovering that strong social interactions and long-term memory effects in human movements are two fundamental principles responsible for fractal-like urban morphology, along with the three important laws of urban growth. Our model connects the empirical findings in urban growth patterns and human mobility behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The paradigm of human movement models and illustration of the proposed collective mobility model.
Fig. 2: The morphologies of urban area generated by four different human movement models and in real-world city.
Fig. 3: Comparisons between the empirical urban growth patterns in the US, GB and Berlin, and the simulated urban growth patterns driven by different human movement models.
Fig. 4: The time evolution of urban occupations.
Fig. 5: Qualitative comparison between the morphology of urban area reproduced by CMM with different parameter settings.
Fig. 6: The comparison of reproducing urban growth patterns with different parameter settings.

Similar content being viewed by others

Data availability

The empirical urban datasets that support the findings of this study are public available. The datasets for US and GB were released by previous research52. The Berlin dataset is extracted from the telemetry images in previous works53 (see Data Collection and Calibration for details), which is available in GitHub, https://github.com/tsinghua-fib-lab/Collective-Mobility-Model56. Source data for Figs. 3, 4 and 6 are available with this manuscript.

Code availability

The source code for numeric simulation is available online: https://github.com/tsinghua-fib-lab/Collective-Mobility-Model (ref. 56).

References

  1. Howard, E. To-morrow: A Peaceful Path to Real Reform (Cambridge Univ. Press, 2010).

  2. Batty, M. The size, scale, and shape of cities. Science 319, 769–771 (2008).

    Article  Google Scholar 

  3. Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals (The MIT press, 2007).

  4. Batty, M. The New Science of Cities (MIT press, 2013).

  5. Makse, H. A., Havlin, S. & Stanley, H. E. Modelling urban growth patterns. Nature 377, 608–612 (1995).

    Article  Google Scholar 

  6. Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).

    Article  MathSciNet  Google Scholar 

  7. Witten Jr, T. & Sander, L. M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400 (1981).

    Article  Google Scholar 

  8. Barthélemy, M. Spatial networks. Phys. Rep. 499, 1–101 (2011).

    Article  MathSciNet  Google Scholar 

  9. Clark, C. Urban population densities. J. R. Stat Soc. A 114, 490–496 (1951).

    Article  Google Scholar 

  10. Newling, B. E. The spatial variation of urban population densities. Geogr. Rev. 59, 242–252 (1969).

  11. McDonald, J. F. Econometric studies of urban population density: a survey. J. Urban Econ. 26, 361 (1989).

    Article  Google Scholar 

  12. Vicsek, T. Fractal Growth Phenomena (World scientific, 1992).

  13. Essam, J. W. Percolation theory. Rep. Prog. Phys. 43, 833 (1980).

    Article  MathSciNet  Google Scholar 

  14. Schweitzer, F. & Steinbrink, J. Estimation of megacity growth: simple rules versus complex phenomena. Appl. Geogr. 18, 69–81 (1998).

    Article  Google Scholar 

  15. Rybski, D., Ros, A. G. C. & Kropp, J. P. Distance-weighted city growth. Phys. Rev. E 87, 042114 (2013).

    Article  Google Scholar 

  16. Rybski, D., Li, Y., Kropp, J. P. & Born, S. Modeling urban morphology by unifying diffusion-limited aggregation and stochastic gravitation. Urban Findings https://doi.org/10.32866/001c.22296 (2021).

  17. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  Google Scholar 

  18. Schrank, D., Eisele, B. & Lomax, T. TTI’s 2012 Urban Mobility Report Vol. 4 (Texas A&M Transportation Institute, The Texas A&M University System, 2012).

  19. Einstein, A. Investigations on the Theory of the Brownian Movement (Courier Corporation, 1956).

  20. Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    Article  Google Scholar 

  21. Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).

    Article  Google Scholar 

  22. Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    Article  Google Scholar 

  23. Note: The traffic flow from location \(\overrightarrow{r}^{\prime}\) to \(\overrightarrow{r}\), \(T(\overrightarrow{r},\overrightarrow{r}^{\prime} )\equiv P(\overrightarrow{r}| \overrightarrow{r}^{\prime} )\rho (\overrightarrow{r}^{\prime} )=(\rho (\overrightarrow{r})+{\rho }_{0})\rho (\overrightarrow{r}^{\prime} )/| \overrightarrow{r}-\overrightarrow{r}^{\prime} {| }^{d+\alpha }\), in line with the convectional form at the strong coupling limit ρo → 0.

  24. Grabowicz, P. A., Ramasco, J. J., Gonçalves, B. & Eguíluz, V. M. Entangling mobility and interactions in social media. PLoS ONE 9, e92196 (2014).

    Article  Google Scholar 

  25. Deville, P. et al. Scaling identity connects human mobility and social interactions. Proc. Natl Acad. Sci. USA 113, 7047–7052 (2016).

    Article  Google Scholar 

  26. Wang, D. & Song, C. Impact of human mobility on social networks. J. Commun. Networks 17, 100–109 (2015).

    Article  Google Scholar 

  27. Note: \(l \approx {{\mathrm{log}}}\,\frac{1-{A}^{1-\zeta }}{\zeta -1}\) in ref. [21], where ζ is the Zipf’s exponents. For ζ > 1, l saturates at large A, which accounts for the home range effect for daily movements. For ζ < 1, \(l \approx {{\mathrm{log}}}\,(A)\) captures unbounded movements, that is, a migration process. We ignore the marginal double-logarithmic case when ζ = 1.

  28. Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346–352 (1943).

    Article  Google Scholar 

  29. Pappalardo, L. et al. Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 1–8 (2015).

    Article  Google Scholar 

  30. Pappalardo, L., Rinzivillo, S. & Simini, F. Human mobility modelling: exploration and preferential return meet the gravity model. Proc. Comput. Sci. 83, 934–939 (2016).

    Article  Google Scholar 

  31. Toole, J. L., Herrera-Yaqüe, C., Schneider, C. M. & González, M. C. Coupling human mobility and social ties. J. R. Soc. Interface 12, 20141128 (2015).

    Article  Google Scholar 

  32. Batty, M. & Longley, P. A. Fractal Cities: A Geometry of Form and Function (Academic, 1994).

  33. Encarnação, S., Gaudiano, M., Santos, F. C., Tenedório, J. A. & Pacheco, J. M. Fractal cartography of urban areas. Sci. Rep. 2, 1–5 (2012).

    Article  Google Scholar 

  34. Benguigui, L., Czamanski, D., Marinov, M. & Portugali, Y. When and where is a city fractal? Environ. Plann. B 27, 507–519 (2000).

    Article  Google Scholar 

  35. Rozenfeld, H. D., Rybski, D., Gabaix, X. & Makse, H. A. The area and population of cities: new insights from a different perspective on cities. Am. Econ. Rev. 101, 2205–25 (2011).

    Article  Google Scholar 

  36. Sen, P. K. Estimates of the regression coefficient based on kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  MathSciNet  Google Scholar 

  37. Woldenberg, M. J. An allometric analysis of urban land use in the united states. Ekistics 36, 282–290 (1973).

  38. Coffey, W. J. Allometric growth in urban and regional social-economic systems. Canadian J. Region. Sci. 11, 49–65 (1979).

    Google Scholar 

  39. Chen, Y., Wang, J. & Feng, J. Understanding the fractal dimensions of urban forms through spatial entropy. Entropy 19, 600 (2017).

    Article  Google Scholar 

  40. Falconer, K. Fractal Geometry: Mathematical Foundations and Applications (John Wiley & Sons, 2004).

  41. Wilson, A. Entropy in Urban and Regional Modelling Vol. 1 (Routledge, 2011).

  42. Karemera, D., Oguledo, V. I. & Davis, B. A gravity model analysis of international migration to North America. Applied Econ. 32, 1745–1755 (2000).

    Article  Google Scholar 

  43. Dagger, R. Metropolis, memory, and citizenship. Am. J. Political Sci. 25, 715–737 (1981).

    Article  Google Scholar 

  44. Wissen, L. J. G. & Bonnerman, F. A Dynamic Model of Simultaneous Migration and Labour Market Behaviour (Faculty of Economics and Business Administration, Free University, 1991).

  45. Camagni, R., Gibelli, M. C. & Rigamonti, P. Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion. Ecol. Econ. 40, 199–216 (2002).

    Article  Google Scholar 

  46. Krajzewicz, D., Erdmann, J., Behrisch, M. & Bieker, L. Recent development and applications of sumo-simulation of urban mobility. Int. J. Adv. Syst. Measurements 5, 128–138 (2012).

  47. Jacobs, J. The Death and Life of Great American Cities (Vintage, 2016).

  48. Millington, J. D., O’Sullivan, D. & Perry, G. L. Model histories: Narrative explanation in generative simulation modelling. Geoforum 43, 1025–1034 (2012).

    Article  Google Scholar 

  49. Marsaglia, G. et al. Fast generation of discrete random variables. J. Stat. Softw. 11, 1–11 (2004).

    Article  Google Scholar 

  50. US Census Data in 2000 (accessed 3 March 2018); https://www.census.gov/

  51. Great Britain Census Data in 1991 (accessed 5 March 2018); http://ec.europa.eu/eurostat

  52. Rozenfeld, H. D. et al. Laws of population growth. Proc. Natl Acad. Sci. USA 105, 18702–18707 (2008).

    Article  Google Scholar 

  53. Frankhauser, P. La Fractalité des Structures Urbaines (Economica, 1994).

  54. Makse, H. A. et al. Modeling urban growth patterns with correlated percolation. Phys. Rev. E 58, 7054 (1998).

    Article  Google Scholar 

  55. Engle, R. F. Wald, likelihood ratio, and lagrange multiplier tests in econometrics. Handbook Economet. 2, 775–826 (1984).

    Article  Google Scholar 

  56. Xu, F., Li, Y., Jin, D., Lu, J., & Song, C. tsinghua-fib-lab/Collective-Mobility-Model: First Release (Zenodo, 2021); https://doi.org/10.5281/zenodo.5722743

Download references

Acknowledgements

Y. Li, F. Xu and D. Jin were supported by the National Key Research and Development Program of China (grant no. 2020AAA0106000) and the National Natural Science Foundation of China (grant no. U1936217). We are also grateful for the insightful discussion with Prof. Z. Wang, Prof. J. Yuan and Dr. J. Ding at Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

F. Xu and Y. Li contributed to the empirical implementation and evaluation of the proposed models. C. Song performed the theoretical analysis of human mobility modeling and complex urban system. D. Jin and J. Lu offered empirical motivations and insights to this research. All authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Yong Li or Chaoming Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Computational Science thanks Pu Wang, Marta Gonzalez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor recognition statement: Handling editor: Fernando Chirigati, in collaboration with the Nature Computational Science team.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1 and 2, and discussion.

Source data

Source Data Fig. 3

Statistical Source Data for Fig. 3.

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 6

Statistical Source Data for Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Li, Y., Jin, D. et al. Emergence of urban growth patterns from human mobility behavior. Nat Comput Sci 1, 791–800 (2021). https://doi.org/10.1038/s43588-021-00160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-021-00160-6

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics