Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vector-based pedestrian navigation in cities

Abstract

How do pedestrians choose their paths within city street networks? Researchers have tried to shed light on this matter through strictly controlled experiments, but an ultimate answer based on real-world mobility data is still lacking. Here, we analyze salient features of human path planning through a statistical analysis of a massive dataset of GPS traces, which reveals that (1) people increasingly deviate from the shortest path when the distance between origin and destination increases and (2) chosen paths are statistically different when origin and destination are swapped. We posit that direction to goal is a main driver of path planning and develop a vector-based navigation model; the resulting trajectories, which we have termed pointiest paths, are a statistically better predictor of human paths than a model based on minimizing distance with stochastic effects. Our findings generalize across two major US cities with different street networks, hinting to the fact that vector-based navigation might be a universal property of human path planning.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Differences between human paths and shortest paths.
Fig. 2: Asymmetric human paths.
Fig. 3: Model design.
Fig. 4: DPF for different OD separations.

Data availability

Due to privacy constraint policies and a signed data usage agreement, we are not allowed to share the full GPS tracks considered in this work. For this reason, we generated a small sample of 100 trajectories for Boston. We also make available the pre-processed pedestrian street networks for Boston and San Francisco. The sample dataset and street network data can be accessed at Zenodo60. Figures 1c, 2a and 3a used basemap from Open Street Map (https://www.openstreetmap.org) under an Open Database license (https://www.openstreetmap.org/copyright). Figure 3b uses Google Map data (2021) under fair-use guidelines (https://about.google/brand-resource-center/products-and-services/geo-guidelines/#general-guidelines-copyright-fair-use). Source data are provided with this paper.

Code availability

The version of PedNav package used in this study and a guide to reproducing the results is available through GitHub under a GNU GPL-3.0 license (https://github.com/cbongiorno/pednav). The specific version of the package used to generate the results in the current study is available at Zenodo60. A pseudo-code description of the algorithms used for human navigation based on stochastic distance minimization and vector navigation is reported in Supplementary Section 4.

References

  1. 1.

    Newell, A., Shaw, J. C. & Simon, H. A. Elements of a theory of human problem solving. Psychol. Rev. 65, 151–166 (1958).

    Article  Google Scholar 

  2. 2.

    Zhu, S. & Levinson, D. Do people use the shortest path? An empirical test of Wardrop’s first principle. PLoS ONE 10, e0134322 (2015).

    Article  Google Scholar 

  3. 3.

    Lima, A., Stanojevic, R., Papagiannaki, D., Rodriguez, P. & González, M. C. Understanding individual routing behaviour. J. R. Soc. Interface 13, 20160021 (2016).

    Article  Google Scholar 

  4. 4.

    Javadi, A.-H. et al. Hippocampal and prefrontal processing of network topology to simulate the future. Nat. Commun. 8, 14652 (2017).

    Article  Google Scholar 

  5. 5.

    Griffiths, T. L., Lieder, F. & Goodman, N. D. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7, 217–229 (2015).

    Article  Google Scholar 

  6. 6.

    Huys, Q. J. et al. Interplay of approximate planning strategies. Proc. Natl Acad. Sci. USA 112, 3098–3103 (2015).

    Article  Google Scholar 

  7. 7.

    Gershman, S. J., Horvitz, E. J. & Tenenbaum, J. B. Computational rationality: a converging paradigm for intelligence in brains, minds and machines. Science 349, 273–278 (2015).

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Baker, C. L., Jara-Ettinger, J., Saxe, R. & Tenenbaum, J. B. Rational quantitative attribution of beliefs, desires and percepts in human mentalizing. Nat. Hum. Behav. 1, 0064 (2017).

    Article  Google Scholar 

  9. 9.

    Liu, S., Ullman, T. D., Tenenbaum, J. B. & Spelke, E. S. Ten-month-old infants infer the value of goals from the costs of actions. Science 358, 1038–1041 (2017).

    Article  Google Scholar 

  10. 10.

    Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity. Cognition 204, 104394 (2020).

    Article  Google Scholar 

  11. 11.

    Hillier, B. & Iida, S. Network and psychological effects in urban movement. In International Conference on Spatial Information Theory (eds Cohn, A. G. & Mark, D. M.) 475–490 (Springer, 2005).

  12. 12.

    Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).

    Article  Google Scholar 

  13. 13.

    Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  Google Scholar 

  14. 14.

    Simini, F., González, M. C., Maritan, A. & Barabási, A.-L. A universal model for mobility and migration patterns. Nature 484, 96–100 (2012).

    Article  Google Scholar 

  15. 15.

    Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S. & Baronchelli, A. Evidence for a conserved quantity in human mobility. Nat. Hum. Behav. 2, 485–491 (2018).

    Article  Google Scholar 

  16. 16.

    Hamedmoghadam, H., Ramezani, M. & Saberi, M. Revealing latent characteristics of mobility networks with coarse-graining. Sci. Rep. 9, 7545 (2019).

    Article  Google Scholar 

  17. 17.

    Kraemer, M. U. et al. Mapping global variation in human mobility. Nat. Hum. Behav 4, 800–810 (2020).

    Article  Google Scholar 

  18. 18.

    Verbavatz, V. & Barthelemy, M. The growth equation of cities. Nature 587, 397–401 (2020).

    Article  Google Scholar 

  19. 19.

    Alessandretti, L., Aslak, U. & Lehmann, S. The scales of human mobility. Nature 587, 402–407 (2020).

    Article  Google Scholar 

  20. 20.

    Er-Jian, L. & Xiao-Yong, Y. A universal opportunity model for human mobility. Sci. Rep. 10, 4657 (2020).

    Article  Google Scholar 

  21. 21.

    Gallotti, R., Bazzani, A., Rambaldi, S. & Barthelemy, M. A stochastic model of randomly accelerated walkers for human mobility. Nat. Commun. 7, 12600 (2016).

    Article  Google Scholar 

  22. 22.

    Gillner, S. & Mallot, H. A. Navigation and acquisition of spatial knowledge in a virtual maze. J. Cogn. Neurosci. 10, 445–463 (1998).

    Article  Google Scholar 

  23. 23.

    Foo, P., Warren, W. H., Duchon, A. & Tarr, M. J. Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 31, 195–215 (2005).

    Article  Google Scholar 

  24. 24.

    Norman, J. F., Crabtree, C. E., Clayton, A. M. & Norman, H. F. The perception of distances and spatial relationships in natural outdoor environments. Perception 34, 1315–1324 (2005).

    Article  Google Scholar 

  25. 25.

    Sun, Y. & Wang, H. Perception of space by multiple intrinsic frames of reference. PLoS ONE 5, e10442 (2010).

    Article  Google Scholar 

  26. 26.

    Weisberg, S. M. & Newcombe, N. S. How do (some) people make a cognitive map? Routes, places and working memory. J. Exp. Psychol. Learn. Mem. Cogn. 42, 768–785 (2016).

    Article  Google Scholar 

  27. 27.

    Vuong, J., Fitzgibbon, A. W. & Glennerster, A. No single, stable 3D representation can explain pointing biases in a spatial updating task. Sci. Rep. 9, 12578 (2019).

    Article  Google Scholar 

  28. 28.

    Bécu, M. et al. Age-related preference for geometric spatial cues during real-world navigation. Nat. Hum. Behav. 4, 88–99 (2020).

    Article  Google Scholar 

  29. 29.

    van der Ham, I. J., Claessen, M. H., Evers, A. W. & van der Kuil, M. N. Large-scale assessment of human navigation ability across the lifespan. Sci. Rep. 10, 3299 (2020).

    Article  Google Scholar 

  30. 30.

    Marshall, J. M. et al. Mathematical models of human mobility of relevance to malaria transmission in Africa. Sci. Rep. 8, 7713 (2018).

    Article  Google Scholar 

  31. 31.

    Yan, X.-Y., Wang, W.-X., Gao, Z.-Y. & Lai, Y.-C. Universal model of individual and population mobility on diverse spatial scales. Nat. Commun. 8, 1639 (2017).

    Article  Google Scholar 

  32. 32.

    Yan, X.-Y. & Zhou, T. Destination choice game: a spatial interaction theory on human mobility. Sci. Rep. 9, 9466 (2019).

    Article  Google Scholar 

  33. 33.

    Coutrot, A. et al. Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PLoS ONE 14, e0213272 (2019).

    Article  Google Scholar 

  34. 34.

    Manley, E., Addison, J. & Cheng, T. Shortest path or anchor-based route choice: a large-scale empirical analysis of minicab routing in London. J. Transport Geogr. 43, 123–139 (2015).

    Article  Google Scholar 

  35. 35.

    Malleson, N. et al. The characteristics of asymmetric pedestrian behavior: a preliminary study using passive smartphone location data. Trans. GIS 22, 616–634 (2018).

    Article  Google Scholar 

  36. 36.

    Dijkstra, E. A note on two problems in connexion with graphs. Numerische Math. 1, 269–271 (1959).

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Fechner, G. T. Elements of Psychophysics (eds Howes, D. H. & Boring, E. G.) (Holt, Rinehar and Winston, 1860).

  38. 38.

    Newcombe, N., Huttenlocher, J., Sandberg, E., Lie, E. & Johnson, S. What do misestimations and asymmetries in spatial judgement indicate about spatial representation. J. Exp. Psychol. Learn. Mem. Cogn. 25, 986–996 (1999).

    Article  Google Scholar 

  39. 39.

    Bailenson, J. N., Shum, M. S. & Uttal, D. H. Road climbing: principles governing asymmetric route choices on maps. J. Environ. Psychol. 18, 251–264 (1998).

    Article  Google Scholar 

  40. 40.

    Bailenson, J. N., Shum, M. S. & Uttal, D. H. The initial segment strategy: a heuristic for route selection. Mem. Cogn. 28, 306–318 (2000).

    Article  Google Scholar 

  41. 41.

    Christenfeld, N. Choices from identical options. Psychol. Sci. 6, 50–55 (1995).

    Article  Google Scholar 

  42. 42.

    Howard, L. R. et al. The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340 (2014).

    Article  Google Scholar 

  43. 43.

    Marchette, S. A., Vass, L. K., Ryan, J. & Epstein, R. A. Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nat. Neurosci. 17, 1598–1606 (2014).

    Article  Google Scholar 

  44. 44.

    Collett, T. S. & Graham, P. Animal navigation: path integration, visual landmarks and cognitive maps. Curr. Biol. 14, R475–R477 (2004).

    Article  Google Scholar 

  45. 45.

    Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  Google Scholar 

  46. 46.

    de Cothi, W. & Spiers, H. J. Spatial cognition: goal-vector cells in the bat hippocampus. Curr. Biol. 27, R239–R241 (2017).

    Article  Google Scholar 

  47. 47.

    Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).

    Article  Google Scholar 

  48. 48.

    Poucet, B., Thinus-Blanc, C. & Chapuis, N. Route planning in cats, in relation to the visibility of the goal. Animal Behav. 31, 594–599 (1983).

    Article  Google Scholar 

  49. 49.

    Epstein, R. A., Patai, E. Z., Julian, J. B. & Spiers, H. J. The cognitive map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513 (2017).

    Article  Google Scholar 

  50. 50.

    Poulter, S., Lee, S. A., Dachtler, J., Wills, T. J. & Lever, C. Vector trace cells in the subiculum of the hippocampal formation. Nat. Neurosci 24, 266–275 (2021).

    Article  Google Scholar 

  51. 51.

    Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  Google Scholar 

  52. 52.

    Fu, E., Bravo, M. & Roskos, B. Single-destination navigation in a multiple-destination environment: a new later-destination attractor bias in route choice. Mem. Cogn. 43, 1043–1055 (2015).

    Article  Google Scholar 

  53. 53.

    Brunyé, T. T. et al. Planning routes around the world: international evidence for southern route preferences. J. Environ. Psychol. 32, 297–304 (2012).

    Article  Google Scholar 

  54. 54.

    Peer, M., Brunec, I. K., Newcombe, N. S. & Epstein, R. A. Structuring knowledge with cognitive maps and cognitive graphs. Trends Cogn. Sci. 25, 37–54 (2020).

    Article  Google Scholar 

  55. 55.

    Stern, E. & Leiser, D. Levels of spatial knowledge and urban travel modeling. Geogr. Anal. 20, 140–155 (1988).

    Article  Google Scholar 

  56. 56.

    Newson, P. & Krumm, J. Hidden Markov map matching through noise and sparseness. In Proc. 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’09, 336–343 (Association for Computing Machinery, 2009); https://doi.org/10.1145/1653771.1653818

  57. 57.

    Douglas, D. H. & Peucker, T. K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 10, 112–122 (1973).

    Google Scholar 

  58. 58.

    Wilks, S. S. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938).

    MATH  Article  Google Scholar 

  59. 59.

    Zhang, P. Model selection via multifold cross validation. Ann. Stat 21, 299–313 (1993).

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Buongiorno, C. et al. Pednav (1.1) (Zenodo, 2021); https://doi.org/10.5281/zenodo.5187718

  61. 61.

    Wilson, E. B. Probable inference, the law of succession and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927).

    Article  Google Scholar 

Download references

Acknowledgements

P.S. and C.R. thank the Amsterdam Institute for Advanced Metropolitan Solutions, Enel Foundation, DOVER and all of the members of the MIT Senseable City Laboratory Consortium for supporting this research. This material is based on work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award no. CCF-1231216. C.B. and A.R. acknowledge support from the MISTI/MITOR fund. A.R. acknowledges support from Compagnia di San Paolo. This work was performed using HPC resources from the ‘Mésocentre’ computing center of CentraleSupélec and Ecole Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France. Y.Z. acknowledges B. Huang and the Chinese University of Hong Kong for supporting his academic visit at the MIT Senseable City Laboratory.

Author information

Affiliations

Authors

Contributions

A.R. and P.S. conceived and supervised the research. C.B. and Y.Z. led and performed the exploratory data analysis. C.B. designed the asymmetry testing procedure, the stochastic modeling, the validation method and performed the simulations. Y.Z. processed the data, conducted statistical analyses and drafted the manuscript. M.K. and D.T. carried out exploratory modeling converging on the presented model. M.K. drafted the introduction, content related to cognitive science and neuroscience, as well as cognitive science research and methodology. C.R. contributed to conceptualize and design the research. J.T. provided conceptualization and feedback. All authors contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Paolo Santi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Computational Science thanks Nora Newcombe, Steven Weisberg, Daniel Montello and Laura Alessandretti for their contribution to the peer review of this work. Handling editor: Fernando Chirigati, in collaboration with the Nature Computational Science team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–3 and additional analyses.

Supplementary Data 1

Statistical source data for Supplementary Fig. 4.

Supplementary Data 2

Statistical source data for Supplementary Fig. 5.

Supplementary Data 3

Statistical source data for Supplementary Fig. 6.

Supplementary Data 4

Statistical source data for Supplementary Fig. 7.

Supplementary Data 5

Statistical source data for Supplementary Fig. 8.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bongiorno, C., Zhou, Y., Kryven, M. et al. Vector-based pedestrian navigation in cities. Nat Comput Sci 1, 678–685 (2021). https://doi.org/10.1038/s43588-021-00130-y

Download citation

Further reading

Search

Quick links