Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational challenges in numerical relativity in the gravitational-wave era

Gravitational-wave discoveries have ignited a new era of astronomy. Numerical relativity plays a crucial role in modeling gravitational-wave sources for current and next-generation observatories, but it doesn’t come without computational challenges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: A snapshot of a numerical-relativity calculation of colliding black holes.

N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration10


  1. 1.

    Abbott, B. P. et al. Phys. Rev. Lett. 116, 061102 (2016).

    MathSciNet  Article  Google Scholar 

  2. 2.

    Abbott, B. P. et al. Astrophys. J. Lett. 848, L12 (2017).

    Article  Google Scholar 

  3. 3.

    Abbott, R. et al. Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  4. 4.

    Punturo, M. et al. Class. Quant. Grav. 27, 194002 (2010).

    Article  Google Scholar 

  5. 5.

    Reitze, D. et al. Am. Astron. Soc. 51, 035 (2019).

    Google Scholar 

  6. 6.

    Amaro-Seoane, P. et al. Preprint at (2017).

  7. 7.

    Baumgarte, T. W. & Shapiro, S. L. Numerical Relativity: Starting from Scratch (Cambridge Univ. Press, 2021).

  8. 8.

    Pretorius, F. Phys. Rev. Lett. 95, 121101 (2005).

    MathSciNet  Article  Google Scholar 

  9. 9.

    Duez, M. D. & Zlochower, Y. Rept. Prog. Phys. 82, 016902 (2019).

    Article  Google Scholar 

  10. 10.

    Fischer, N. L., Pfeiffer, H. P., Ossokine, S. & Buonanno, A. Zenodo (2020).

  11. 11.

    Ossokine, S. et al. Phys. Rev. D 102, 044055 (2020).

    MathSciNet  Article  Google Scholar 

  12. 12.

    Boyle, M. et al. Class. Quant. Grav. 36, 195006 (2019).

    Article  Google Scholar 

  13. 13.

    Pürrer, M. & Haster, C.-J. Phys. Rev. Res. 2, 023151 (2020).

    Article  Google Scholar 

  14. 14.

    Gamba, R., Breschi, M., Bernuzzi, S., Agathos, M. & Nagar, A. Phys. Rev. D 103, 124015 (2021).

    Article  Google Scholar 

  15. 15.

    Tichy, W., Adhikari, A. & Ji, L. Bull. Am. Phys. Soc. 65, D15.00004 (2020).

    Google Scholar 

  16. 16.

    Fernando, M., Neilsen, D., Lim, H., Hirschmann, E. & Sundar, H. SIAM J. Sci. Comput. 41, C97–C138 (2018).

    Article  Google Scholar 

  17. 17.

    Daszuta, B. et al. Preprint at (2021).

  18. 18.

    Bugner, M., Dietrich, T., Bernuzzi, S., Weyhausen, A. & Brügmann, B. Phys. Rev. D 94, 084004 (2016).

    Article  Google Scholar 

  19. 19.

    Deppe, N. et al. Zenodo (2021).

Download references


I am pleased to thank N. Fischer, S. Ossokine, H. Pfeiffer, M. Scheel and S. Teukolsky for helpful discussions and suggestions. This comment was supported in part by National Science Foundation awards PHY-1654359, PHY-1836734 and AST-1559694, by the Dan Black Family Trust, and by Nicholas and Lee Begovich.

Author information



Corresponding author

Correspondence to Geoffrey Lovelace.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lovelace, G. Computational challenges in numerical relativity in the gravitational-wave era. Nat Comput Sci 1, 450–452 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing