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How community software ecosystems can 
unlock the potential of exascale computing
Emerging exascale architectures and systems will provide a sizable increase in raw computing power for science. 
To ensure the full potential of these new and diverse architectures, as well as the longevity and sustainability of 
science applications, we need to embrace software ecosystems as first-class citizens.

Lois Curfman McInnes, Michael A. Heroux, Erik W. Draeger, Andrew Siegel, 
Susan Coghlan and Katie Antypas

After decades of relatively constant 
and straightforward performance 
growth in computing hardware, 

high-performance computing (HPC) 
applications are now facing disruptive 
changes in hardware architectures driven by 
the end of Dennard scaling and the slowing 
of Moore’s law. These new computing 
architectures on the path toward exascale 
— defined as the capability to perform 1018 
operations per second — have the potential 
to unleash enormous gains in computational 
capability for science (even at the desktop 
level) but come with substantially increased 
programming complexity1,2. Heterogeneous 
memory spaces, massive parallel concurrency 
requirements, and reduced bandwidth 
to compute ratios, along with changing 
storage paradigms and a proliferation of 
hardware accelerators, make developing 
and optimizing applications for upcoming 
systems a challenge. Here, we argue that the 
casual confederations of applications and 
software used on HPC systems in the past are 
not enough to ensure efficient utilization of 
upcoming hardware. Instead, each software 
project should intentionally consider the 
relationships among products that it develops 
and uses. Moreover, communities should 
take on software ecosystem perspectives — 
that is, consider establishing collections of 
interdependent products whose development 
teams have incentives to collaborate to 
provide aggregate value, where the whole is 
greater than the sum of its parts. Community 
software ecosystem perspectives are essential 
to fully harness the complementary advances 
needed in applied mathematics, computer 
science and domain sciences as we work 
toward the exascale era and a sustainable path 
for next-generation computational science.

Collaborating across disciplines via 
software
For application developers, the idea 
of delegating functionality to external 
libraries is not new. For decades, standard 

mathematical operations such as dense 
linear algebra and fast Fourier transforms 
have routinely been outsourced to 
highly optimized, platform-specific 
implementations. However, introducing 
external dependencies has never been a step 
for application teams to take lightly. Indeed, 
conventional wisdom for codes targeting 
portability and performance on cutting- 
edge platforms has been to minimize their 
dependence on software capabilities not 
directly supported by vendors, to reduce  
the risk of roadblocks that cannot be  
quickly fixed.

With the rapid pace of change and 
increasing diversity in hardware, this 
conservative approach now carries risks of 
its own because achieving good performance 
on new architectures requires increased 
development effort for refactoring and 
tuning. The transition to hosted accelerated 
architectures, specifically nodes with 
multicore CPUs and multiple GPUs, adds 
a challenging dimension of complexity. 
The need to develop and encode new, 
highly concurrent algorithms, coordinate 
data motion, and achieve parallel kernel 
execution on different heterogeneous 
architectures has given rise to new 
programming models, including abstraction 
layers (for example, Kokkos, RAJA and 
UMPIRE)3, designed to enable performance 
portability — the ability to obtain good 
performance from the same source code on 
a variety of target platforms.

Foundational software infrastructure 
for common computational domains, 
from adaptive mesh refinement libraries 
to shared components for multiphysics 
coupling, provides opportunities for both 
modernization of existing applications as 
well as new development, especially as we 
target new heterogeneous architectures. The 
decisions facing application teams now are 
not only which external software products 
to use but also how to best engage with 
development of these products. Application 

teams who chose to become active 
participants in community ecosystems — 
coordinating to fully understand intended 
use cases, define robust APIs, provide input 
to testing and optimization, and identify 
opportunities for shared development — are 
better positioned to achieve their science 
goals than those who are simply passive 
consumers of software products.

New science drivers in HPC
Traditional simulation and modeling 
continue to drive exponentially increasing 
demand for HPC due to requirements 
for higher resolution, increased fidelity, 
and multiphysics/multiscale coupling; 
at the same time, new HPC workloads 
are also emerging. The explosion of data 
from sensors, detectors, accelerators, 
microscopes, telescopes and sequencers 
is overwhelming local computing 
capabilities, as well as scientists’ ability 
to move, manage, store and analyze the 
data. New communities and large-scale 
collaborations developing around these 
experimental instruments require novel 
modes of interacting with HPC systems. For 
example, application teams incorporating 
large-scale data often have complex 
software dependencies requiring specific 
versions and software instances, which 
must be validated and tested before use. 
The teams typically have complex workflow 
requirements, with a scientific pipeline 
potentially starting and ending outside a 
computational facility, meaning workflow 
and scheduler software become eminently 
important. Furthermore, the increasing 
use of artificial intelligence (AI) in both 
large-scale simulations and experimental 
data analysis is driving changes in the 
traditional HPC software stack. For 
example, AI software products developed in 
industry are being ported and optimized for 
HPC systems, while new research is under 
way on AI software to serve the unique 
needs of science.
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Software as a first-class citizen
Reusable software products, which 
encapsulate domain-specific expertise 
that is leverageable across multiple 
applications, represent key opportunities 
for collaboration. Researchers in applied 
mathematics and computer science have a 
long tradition of developing cutting-edge 
software libraries and tools that underpin 
advances in computational science4–6. 
Often, however, the resulting software is a 
byproduct of research on new algorithms 
or domain-specific science, rather than 
direct investment in the software itself7. 
Given the disruptive changes in computing 
architectures, the increasing system 
heterogeneity, and the increasing number of 
communities coming to HPC with different 
expectations and requirements for software, 
it is important to design new paradigms for 
developing, testing, managing and deploying 
software ecosystems on the road to exascale. 
Furthermore, issues related to dependency 
management bring to the forefront 
challenges in documentation, distribution, 
coordination and reproducibility. Software 
quality assurance is an increasingly urgent 
topic, as open-source software is emerging 
as a central resource for technical computing 
in government, academia and industry. 
Moreover, there is general awareness that the 
broader computational science community 
faces similar urgent software challenges, 
even if it does not have the mandate to 
prepare for exascale computing platforms. 
Thus, the time is ripe for the computational 
science community to fully embrace 
software ecosystem perspectives.

The Exascale Computing Project
Teams from the Exascale Computing Project 
(ECP)8, funded by the US Department 
of Energy (DOE), are working toward 
scientific advances on forthcoming exascale 
platforms. Efforts target a diverse suite of 
applications in chemistry, materials, energy, 
Earth and space science, data analytics, 
optimization, AI, and national security9,10. 
In turn, these applications build on software 
components, including programming 
models and runtimes, mathematical 
libraries, data and visualization packages, 
and development tools3 that comprise the 
Extreme-scale Scientific Software Stack 
(E4S). E4S represents a portfolio-driven 
effort to collect, test and deliver the latest 
in reusable open-source HPC software 
products, as driven by the common needs 
of applications. As new exascale-ready 
components are developed, they are 
integrated and tested to ensure correctness 
and version compatibility, and are delivered 
to application teams via from-source builds, 
containers and cloud environments. E4S 

establishes product quality expectations 
and provides a portal as a starting point for 
access to all product documentation. As we 
go forward, E4S will also play a central role 
in software quality assurance, needed to help 
ensure the integrity of computational results.

Early experiences with E4S indicate 
some success in helping to overcome 
software collaboration challenges across 
distributed aggregate teams. A key lesson 
learned is the need for close collaboration 
between teams developing applications 
and reusable software technologies, as well 
as the need for crosscutting strategies to 
increase developer productivity and software 
sustainability, thereby mitigating technical 
risks by building a firmer foundation for 
reproducible, sustainable science11. E4S is an 
open architecture, welcoming contributions 
from the broader HPC community. 
Recognizing that each community’s needs 
are unique, the E4S approach being used by 
the ECP (as well as the software ecosystem 
strategies of other communities) could be 
used as inspiration for a community to 
establish an ecosystem that addresses its 
unique goals and requirements.

Leveraging cognitive and social 
sciences
Large-scale computational science is 
fundamentally team-oriented. Establishing 
team environments that foster creativity, 
innovation, individual satisfaction and 
team productivity is essential for progress, 
but presently computational science teams 
tend to treat individual and team challenges 
in an ad hoc manner. We can benefit from 
applying the cognitive and social sciences 
to better understand and improve how 
teams develop and use software to conduct 
research12. We are finding that engaging 
trained cognitive and social scientists 
as integral team members can lead to 
more effective outcomes, especially in the 
context of distributed aggregate teams 
(also known as ‘teams of teams’)13, who 
are working across disciplines in pursuit 
of next-generation science. Moreover, 
improving incentives, credit14 and metrics 
for work on high-impact software (including 
publication and peer review), along with 
rewarding career paths (such as the research 
software engineering movement15) is 
increasingly important.

In recent years, international community 
members have established a range of 
grassroots organizations and projects 
to address these growing technical and 
social challenges in research software16,17. 
In their respective spheres of influence, 
these groups — including the Software 
Sustainability Institute (SSI), the US 
Research Software Sustainability Institute 

(URSSI), and the Better Scientific Software 
site — nurture communities, promote the 
growth of software ecosystems, and provide 
information about effective approaches for 
creating, sustaining and collaborating via 
scientific research software.

Conclusion and outlook
To fully exploit emerging exascale 
computational resources for next-generation 
computational science, we must explicitly 
acknowledge the critical role of software as 
the foundation of sustained collaboration 
and scientific progress. By embracing 
software ecosystem perspectives and 
tackling the intertwined technical, cognitive 
and social challenges related to high-quality, 
sustainable scientific software, we can 
fully integrate research advances across 
applied mathematics, computer science 
and domain sciences for next-generation 
computational science. While the difficulties 
of extreme-scale computing and large, 
multidisciplinary research projects intensify 
software challenges, these issues are relevant 
across all computing scales and project sizes, 
given universal increases in complexity and 
change in scientific computing, along with 
the need to ensure the trustworthiness of 
computational results.

We encourage exploration of the 
resources being created by various 
organizations that support software 
ecosystem health by promoting 
collaboration on community policies and 
best practices for scientific software. All of 
us as members of the computational science 
community can play important roles in 
addressing these technical, cognitive and 
social challenges in scientific software by 
catalyzing change in our own projects, 
institutions and communities. This work is 
essential so that we can collectively advance 
toward predictive computational science and 
reap its benefits for science and society. ❐

Lois Curfman McInnes   1 ✉, 
Michael A. Heroux   2, Erik W. Draeger3, 
Andrew Siegel1, Susan Coghlan4 and 
Katie Antypas5

1Mathematics and Computer Science Division, 
Argonne National Laboratory, Lemont, IL, USA. 
2Center for Computing Research, Sandia National 
Laboratories, Albuquerque, NM, USA. 3Center for 
Applied Scientific Computing, Lawrence Livermore 
National Laboratory, Livermore, CA, USA. 4Argonne 
Leadership Computing Facility, Argonne National 
Laboratory, Lemont, IL, USA. 5National Energy 
Research Scientific Computing Center, Lawrence 
Berkeley National Laboratory, Berkeley, CA, USA.  
✉e-mail: curfman@anl.gov

Published online: 22 February 2021 
https://doi.org/10.1038/s43588-021-00033-y

Nature Computational Science | VOL 1 | February 2021 | 92–94 | www.nature.com/natcomputsci

https://www.exascaleproject.org/
https://e4s.io/
https://www.software.ac.uk/
https://www.software.ac.uk/
http://urssi.us/
http://urssi.us/
https://bssw.io/
http://orcid.org/0000-0002-6381-4736
http://orcid.org/0000-0002-5893-0273
mailto:curfman@anl.gov
https://doi.org/10.1038/s43588-021-00033-y
http://www.nature.com/natcomputsci


94

comment

References
	1.	 Dongarra, J. et al. Int. J. High Perform. Comput. Appl. 25,  

3–60 (2011).
	2.	 Hack, J. et al. Crosscut Report: Exascale Requirements Review 

(OSTI, 2017).
	3.	 Heroux, M. et al. ECP Software Technologies Capability Assessment 

Report 2.5 (ECP, 2020).
	4.	 Rüde, U., Willcox, K., McInnes, L. C. & De Sterck, H. SIAM Rev. 

60, 707–754 (2018).
	5.	 Hendrickson, B. et al. ASCR@40: Highlights and Impacts of ASCR’s 

Programs (OSTI, 2020).
	6.	 Keyes, D. E. et al. Int. J. High Perform. Comput. Appl. 27, 4–83 

(2013).
	7.	 Keyes, D. et al. Report of the National Science Foundation Advisory 

Committee on CyberInfrastructure (Task Force on Software for 
Science and Engineering, 2011).

	8.	 Kothe, D., Lee, S. & Qualters, I. Comput. Sci. Eng. 21,  
17–29 (2019).

	9.	 Siegel, A. et al. Early Application Results on Pre-exascale 
Architecture with Analysis of Performance Challenges and 
Projections, ECP Milestone Report PM-AD-1080 (ECP, 2020).

	10.	Alexander, F. et al. Phil. Trans. R. Soc. A 378, 20190056  
(2019).

	11.	Heroux, M. et al. Advancing Scientific Productivity through 
Better Scientific Software: Developer Productivity and Software 
Sustainability Report, ECP-U-RPT-2020-0001 (OSTI, 2020).

	12.	Heroux, M. Better Scientific Software https://bssw.io/blog_ 
posts/research-software-science-a-scientific-approach-to- 
understanding-and-improving-how-we-develop- 
and-use-software-for-research (2019).

	13.	Raybourn, E., Moulton, J. D. & Hungerford, A. In HCI in 
Business, Government and Organizations. Information Systems and 
Analytics (eds Nah, F. H. & Siau, K.) 408–421 (Springer, 2019).

	14.	Casari, A. et al. Nat. Comput. Sci. 1, 2 (2021).
	15.	Hettrick, S. Software Sustainability Institute https://www.software.

ac.uk/blog/2016-08-17-not- 
so-brief-history-research-software-engineers-0 (2016).

	16.	Katz, D. S. et al. Comput. Sci. Eng. 21, 8–24 (2019).
	17.	McInnes, L. C., Katz, D. S. & Lathrop, S. SIAM News https://

sinews.siam.org/Details-Page/computational- 
research-software-challenges-and-community-organizations- 
working-for-culture-change (2019).

Acknowledgements
We thank all those whose work is represented in this 
article for their commitment to realizing next-generation 
computational science. This work was supported by the 
Exascale Computing Project (17-SC-20-SC), a collaborative 
effort of the US Department of Energy Office of Science 
and the National Nuclear Security Administration. 
This work was performed under the auspices of the US 

Department of Energy by Argonne National Laboratory 
under contract number DE-AC02-06CH11357 (L.C.M., 
A.S., S.C.), by Lawrence Berkeley National Laboratory 
under contract DE-AC02-05CH11231 (K.A.), by Lawrence 
Livermore National Laboratory under contract DE-AC52-
07NA27344 (E.W.D.), and by Sandia National Laboratories 
under contract DEAC04-94AL85000 (M.A.H.). This paper 
describes objective technical results and analysis. Any 
subjective views or opinions that might be expressed in 
the paper do not necessarily represent the views of the US 
Department of Energy or the US government.

Author contributions
The authors serve as the leads of ECP focus areas: Software 
Technology, M.A.H. (director) and L.C.M. (deputy 
director); Application Development, A.S. (director) and 
E.W.D. (deputy director); Hardware and Integration, K.A. 
(director) and S.C. (deputy director). Their contributions 
to the ideas and writing of this article reflect their work in 
these roles.

Competing interests
The authors declare no competing interests.

Nature Computational Science | VOL 1 | February 2021 | 92–94 | www.nature.com/natcomputsci

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
http://www.nature.com/natcomputsci

	How community software ecosystems can unlock the potential of exascale computing

	Collaborating across disciplines via software

	New science drivers in HPC

	Software as a first-class citizen

	The Exascale Computing Project

	Leveraging cognitive and social sciences

	Conclusion and outlook

	Acknowledgements





