
92

comment

How community software ecosystems can
unlock the potential of exascale computing
Emerging exascale architectures and systems will provide a sizable increase in raw computing power for science.
To ensure the full potential of these new and diverse architectures, as well as the longevity and sustainability of
science applications, we need to embrace software ecosystems as first-class citizens.

Lois Curfman McInnes, Michael A. Heroux, Erik W. Draeger, Andrew Siegel,
Susan Coghlan and Katie Antypas

After decades of relatively constant
and straightforward performance
growth in computing hardware,

high-performance computing (HPC)
applications are now facing disruptive
changes in hardware architectures driven by
the end of Dennard scaling and the slowing
of Moore’s law. These new computing
architectures on the path toward exascale
— defined as the capability to perform 1018
operations per second — have the potential
to unleash enormous gains in computational
capability for science (even at the desktop
level) but come with substantially increased
programming complexity1,2. Heterogeneous
memory spaces, massive parallel concurrency
requirements, and reduced bandwidth
to compute ratios, along with changing
storage paradigms and a proliferation of
hardware accelerators, make developing
and optimizing applications for upcoming
systems a challenge. Here, we argue that the
casual confederations of applications and
software used on HPC systems in the past are
not enough to ensure efficient utilization of
upcoming hardware. Instead, each software
project should intentionally consider the
relationships among products that it develops
and uses. Moreover, communities should
take on software ecosystem perspectives —
that is, consider establishing collections of
interdependent products whose development
teams have incentives to collaborate to
provide aggregate value, where the whole is
greater than the sum of its parts. Community
software ecosystem perspectives are essential
to fully harness the complementary advances
needed in applied mathematics, computer
science and domain sciences as we work
toward the exascale era and a sustainable path
for next-generation computational science.

Collaborating across disciplines via
software
For application developers, the idea
of delegating functionality to external
libraries is not new. For decades, standard

mathematical operations such as dense
linear algebra and fast Fourier transforms
have routinely been outsourced to
highly optimized, platform-specific
implementations. However, introducing
external dependencies has never been a step
for application teams to take lightly. Indeed,
conventional wisdom for codes targeting
portability and performance on cutting-
edge platforms has been to minimize their
dependence on software capabilities not
directly supported by vendors, to reduce
the risk of roadblocks that cannot be
quickly fixed.

With the rapid pace of change and
increasing diversity in hardware, this
conservative approach now carries risks of
its own because achieving good performance
on new architectures requires increased
development effort for refactoring and
tuning. The transition to hosted accelerated
architectures, specifically nodes with
multicore CPUs and multiple GPUs, adds
a challenging dimension of complexity.
The need to develop and encode new,
highly concurrent algorithms, coordinate
data motion, and achieve parallel kernel
execution on different heterogeneous
architectures has given rise to new
programming models, including abstraction
layers (for example, Kokkos, RAJA and
UMPIRE)3, designed to enable performance
portability — the ability to obtain good
performance from the same source code on
a variety of target platforms.

Foundational software infrastructure
for common computational domains,
from adaptive mesh refinement libraries
to shared components for multiphysics
coupling, provides opportunities for both
modernization of existing applications as
well as new development, especially as we
target new heterogeneous architectures. The
decisions facing application teams now are
not only which external software products
to use but also how to best engage with
development of these products. Application

teams who chose to become active
participants in community ecosystems —
coordinating to fully understand intended
use cases, define robust APIs, provide input
to testing and optimization, and identify
opportunities for shared development — are
better positioned to achieve their science
goals than those who are simply passive
consumers of software products.

New science drivers in HPC
Traditional simulation and modeling
continue to drive exponentially increasing
demand for HPC due to requirements
for higher resolution, increased fidelity,
and multiphysics/multiscale coupling;
at the same time, new HPC workloads
are also emerging. The explosion of data
from sensors, detectors, accelerators,
microscopes, telescopes and sequencers
is overwhelming local computing
capabilities, as well as scientists’ ability
to move, manage, store and analyze the
data. New communities and large-scale
collaborations developing around these
experimental instruments require novel
modes of interacting with HPC systems. For
example, application teams incorporating
large-scale data often have complex
software dependencies requiring specific
versions and software instances, which
must be validated and tested before use.
The teams typically have complex workflow
requirements, with a scientific pipeline
potentially starting and ending outside a
computational facility, meaning workflow
and scheduler software become eminently
important. Furthermore, the increasing
use of artificial intelligence (AI) in both
large-scale simulations and experimental
data analysis is driving changes in the
traditional HPC software stack. For
example, AI software products developed in
industry are being ported and optimized for
HPC systems, while new research is under
way on AI software to serve the unique
needs of science.

Nature Computational Science | VOL 1 | February 2021 | 92–94 | www.nature.com/natcomputsci

http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00033-y&domain=pdf
http://www.nature.com/natcomputsci

93

comment

Software as a first-class citizen
Reusable software products, which
encapsulate domain-specific expertise
that is leverageable across multiple
applications, represent key opportunities
for collaboration. Researchers in applied
mathematics and computer science have a
long tradition of developing cutting-edge
software libraries and tools that underpin
advances in computational science4–6.
Often, however, the resulting software is a
byproduct of research on new algorithms
or domain-specific science, rather than
direct investment in the software itself7.
Given the disruptive changes in computing
architectures, the increasing system
heterogeneity, and the increasing number of
communities coming to HPC with different
expectations and requirements for software,
it is important to design new paradigms for
developing, testing, managing and deploying
software ecosystems on the road to exascale.
Furthermore, issues related to dependency
management bring to the forefront
challenges in documentation, distribution,
coordination and reproducibility. Software
quality assurance is an increasingly urgent
topic, as open-source software is emerging
as a central resource for technical computing
in government, academia and industry.
Moreover, there is general awareness that the
broader computational science community
faces similar urgent software challenges,
even if it does not have the mandate to
prepare for exascale computing platforms.
Thus, the time is ripe for the computational
science community to fully embrace
software ecosystem perspectives.

The Exascale Computing Project
Teams from the Exascale Computing Project
(ECP)8, funded by the US Department
of Energy (DOE), are working toward
scientific advances on forthcoming exascale
platforms. Efforts target a diverse suite of
applications in chemistry, materials, energy,
Earth and space science, data analytics,
optimization, AI, and national security9,10.
In turn, these applications build on software
components, including programming
models and runtimes, mathematical
libraries, data and visualization packages,
and development tools3 that comprise the
Extreme-scale Scientific Software Stack
(E4S). E4S represents a portfolio-driven
effort to collect, test and deliver the latest
in reusable open-source HPC software
products, as driven by the common needs
of applications. As new exascale-ready
components are developed, they are
integrated and tested to ensure correctness
and version compatibility, and are delivered
to application teams via from-source builds,
containers and cloud environments. E4S

establishes product quality expectations
and provides a portal as a starting point for
access to all product documentation. As we
go forward, E4S will also play a central role
in software quality assurance, needed to help
ensure the integrity of computational results.

Early experiences with E4S indicate
some success in helping to overcome
software collaboration challenges across
distributed aggregate teams. A key lesson
learned is the need for close collaboration
between teams developing applications
and reusable software technologies, as well
as the need for crosscutting strategies to
increase developer productivity and software
sustainability, thereby mitigating technical
risks by building a firmer foundation for
reproducible, sustainable science11. E4S is an
open architecture, welcoming contributions
from the broader HPC community.
Recognizing that each community’s needs
are unique, the E4S approach being used by
the ECP (as well as the software ecosystem
strategies of other communities) could be
used as inspiration for a community to
establish an ecosystem that addresses its
unique goals and requirements.

Leveraging cognitive and social
sciences
Large-scale computational science is
fundamentally team-oriented. Establishing
team environments that foster creativity,
innovation, individual satisfaction and
team productivity is essential for progress,
but presently computational science teams
tend to treat individual and team challenges
in an ad hoc manner. We can benefit from
applying the cognitive and social sciences
to better understand and improve how
teams develop and use software to conduct
research12. We are finding that engaging
trained cognitive and social scientists
as integral team members can lead to
more effective outcomes, especially in the
context of distributed aggregate teams
(also known as ‘teams of teams’)13, who
are working across disciplines in pursuit
of next-generation science. Moreover,
improving incentives, credit14 and metrics
for work on high-impact software (including
publication and peer review), along with
rewarding career paths (such as the research
software engineering movement15) is
increasingly important.

In recent years, international community
members have established a range of
grassroots organizations and projects
to address these growing technical and
social challenges in research software16,17.
In their respective spheres of influence,
these groups — including the Software
Sustainability Institute (SSI), the US
Research Software Sustainability Institute

(URSSI), and the Better Scientific Software
site — nurture communities, promote the
growth of software ecosystems, and provide
information about effective approaches for
creating, sustaining and collaborating via
scientific research software.

Conclusion and outlook
To fully exploit emerging exascale
computational resources for next-generation
computational science, we must explicitly
acknowledge the critical role of software as
the foundation of sustained collaboration
and scientific progress. By embracing
software ecosystem perspectives and
tackling the intertwined technical, cognitive
and social challenges related to high-quality,
sustainable scientific software, we can
fully integrate research advances across
applied mathematics, computer science
and domain sciences for next-generation
computational science. While the difficulties
of extreme-scale computing and large,
multidisciplinary research projects intensify
software challenges, these issues are relevant
across all computing scales and project sizes,
given universal increases in complexity and
change in scientific computing, along with
the need to ensure the trustworthiness of
computational results.

We encourage exploration of the
resources being created by various
organizations that support software
ecosystem health by promoting
collaboration on community policies and
best practices for scientific software. All of
us as members of the computational science
community can play important roles in
addressing these technical, cognitive and
social challenges in scientific software by
catalyzing change in our own projects,
institutions and communities. This work is
essential so that we can collectively advance
toward predictive computational science and
reap its benefits for science and society. ❐

Lois Curfman McInnes   1 ✉,
Michael A. Heroux   2, Erik W. Draeger3,
Andrew Siegel1, Susan Coghlan4 and
Katie Antypas5

1Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL, USA.
2Center for Computing Research, Sandia National
Laboratories, Albuquerque, NM, USA. 3Center for
Applied Scientific Computing, Lawrence Livermore
National Laboratory, Livermore, CA, USA. 4Argonne
Leadership Computing Facility, Argonne National
Laboratory, Lemont, IL, USA. 5National Energy
Research Scientific Computing Center, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA.
✉e-mail: curfman@anl.gov

Published online: 22 February 2021
https://doi.org/10.1038/s43588-021-00033-y

Nature Computational Science | VOL 1 | February 2021 | 92–94 | www.nature.com/natcomputsci

https://www.exascaleproject.org/
https://e4s.io/
https://www.software.ac.uk/
https://www.software.ac.uk/
http://urssi.us/
http://urssi.us/
https://bssw.io/
http://orcid.org/0000-0002-6381-4736
http://orcid.org/0000-0002-5893-0273
mailto:curfman@anl.gov
https://doi.org/10.1038/s43588-021-00033-y
http://www.nature.com/natcomputsci

94

comment

References
	1.	 Dongarra, J. et al. Int. J. High Perform. Comput. Appl. 25,

3–60 (2011).
	2.	 Hack, J. et al. Crosscut Report: Exascale Requirements Review

(OSTI, 2017).
	3.	 Heroux, M. et al. ECP Software Technologies Capability Assessment

Report 2.5 (ECP, 2020).
	4.	 Rüde, U., Willcox, K., McInnes, L. C. & De Sterck, H. SIAM Rev.

60, 707–754 (2018).
	5.	 Hendrickson, B. et al. ASCR@40: Highlights and Impacts of ASCR’s

Programs (OSTI, 2020).
	6.	 Keyes, D. E. et al. Int. J. High Perform. Comput. Appl. 27, 4–83

(2013).
	7.	 Keyes, D. et al. Report of the National Science Foundation Advisory

Committee on CyberInfrastructure (Task Force on Software for
Science and Engineering, 2011).

	8.	 Kothe, D., Lee, S. & Qualters, I. Comput. Sci. Eng. 21,
17–29 (2019).

	9.	 Siegel, A. et al. Early Application Results on Pre-exascale
Architecture with Analysis of Performance Challenges and
Projections, ECP Milestone Report PM-AD-1080 (ECP, 2020).

	10.	Alexander, F. et al. Phil. Trans. R. Soc. A 378, 20190056
(2019).

	11.	Heroux, M. et al. Advancing Scientific Productivity through
Better Scientific Software: Developer Productivity and Software
Sustainability Report, ECP-U-RPT-2020-0001 (OSTI, 2020).

	12.	Heroux, M. Better Scientific Software https://bssw.io/blog_
posts/research-software-science-a-scientific-approach-to-
understanding-and-improving-how-we-develop-
and-use-software-for-research (2019).

	13.	Raybourn, E., Moulton, J. D. & Hungerford, A. In HCI in
Business, Government and Organizations. Information Systems and
Analytics (eds Nah, F. H. & Siau, K.) 408–421 (Springer, 2019).

	14.	Casari, A. et al. Nat. Comput. Sci. 1, 2 (2021).
	15.	Hettrick, S. Software Sustainability Institute https://www.software.

ac.uk/blog/2016-08-17-not-
so-brief-history-research-software-engineers-0 (2016).

	16.	Katz, D. S. et al. Comput. Sci. Eng. 21, 8–24 (2019).
	17.	McInnes, L. C., Katz, D. S. & Lathrop, S. SIAM News https://

sinews.siam.org/Details-Page/computational-
research-software-challenges-and-community-organizations-
working-for-culture-change (2019).

Acknowledgements
We thank all those whose work is represented in this
article for their commitment to realizing next-generation
computational science. This work was supported by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the US Department of Energy Office of Science
and the National Nuclear Security Administration.
This work was performed under the auspices of the US

Department of Energy by Argonne National Laboratory
under contract number DE-AC02-06CH11357 (L.C.M.,
A.S., S.C.), by Lawrence Berkeley National Laboratory
under contract DE-AC02-05CH11231 (K.A.), by Lawrence
Livermore National Laboratory under contract DE-AC52-
07NA27344 (E.W.D.), and by Sandia National Laboratories
under contract DEAC04-94AL85000 (M.A.H.). This paper
describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the US
Department of Energy or the US government.

Author contributions
The authors serve as the leads of ECP focus areas: Software
Technology, M.A.H. (director) and L.C.M. (deputy
director); Application Development, A.S. (director) and
E.W.D. (deputy director); Hardware and Integration, K.A.
(director) and S.C. (deputy director). Their contributions
to the ideas and writing of this article reflect their work in
these roles.

Competing interests
The authors declare no competing interests.

Nature Computational Science | VOL 1 | February 2021 | 92–94 | www.nature.com/natcomputsci

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
https://sinews.siam.org/Details-Page/computational-research-software-challenges-and-community-organizations-working-for-culture-change
http://www.nature.com/natcomputsci

	How community software ecosystems can unlock the potential of exascale computing

	Collaborating across disciplines via software

	New science drivers in HPC

	Software as a first-class citizen

	The Exascale Computing Project

	Leveraging cognitive and social sciences

	Conclusion and outlook

	Acknowledgements

