Abstract
Computational science is crucial for delivering reliable weather and climate predictions. However, despite decades of high-performance computing experience, there is serious concern about the sustainability of this application in the post-Moore/Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scalable and more adaptable to future, yet unknown computing architectures.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Cook, J. et al. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 8, 024024 (2013).
Wallemacq, P., Below, R. & McLean, D. Economic Losses, Poverty and Disasters: 1998–2017 (UNISDR, CRED, 2018).
Weather, Climate and Catastrophe Insight Report GDM05083 (AON, 2019).
Franco, E. et al. The Global Risks Report 2020 (World Economic Forum, 2020).
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).
Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extremes 18, 65–74 (2017).
Asch, M. et al. Big data and extreme-scale computing: pathways to convergence-toward a shaping strategy for a future software and data ecosystem for scientific inquiry. Int. J. High Perform. Comput. Appl. 32, 435–479 (2018).
Khan, H. N., Hounshell, D. A. & Fuchs, E. R. Science and research policy at the end of Moore’s law. Nat. Electron. 1, 14–21 (2018).
Platzman, G. W. The ENIAC computations of 1950—gateway to numerical weather prediction. Bull. Amer. Meteorol. Soc. 60, 302–312 (1979).
Lynch, P. The Emergence of Numerical Weather Prediction: Richardson’s Dream (Cambridge Univ. Press, 2006).
Leutbecher, M. & Palmer, T. N. Ensemble forecasting. J. Comput. Phys. 227, 3515–3539 (2008).
Zhu, Y., Toth, Z., Wobus, R., Richardson, D. & Mylne, K. The economic value of ensemble-based weather forecasts. Bull. Amer. Meteorol. Soc. 83, 73–84 (2002).
Palmer, T. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl Acad. Sci. USA 116, 24390–24395 (2019).
Brunet, G. et al. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteorol. Soc. 91, 1397–1406 (2010).
Stevens, B. et al. DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. 6, 61 (2019).
Wedi, N.P. et al. A baseline for global weather and climate simulations at 1 km resolution. J. Adv. Model. Earth Syst. 12, e2020MS002192 (2020).
Schulthess, T. C. et al. Reflecting on the goal and baseline for exascale computing: a roadmap based on weather and climate simulations. Comput. Sci. Eng. 21, 30–41 (2018).
Bauer, P., Stevens, B., Hazeleger, W. A digital twin of Earth for the green transition.Nat. Clim. Change https://doi.org/10.1038/s41558-021-00986-y (2021).
Davis, N. What is the fourth industrial revolution? World Economic Forum https://www.weforum.org/agenda/2016/01/what-is-the-fourth-industrial-revolution/ (19 January 2016).
Tao, F. & Qi, Q. Make more digital twins. Nature 573, 490–491 (2019).
Bell, G. Supercomputers: The Amazing Race (A History of Supercomputing, 1960–2020) (2014).
Lynch, P. J. The origins of computer weather prediction and climate modeling. Comput. Phys. 227, 3431–3444 (2008).
Bondyopadhyay, P. K. Moore’s law governs the silicon revolution. Proc. IEEE 86, 78–81 (1998).
Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).
Easterbrook, S. M. & Johns, T. C. Engineering the software for understanding climate change. Comput. Sci. Eng. 11, 65–74 (2009).
Fuhrer, O. et al. Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geosci. Model Dev. 11, 1665–1681 (2018).
Lawrence, B. N. et al. Crossing the chasm: how to develop weather and climate models for next generation computers. Geosci. Model Dev. 11, 1799–1821 (2018).
Williamson, D. L. The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn Ser. II 85, 241–269 (2007).
McFarlane, N. Parameterizations: representing key processes in climate models without resolving them. Wiley Interdiscip. Rev. Clim. Change 2, 482–497 (2011).
Flato, G. M. Earth system models: an overview. Wiley Interdiscip. Rev. Clim. Change 2, 783–800 (2011).
Steppeler, J., Hess, R., Schättler, U. & Bonaventura, L. Review of numerical methods for nonhydrostatic weather prediction models. Meteorol. Atmos. Phys. 82, 287–301 (2003).
Mengaldo, G. et al. Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Meth. Eng. 26, 663–684 (2019).
Teixeira, J., Reynolds, C. A. & Judd, K. Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and ensemble design. J. Atmos. Sci. 64, 175–189 (2007).
Dueben, P. D. & Palmer, T. Benchmark tests for numerical weather forecasts on inexact hardware. Mon. Weather Rev. 142, 3809–3829 (2014).
Vána, F. et al. Single precision in weather forecasting models: an evaluation with the IFS. Mon. Weather Rev. 145, 495–502 (2017).
Hatfield, S. et al. Choosing the optimal numerical precision for data assimilation in the presence of model error. J. Adv. Model. Earth Syst. 10, 2177–2191 (2018).
Dueben, P. D. & Dawson, A. An approach to secure weather and climate models against hardware faults. J. Adv. Model. Earth Syst. 9, 501–513 (2017).
Balaji, V., Benson, R., Wyman, B. & Held, I. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the flexible modeling system coupling framework. Geosci. Model Dev. 9, 3605–3616 (2016).
Koldunov, N. V. et al. Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2). Geosci. Model Dev. 12, 3991–4012 (2019).
Mozdzynski, G., Hamrud, M., Wedi, N., Doleschal, J. & Richardson, H. 2012 SC Companion: High Performance Computing, Networking Storage and Analysis 652–661 (2012).
Sanan, P., Schnepp, S. M. & May, D. A. Pipelined, flexible Krylov subspace methods. SIAM J. Sci. Comput. 38, C441–C470 (2016).
Maisonnave, E. et al. CDI-pio & XIOS I/O Servers Compatibility with HR Climate Models TR/CMGC/17/52 (CERFACS, 2017).
Govett, M. W., Middlecoff, J. & Henderson, T. Running the NIM next-generation weather model on GPUs. In 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing 792–796 (2010).
Thaler, F. et al. Porting the cosmo weather model to manycore CPUS. In Proc. Platform for Advanced Scientific Computing Conference 1–11 (2019).
Alexander, F. et al. Exascale applications: skin in the game. Phil. Trans. R. Soc. A 378, 20190056 (2020).
Zhang, S. et al. Optimizing high-resolution community Earth system model on a heterogeneous many-core supercomputing platform. Geosci. Model Dev. 13, 4809–4829 (2020).
Melvin, T. et al. A mixed finite-element, finite-volume, semi-implicit discretization for atmospheric dynamics: Cartesian geometry. Q. J. Royal Meteorol. Soc. 145, 2835–2853 (2019).
Adams, S. V. et al. LFRic: Meeting the challenges of scalability and performance portability in weather and climate models. J. Parallel Distrib. Comput. 132, 383–396 (2019).
Satoh, M. et al. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys. 227, 3486–3514 (2008).
Miyoshi, T., Kondo, K. & Imamura, T. The 10,240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett. 41, 5264–5271 (2014).
Washington, W. M., Buja, L. & Craig, A. The computational future for climate and Earth system models: on the path to petaflop and beyond. Phil. Trans. R. Soc. A 367, 833–846 (2009).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).
Balaji, V. et al. CPMIP: measurements of real computational performance of Earth system models in CMIP6. Geosci. Model Dev. 10, 19–34 (2017).
Tumolo, G. & Bonaventura, L. A semi-implicit, semi-Lagrangian discontinuous Galerkin framework for adaptive numerical weather prediction. Q. J. R. Meteorol. Soc. 141, 2582–2601 (2015).
Kühnlein, C. et al. FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS. Geosci. Model Dev. 12, 651–676 (2019).
Nastrom, G., Gage, K. S. & Jasperson, W. Kinetic energy spectrum of large-and mesoscale atmospheric processes. Nature 310, 36–38 (1984).
Gander, M. J. in Multiple Shooting and Time Domain Decomposition Methods 69–113 (Springer, 2015).
Hamon, F. P., Schreiber, M. & Minion, M. L. Parallel-in-time multi-level integration of the shallow-water equations on the rotating sphere. J. Comput. Phys. 407, 109210 (2020).
Fisher, M. & Gürol, S. Parallelization in the time dimension of four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 143, 1136–1147 (2017).
Duran, A. et al. OmpSs: a proposal for programming heterogeneous multi-core architectures. Parallel Proc. Lett. 21, 173–193 (2011).
Weiland, M., Jackson, A., Johnson, N. & Parsons, M. Exploiting the performance benefits of storage class memory for HPC and HPDA workflows. Supercomput. Front. Innov. 5, 79–94 (2018).
Müller, A. et al. The ESCAPE project: energy-efficient scalable algorithms for weather prediction at exascale. Geosci. Model Dev. 12, 4425–4441 (2019).
Heroux, M. et al. Improving Performance via Mini-Applications SAND2009-5574 (Sandia, 2009).
Yang, C. et al. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics. In SC16: Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 57–68 (2016).
Mozdzynski, G., Hamrud, M. & Wedi, N. A partitioned global address space implementation of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System. Int. J. High Perform. Comput. Appl. 29, 261–273 (2015).
Schulthess, T. C. Programming revisited. Nat. Phys. 11, 369–373 (2015).
Deconinck, W. et al. Atlas: a library for numerical weather prediction and climate modelling. Comput. Phys. Comm. 220, 188–204 (2017).
Trèmolet, Y. The Joint Effort for Data Assimilation Integration (JEDI). JCSDA Q. 66, 1–5 (2020).
Hill, C., DeLuca, C., Balaji, V., Suarez, M. & da Silva, A. The architecture of the Earth system modeling framework. Comput. Sci. Eng. 6, 18–28 (2004).
Smart, S., Quintino, T. & Raoult, B. A high-performance distributed object-store for exascale numerical weather prediction and climate. In Proc. Platform for Advanced Scientific Computing Conference 1–11 (2019).
Bertagna, L. et al. HOMMEXX 1.0: a performance-portable atmospheric dynamical core for the energy exascale Earth system model. Geosci. Model Dev. 12, 1423–1441 (2019).
Edwards, H. C. & Sunderland, D. Kokkos array performance-portable manycore programming model. In Proc. 2012 International Workshop on Programming Models and Applications for Multicores and Manycores 1–10 (2012).
Gysi, T., Osuna, C., Fuhrer, O., Bianco, M. & Schulthess, T. C. STELLA: a domain-specific tool for structured grid methods in weather and climate models. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 1–12 (2015).
Sønderby, C. K. et al. MetNet: a neural weather model for precipitation forecasting. Preprint at https://arxiv.org/abs/2003.12140 (2020).
Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).
Rasp, S. et al. WeatherBench: a benchmark data set for data‐driven weather forecasting. J. Adv. Model. Earth Syst. 12, e2020MS002203, https://doi.org/10.1029/2020MS002203 (2020).
Prudden, R. et al. A review of radar-based nowcasting of precipitation and applicable machine learning techniques. Preprint at https://arxiv.org/abs/2005.04988 (2020).
Bonavita, M., Laloyaux, P. Machine learning for model error inference and correction. Earth Space Sci. Open Arch. https://doi.org/10.1002/essoar.10503695.1 (2020).
Brajard, J., Carassi, A., Bocquet, M. & Bertino, L. Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model. J. Comput. Sci. 44, 101171 (2020).
Chevallier, F., Morcrette, J.-J., Chéruy, F. & Scott, N. Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Q. J. R. Meteorol. Soc. 126, 761–776 (2000).
Krasnopolsky, V. M., Fox-Rabinovitz, M. S. & Chalikov, D. V. New approach to calculation of atmospheric model physics: accurate and fast neural network emulation of longwave radiation in a climate model. Mon. Weather Rev. 133, 1370–1383 (2005).
Schneider, T., Lan, S., Stuart, A. & Teixeira, J. Middle atmosphere dynamical sources of the semiannual oscillation in the thermosphere and ionosphere. Geophys. Res. Lett. 44, 12–21 (2017).
Kurth, T. et al. Exascale deep learning for climate analytics. In SC18: International Conference for High Performance Computing, Networking, Storage and Analysis 649–660 (2018).
Vandal, T. et al. DeepSD: Generating high resolution climate change projections through single image super-resolution. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1663–1672 (2017).
Rasp, S. & Lerch, S. Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev. 146, 3885–3900 (2018).
Grönquist, P. et al. Deep learning for post-processing ensemble weather forecasts. Preprint at https://arxiv.org/abs/2005.08748 (2020)
Chui, M. Notes from the AI frontier: Applications and value of deep learning. McKinsey https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning (17 April 2018).
Black, D. HPC Market Update from Hyperion Research. insideHPC https://insidehpc.com/2019/09/hpc-market-update-from-hyperion-research (2019).
Klöwer, M., Dueben, P.D., Palmer, T.N. J. Adv. Model. Earth Syst., e2020MS002246, https://doi.org/10.1029/2020MS002246 (10 September 2020).
Brenowitz, N. D. & Bretherton, C. S. Bretherton, prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett. 45, 6289–6298 (2018).
Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).
Gysi, T. et al. Domain-specific multi-level IR rewriting for GPU. Preprint at https://arxiv.org/abs/2005.13014 (2020).
Ben-Nun, T., de Fine Licht, J., Ziogas, A. N., Schneider, T. & Hoefler, T. Stateful dataflow multigraphs: a data-centric model for performance portability on heterogeneous architectures. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis 1–14 (2019).
Hruska, J. As chip design costs skyrocket, 3nm process node is in jeopardy. ExtremeTech https://www.extremetech.com/computing/272096-3nm-process-node (22 June 2018).
Unat, D. et al. Trends in data locality abstractions for HPC systems. IEEE Trans. Parallel Distrib. Syst. 28, 3007–3020 (2017).
Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 10–14 (2014).
Gysi, T., Grosser, T., Hoefler, T. Modesto: Data-centric analytic optimization of complex stencil programs on heterogeneous architectures. In Modesto: Proceedings of the 29th ACM on International Conference on Supercomputing 177–186 (2015).
de Fine Licht, J. et al. StencilFlow: Mapping Large Stencil Programs to Distributed Spatial Computing Systems. Preprint at https://arxiv.org/abs/2010.15218 (2020)
Piz Daint. Swiss National Supercomputing Centre https://www.cscs.ch/computers/piz-daint (2020).
EuroHPC supercomputer systems. European Commission http://eurohpc.eu/systems (2020).
Girolamo, S. D., Schmid, P., Schulthess, T. & Hoefler, T. SimFS: a simulation data virtualizing file system interface. In Proc. 33st IEEE International Parallel & Distributed Processing Symposium (IPDPS’19) (2019).
Yang, C., Wu, H., Huang, Q., Li, Z. & Li, J. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proc. Natl Acad. Sci. USA 108, 5498–5503 (2011).
Jia, Z., Maggioni, M., Staiger, B. & Scarpazza, D. P. Dissecting the NVIDIA Volta GPU architecture via microbenchmarking. Preprint at https://arxiv.org/abs/1804.06826 (2018).
Tsai, Y. M., Cojean, T. & Anzt, H. Evaluating the performance of NVIDIA’s A100 ampere GPU for sparse linear algebra computations. Preprint at https://arxiv.org/abs/2008.08478 (2020).
Voskuilen, G. R., Gimenez, A., Peng, I., Moore, S. & Gokhale, M. Milestone M1 Report: HBM2/3 Evaluation on Many-core CPU WBS 2.4, Milestone ECP-MT-1000 SAND2018-6370R (SANDIA, 2018).
Buehner, M., Houtekamer, P., Charette, C., Mitchell, H. L. & He, B. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: description and single-observation experiments. Mon. Weather Rev. 138, 1550–1566 (2010).
Blayo, É., Bocquet, M., Cosme, E. & Cugliandolo, L. F. Advanced Data Assimilation for Geosciences: Lecture Notes of the Les Houches School of Physics (Oxford Univ. Press, 2014).
Palmer, T. Short-term tests validate long-term estimates of climate change. Nature 582, 185–186 (2020).
Voosen, P. Europe is building a ‘digital twin’ of Earth to revolutionize climate forecasts. Science https://doi.org/10.1126/science.abf0687 (1 October 2020)
Palmer, T., Stevens, B. & Bauer, P. We Need an International Center for Climate Modeling. Scientific American https://blogs.scientificamerican.com/observations/we-need-an-international-center-for-climate-modeling/ (18 December 2019)
Acknowledgements
The authors are grateful to P. Lopez for providing Fig. 2, M. Fielding and M. Janiskova for the illustrations of simulation-observation fusion in Box 1, and to the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and NASA for providing the satellite data used to produce Fig. 2 and the figure in Box 1.
Author information
Authors and Affiliations
Contributions
P.B. conceived and organized the manuscript. P.B., P.D., T.H., T.Q., T.S. and N.W. contributed to the writing and revision of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Computational Science thanks Jana Sillmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Fernando Chirigati was the primary editor on this Perspective and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bauer, P., Dueben, P.D., Hoefler, T. et al. The digital revolution of Earth-system science. Nat Comput Sci 1, 104–113 (2021). https://doi.org/10.1038/s43588-021-00023-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-021-00023-0
This article is cited by
-
Digital twins of Earth and the computing challenge of human interaction
Nature Computational Science (2024)
-
Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems
Nature Communications (2024)
-
Urban water system theory and its model development and application
Science China Earth Sciences (2024)
-
Intercomparison of two model climates simulated by a unified weather-climate model system (GRIST), part I: mean state
Climate Dynamics (2024)
-
Rewards, risks and responsible deployment of artificial intelligence in water systems
Nature Water (2023)