Abstract
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD+-related clinical trials, focusing on aging and neurodegenerative diseases. We discuss the established NAD+ precursors nicotinic acid and nicotinamide, newer compounds such as nicotinamide riboside and nicotinamide mononucleotide, and emerging precursors. We also discuss technological advances including in industrial-scale production and real-time detection, which are facilitating NAD+ research and clinical translation. Finally, we emphasize the need for further large-scale studies to determine optimal dose, administration routes and frequency, as well as long-term safety and interindividual variability in response.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Navas, L. E. & Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther. 6, 2 (2021).
Xiao, W., Wang, R. S., Handy, D. E. & Loscalzo, J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid. Redox Signal. 28, 251–272 (2018).
Braidy, N. et al. Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxid. Redox Signal. 30, 251–294 (2019).
Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 350, 1208–1213 (2015).
Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).
Lautrup, S., Sinclair, D. A., Mattson, M. P. & Fang, E. F. NAD+ in brain aging and neurodegenerative disorders. Cell Metab. 30, 630–655 (2019).
Zhu, Y., Liu, J., Park, J., Rai, P. & Zhai, R. G. Subcellular compartmentalization of NAD+ and its role in cancer: a sereNADe of metabolic melodies. Pharmacol. Ther. 200, 27–41 (2019).
Canto, C., Menzies, K. J. & Auwerx, J. NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 22, 31–53 (2015).
Stein, L. R. & Imai, S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420–428 (2012).
Lautrup, S. et al. Decreased mitochondrial NAD+ in WRN deficient cells links to dysfunctional proliferation. Aging 17, 937–959 (2025).
Amjad, S. et al. Role of NAD+ in regulating cellular and metabolic signaling pathways. Mol. Metab. 49, 101195 (2021).
Xie, N. et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 5, 227 (2020).
Janssens, G. E. et al. Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat. Aging 2, 254–263 (2022).
Basse, A. L. et al. NAMPT-dependent NAD+ biosynthesis controls circadian metabolism in a tissue-specific manner. Proc. Natl Acad. Sci. USA 120, e2220102120 (2023).
Bonkowski, M. S. & Sinclair, D. A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 17, 679–690 (2016).
Yaku, K., Okabe, K. & Nakagawa, T. NAD metabolism: implications in aging and longevity. Ageing Res. Rev. 47, 1–17 (2018).
McReynolds, M. R., Chellappa, K. & Baur, J. A. Age-related NAD+ decline. Exp. Gerontol. 134, 110888 (2020).
Peluso, A., Damgaard, M. V., Mori, M. A. S. & Treebak, J. T. Age-dependent decline of NAD+-universal truth or confounded consensus? Nutrients https://doi.org/10.3390/nu14010101 (2021).
Wang, H. L. et al. Meeting Summary of The NYO3 5th NO-Age/AD Meeting and the 1st Norway-UK Joint Meeting on Aging and Dementia: recent progress on the mechanisms and interventional strategies. J. Gerontol. A Biol. Sci. Med. Sci. https://doi.org/10.1093/gerona/glae029 (2024).
Zhang, J., Wang, H. L. & Fang, E. F. in Molecular, Cellular, and Metabolic Fundamentals of Human Aging. (eds. E. F. Fang et al.) Ch. 5, 107–119 (Elsevier/Academic Press, 2022).
Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res 8, 2003–2014 (2013).
Fang, E. F. Mitophagy and NAD+ inhibit Alzheimer disease. Autophagy 15, 1112–1114 (2019).
Fang, E. F. et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol. Med. 23, 899–916 (2017).
Flones, I. H. et al. Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat. Commun. 15, 3631 (2024).
Toker, L. et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol. Neurodegener. 16, 31 (2021).
Dolle, C. et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat. Commun. 7, 13548 (2016).
Hoyland, L. E. et al. Subcellular NAD+ pools are interconnected and buffered by mitochondrial NAD. Nat. Metab. 6, 2319–2337 (2024).
Yoshino, J., Baur, J. A. & Imai, S. I. NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).
Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).
Camacho-Pereira, J. et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 23, 1127–1139 (2016).
Bai, P. et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461–468 (2011).
Migaud, M. E., Ziegler, M. & Baur, J. A. Regulation of and challenges in targeting NAD+ metabolism. Nat. Rev. Mol. Cell Biol. 25, 822–840 (2024).
Bogan, K. L. & Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008).
Zapata-Perez, R., Wanders, R. J. A., van Karnebeek, C. D. M. & Houtkooper, R. H. NAD+ homeostasis in human health and disease. EMBO Mol. Med. 13, e13943 (2021).
Lautrup, S., Hou, Y., Fang, E. F. & Bohr, V. A. Roles of NAD+ in health and aging. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a041193 (2024).
Kerr, J. S. et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 40, 151–166 (2017).
Fang, E. F. et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412 (2019).
Veverova, K. et al. Alterations of human CSF and serum-based mitophagy biomarkers in the continuum of Alzheimer disease. Autophagy https://doi.org/10.1080/15548627.2024.2340408 (2024).
Zhang, J., Wang, H. L., Veverova, K., Vyhnalek, M. & Fang, E. F. Identification and potential clinical applications of novel autophagy/mitophagy proteins in the biofluids of Alzheimer’s disease patients. Ageing Res. Rev. 99, 102378 (2024).
Mattson, M. P. & Arumugam, T. V. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 27, 1176–1199 (2018).
Wilson, D. M. III et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).
Hou, Y. et al. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 15, 565–581 (2019).
Hou, Y. et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).
Xie, C. et al. Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat. Biomed. Eng. 6, 76–93 (2022).
Zhao, N. et al. Effect of alternating nicotinamide phosphoribosyltransferase expression levels on mitophagy in Alzheimer’s disease mouse models. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 167288 (2024).
Gulaj, E., Pawlak, K., Bien, B. & Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med Sci. 55, 204–211 (2010).
Giil, L. M. et al. Kynurenine pathway metabolites in Alzheimer’s disease. J. Alzheimers Dis. 60, 495–504 (2017).
Fathi, M. et al. Dynamic changes in metabolites of the kynurenine pathway in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: a systematic review and meta-analysis. Front. Immunol. 13, 997240 (2022).
Knapskog, A. B. et al. Higher concentrations of kynurenic acid in CSF are associated with the slower clinical progression of Alzheimer’s disease. Alzheimers Dement. 19, 5573–5582 (2023).
Knapskog, A. B. et al. Sex-specific associations of kynurenic acid with neopterin in Alzheimer’s disease. Alzheimers Res. Ther. 16, 167 (2024).
González-Sánchez, M. et al. Kynurenic acid levels are increased in the CSF of Alzheimer’s disease patients. Biomolecules https://doi.org/10.3390/biom10040571 (2020).
Jacobs, K. R. et al. Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol. Aging 80, 11–20 (2019).
Wennström, M. et al. Kynurenic acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with lewy bodies. Int. J. Tryptophan Res. 7, 1–7 (2014).
van der Velpen, V. et al. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimers Res. Ther. 11, 93 (2019).
Xue, C. et al. Tryptophan metabolism in health and disease. Cell Metab. 35, 1304–1326 (2023).
Schwarcz, R., Bruno, J. P., Muchowski, P. J. & Wu, H. Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 13, 465–477 (2012).
Yulug, B. et al. Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl. Neurodegener. 12, 4 (2023).
Orr, M. E. et al. A randomized placebo-controlled trial of nicotinamide riboside in older adults with mild cognitive impairment. Geroscience 46, 665–682 (2024).
Orr, M. E. et al. Results from a pilot study: the effects of nicotinamide riboside on mild cognitive impairment. Alzheimer’s Dement. 16, e044746 (2020).
Grill, J. D. et al. A Phase 2a proof‐of‐concept double‐blind, randomized, placebo‐controlled trial of nicotinamide in early Alzheimer’s disease. In Alzheimer’s Association International Conference, abstract: 77979 (AAIC, 2023).
Bloem, B. R., Okun, M. S. & Klein, C. Parkinson’s disease. Lancet 397, 2284–2303 (2021).
Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a009258 (2012).
Dickson, D. W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 46, S30–S33 (2018).
Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).
Wallings, R. L., Humble, S. W., Ward, M. E. & Wade-Martins, R. Lysosomal dysfunction at the centre of Parkinson’s disease and frontotemporal dementia/amyotrophic lateral sclerosis. Trends Neurosci. 42, 899–912 (2019).
Navarro-Romero, A., Montpeyo, M. & Martinez-Vicente, M. The emerging role of the lysosome in Parkinson’s disease. Cells https://doi.org/10.3390/cells9112399 (2020).
Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).
Turconi, G. et al. Nicotinamide riboside first alleviates symptoms but later downregulates dopamine metabolism in proteasome inhibition mouse model of Parkinson’s disease. Heliyon 10, e34355 (2024).
SenGupta, T. et al. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep. 36, 109668 (2021).
Schondorf, D. C. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 23, 2976–2988 (2018).
Chang, K. H. et al. Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s disease. Mol. Neurobiol. 55, 6319–6328 (2018).
Heilman, P. L. et al. Tryptophan metabolites are associated with symptoms and nigral pathology in Parkinson’s disease. Mov. Disord. 35, 2028–2037 (2020).
Brakedal, B. et al. The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 34, 396–407 (2022).
Gaare, J. J. et al. Nicotinamide riboside supplementation is not associated with altered methylation homeostasis in Parkinson’s disease. iScience 26, 106278 (2023).
Berven, H. et al. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson’s disease. Nat. Commun. 14, 7793 (2023).
Feldman, E. L. et al. Amyotrophic lateral sclerosis. Lancet 400, 1363–1380 (2022).
Lombardo, F. L. et al. A randomized double-blind clinical trial on safety and efficacy of tauroursodeoxycholic acid (TUDCA) as add-on treatment in patients affected by amyotrophic lateral sclerosis (ALS): the statistical analysis plan of TUDCA-ALS trial. Trials 24, 792 (2023).
Wang, X. et al. Deletion of nampt in projection neurons of adult mice leads to motor dysfunction, neurodegeneration, and death. Cell Rep. 20, 2184–2200 (2017).
Harlan, B. A. et al. Enhancing NAD+ salvage pathway reverts the toxicity of primary astrocytes expressing amyotrophic lateral sclerosis-linked mutant superoxide dismutase 1 (SOD1). J. Biol. Chem. 291, 10836–10846 (2016).
Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).
Li, J. Y. et al. Alterations in metabolic biomarkers and their potential role in amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 9, 1027–1038 (2022).
de la Rubia, J. E. et al. Efficacy and tolerability of EH301 for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled human pilot study. Amyotroph. Lateral Scler. Frontotemporal Degener. 20, 115–122 (2019).
Han, S., Choi, J. R., Soon Shin, K. & Kang, S. J. Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res. 1483, 112–117 (2012).
Korner, S. et al. Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener. Dis. 11, 141–152 (2013).
Yoshino, M. et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 372, 1224–1229 (2021).
Fan, L., Cacicedo, J. M. & Ido, Y. Impaired nicotinamide adenine dinucleotide (NAD+) metabolism in diabetes and diabetic tissues: Implications for nicotinamide-related compound treatment. J. Diabetes Investig. 11, 1403–1419 (2020).
Galderisi, A. et al. Metabolomics reveals new metabolic perturbations in children with type 1 diabetes. Pediatr. Diabetes 19, 59–67 (2018).
Gürcü, S. et al. Neopterin and biopterin levels and tryptophan degradation in patients with diabetes. Sci. Rep. 10, 17025 (2020).
Oxenkrug, G., van der Hart, M. & Summergrad, P. Elevated anthranilic acid plasma concentrations in type 1 but not type 2 diabetes mellitus. Integr. Mol. Med. 2, 365–368 (2015).
Orabona, C. et al. Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight https://doi.org/10.1172/jci.insight.96244 (2018).
Oxenkrug, G. F. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol. Neurobiol. 52, 805–810 (2015).
Vangipurapu, J., Fernandes Silva, L., Kuulasmaa, T., Smith, U. & Laakso, M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care 43, 1319–1325 (2020).
Qi, Q. et al. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 71, 1095–1105 (2022).
Abedi, S., Vessal, M., Asadian, F. & Takhshid, M. A. Association of serum kynurenine/tryptophan ratio with poor glycemic control in patients with type2 diabetes. J. Diabetes Metab. Disord. 20, 1521–1527 (2021).
Moon, J. Y. et al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine 37, 392–400 (2018).
Dollerup, O. L. et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am. J. Clin. Nutr. 108, 343–353 (2018).
Dollerup, O. L. et al. Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in nondiabetic men with obesity. J. Clin. Endocrinol. Metab. 104, 5703–5714 (2019).
Dollerup, O. L. et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J. Physiol. 598, 731–754 (2020).
Remie, C. M. E. et al. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am. J. Clin. Nutr. 112, 413–426 (2020).
Dunaif, A. et al. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes 41, 1257–1266 (1992).
Polderman, K. H., Gooren, L. J., Asscheman, H., Bakker, A. & Heine, R. J. Induction of insulin resistance by androgens and estrogens. J. Clin. Endocrinol. Metab. 79, 265–271 (1994).
Kane, A. E. et al. Long-term NMN treatment increases lifespan and healthspan in mice in a sex dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2024.06.21.599604 (2024).
Lapatto, H. A. K. et al. Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci. Adv. 9, eadd5163 (2023).
Qiu, Y. et al. NAD+ exhaustion by CD38 upregulation contributes to blood pressure elevation and vascular damage in hypertension. Signal Transduct. Target. Ther. 8, 353 (2023).
Lund, A. et al. Plasma kynurenines and prognosis in patients with heart failure. PLoS ONE 15, e0227365 (2020).
Pedersen, E. R. et al. Associations of plasma kynurenines with risk of acute myocardial infarction in patients with stable angina pectoris. Arterioscler. Thromb. Vasc. Biol. 35, 455–462 (2015).
Shi, B. et al. Targeting gut microbiota-derived kynurenine to predict and protect the remodeling of the pressure-overloaded young heart. Sci. Adv. 9, eadg7417 (2023).
Konishi, M. et al. Impact of plasma kynurenine level on functional capacity and outcome in heart failure - results from Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Circ. J. 81, 52–61 (2016).
de Picciotto, N. E. et al. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell 15, 522–530 (2016).
Abdellatif, M., Bugger, H., Kroemer, G. & Sedej, S. NAD+ and vascular dysfunction: from mechanisms to therapeutic opportunities. J. Lipid Atheroscler. 11, 111–132 (2022).
Abdellatif, M., Sedej, S. & Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. Circulation 144, 1795–1817 (2021).
Wang, D. D. et al. Safety and tolerability of nicotinamide riboside in heart failure with reduced ejection fraction. JACC Basic Transl. Sci. 7, 1183–1196 (2022).
Fang, E. F. & Tao, J. Targeting on the NAD+-mitophagy axis to treat cardiovascular disease. Aging Med. 3, 151–152 (2020).
Canner, P. L. et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J. Am. Coll. Cardiol. 8, 1245–1255 (1986).
Maher, V. M. et al. Effects of lowering elevated LDL cholesterol on the cardiovascular risk of lipoprotein(a). JAMA 274, 1771–1774 (1995).
Matthan, N. R., Giovanni, A., Schaefer, E. J., Brown, B. G. & Lichtenstein, A. H. Impact of simvastatin, niacin, and/or antioxidants on cholesterol metabolism in CAD patients with low HDL. J. Lipid Res. 44, 800–806 (2003).
Phan, B. A. et al. Effects of niacin on glucose levels, coronary stenosis progression, and clinical events in subjects with normal baseline glucose levels (<100 mg/dl): a combined analysis of the Familial Atherosclerosis Treatment Study (FATS), HDL-Atherosclerosis Treatment Study (HATS), Armed Forces Regression Study (AFREGS), and Carotid Plaque Composition by MRI during lipid-lowering (CPC) study. Am. J. Cardiol. 111, 352–355 (2013).
Haynes, R. et al. Serious adverse effects of extended-release niacin/laropiprant: results from the Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) Trial. Clin. Ther. 41, 1767–1777 (2019).
Group, H. T. C. HPS2-THRIVE randomized placebo-controlled trial in 25,673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur. Heart J. 34, 1279–1291 (2013).
Teo, K. K. et al. Extended-release niacin therapy and risk of ischemic stroke in patients with cardiovascular disease: the Atherothrombosis Intervention in Metabolic Syndrome with low HDL/High Triglycerides: Impact on Global Health Outcome (AIM-HIGH) trial. Stroke 44, 2688–2693 (2013).
Cheung, M. C., Zhao, X. Q., Chait, A., Albers, J. J. & Brown, B. G. Antioxidant supplements block the response of HDL to simvastatin-niacin therapy in patients with coronary artery disease and low HDL. Arterioscler. Thromb. Vasc. Biol. 21, 1320–1326 (2001).
McDermott, M. M. et al. Nicotinamide riboside for peripheral artery disease: the NICE randomized clinical trial. Nat. Commun. 15, 5046 (2024).
Abdellatif, M. et al. Nicotinamide for the treatment of heart failure with preserved ejection fraction. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abd7064 (2021).
Gariani, K. et al. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. J. Hepatol. 66, 132–141 (2017).
Dellinger, R. W. et al. Nicotinamide riboside and pterostilbene reduces markers of hepatic inflammation in NAFLD: a double-blind, placebo-controlled clinical trial. Hepatology 78, 863–877 (2023).
Pirinen, E. et al. Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 31, 1078–1090 (2020).
Mukherjee, S. et al. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65, 616–630 (2017).
Dall, M. et al. Hepatocyte-specific perturbation of NAD+ biosynthetic pathways in mice induces reversible nonalcoholic steatohepatitis-like phenotypes. J. Biol. Chem. 297, 101388 (2021).
Li, D. J. et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin. Theranostics 11, 4381–4402 (2021).
Zhang, C. et al. The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease. Mol. Syst. Biol. 16, e9495 (2020).
Basse, A. L. et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol. Metab. 53, 101271 (2021).
Frederick, D. W. et al. Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab. 24, 269–282 (2016).
Chubanava, S. et al. NAD depletion in skeletal muscle does not compromise muscle function or accelerate aging. Cell Metab. https://doi.org/10.1016/j.cmet.2025.04.002 (2025).
Ryu, D. et al. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci. Transl. Med. 8, 361ra139 (2016).
de Zelicourt, A. et al. CD38-NADase is a new major contributor to Duchenne muscular dystrophic phenotype. EMBO Mol. Med. 14, e12860 (2022).
Elhassan, Y. S. et al. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 28, 1717–1728 (2019).
Ito, K. & Barnes, P. J. COPD as a disease of accelerated lung aging. Chest 135, 173–180 (2009).
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
Norheim, K. L. et al. Effect of nicotinamide riboside on airway inflammation in COPD: a randomized, placebo-controlled trial. Nat. Aging https://doi.org/10.1038/s43587-024-00758-1 (2024).
Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).
Shats, I. et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 31, 564–579 (2020).
Chellappa, K. et al. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab. 34, 1947–1959 (2022).
Kim, L. J. et al. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett. 597, 2196–2220 (2023).
Peluso, A. A. et al. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ Aging 9, 7 (2023).
Rodionov, D. A. et al. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res. 36, 2032–2046 (2008).
Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).
Chu, X. et al. Nicotinamide adenine dinucleotide supplementation drives gut microbiota variation in Alzheimer’s mouse model. Front. Aging Neurosci. 14, 993615 (2022).
Fang, E. F. et al. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17, 308–321 (2016).
Fang, E. F. et al. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157, 882–896 (2014).
Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).
Scheibye-Knudsen, M. et al. Cockayne syndrome group A and B proteins converge on transcription-linked resolution of non-B DNA. Proc. Natl Acad. Sci. USA 113, 12502–12507 (2016).
Fang, E. F. et al. NAD+ augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat. Commun. 10, 5284 (2019).
Maynard, S. et al. Lamin A/C impairments cause mitochondrial dysfunction by attenuating PGC1α and the NAMPT-NAD+ pathway. Nucleic Acids Res. 50, 9948–9965 (2022).
Rothblum-Oviatt, C. et al. Ataxia telangiectasia: a review. Orphanet J. Rare Dis. 11, 159 (2016).
Khanna, K. K., Lavin, M. F., Jackson, S. P. & Mulhern, T. D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).
Presterud, R. et al. Long-term nicotinamide riboside use improves coordination and eye movements in ataxia telangiectasia. Mov. Disord. 39, 360–369 (2024).
Veenhuis, S. J. G. et al. Nicotinamide riboside improves ataxia scores and immunoglobulin levels in ataxia telangiectasia. Mov. Disord. 36, 2951–2957 (2021).
Steinbrucker, K., Tiefenthaler, E., Schernthaner, E. M., Jungwirth, J. & Wortmann, S. B. Nicotinamide riboside for ataxia telangiectasia: a report of an early treated individual. Neuropediatrics 54, 78–81 (2023).
Chen, L. & Oshima, J. Werner syndrome. J. Biomed. Biotechnol. 2, 46–54 (2002).
Shamanna, R. A., Croteau, D. L., Lee, J. H. & Bohr, V. A. Recent advances in understanding Werner syndrome. F1000Res 6, 1779 (2017).
Tian, Y. et al. WRN loss accelerates abnormal adipocyte metabolism in Werner syndrome. Cell Biosci. 14, 7 (2024).
Shoji, M. et al. Nicotinamide riboside supplementation benefits in patients with Werner syndrome: a double-blind randomized crossover placebo-controlled trial. Aging Cell https://doi.org/10.1111/acel.70093 (2025).
Huang, A. R., Jiang, K., Lin, F. R., Deal, J. A. & Reed, N. S. Hearing loss and dementia prevalence in older adults in the US. JAMA 329, 171–173 (2023).
Okur, M. N. et al. Long-term NAD+ supplementation prevents the progression of age-related hearing loss in mice. Aging Cell 22, e13909 (2023).
Okur, M. N. et al. Short-term NAD+ supplementation prevents hearing loss in mouse models of Cockayne syndrome. NPJ Aging Mech. Dis. 6, 1 (2020).
Williams, P. A. et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355, 756–760 (2017).
Pang, H. et al. Aberrant NAD+ metabolism underlies Zika virus-induced microcephaly. Nat. Metab. 3, 1109–1124 (2021).
Jiang, Y. et al. Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models. Cell Discov. 8, 38 (2022).
Chen, P. M. et al. CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Sci. Adv. 8, eabo4271 (2022).
Kontani, K., Nishina, H., Ohoka, Y., Takahashi, K. & Katada, T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J. Biol. Chem. 268, 16895–16898 (1993).
Aksoy, P., White, T. A., Thompson, M. & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345, 1386–1392 (2006).
Young, G. S., Choleris, E., Lund, F. E. & Kirkland, J. B. Decreased cADPR and increased NAD+ in the Cd38-/- mouse. Biochem. Biophys. Res. Commun. 346, 188–192 (2006).
Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem. Biophys. Res. Commun. 513, 486–493 (2019).
Chini, C. C. S. et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nat. Metab. 2, 1284–1304 (2020).
Covarrubias, A. J. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat. Metab. 2, 1265–1283 (2020).
Jin, D. et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature 446, 41–45 (2007).
Migaud, M. E. et al. Efficient and scalable syntheses of nicotinoyl ribosides and reduced nicotinoyl ribosides, modified derivatives thereof, phosphorylated analogs thereof, adenylyl dinucleotide conjugates thereof, and novel crystalline forms thereof. Patent PCT WO2018089830A1 (2021).
Brenner, C., Belenky, P. & Bogan, K. L. Yeast strain and method for using the same to produce nicotinamide riboside. Patent US8114626B2 (2012).
Zhang, N. & Sauve, A. A. Synthesis of beta-nicotinamide riboside using an efficient two-step methodology. Curr. Protoc. Nucleic Acid Chem. 71, 14.14.1–14.14.9 (2017).
Zhang, M., Jiang, Y., Su, Z., Sun, W. & Zhan, L. Novel synthesis method of nicotinamide ribose. Patent CN111892635A (2020).
Sinclair, D. A. & Ear, P. H. Biological production of NAD precursors and analogs. WO Patent 2015/069860 (2015).
Jin, C. & Wang, J. Carriers for enzyme or cell immobilization and immobilization method using the carriers. Patent US8486676B2 (2013).
Kameda, A. et al. A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. J. Biosci. Bioeng. 91, 557–563 (2001).
Zheng, C., Li, Y., Wu, X., Gao, L. & Chen, X. Advances in the synthesis and physiological metabolic regulation of nicotinamide mononucleotide. Nutrients https://doi.org/10.3390/nu16142354 (2024).
Yang, Y., Zhang, N., Zhang, G. & Sauve, A. A. NRH salvage and conversion to NAD+ requires NRH kinase activity by adenosine kinase. Nat. Metab. 2, 364–379 (2020).
Yang, Y., Mohammed, F. S., Zhang, N. & Sauve, A. A. Dihydronicotinamide riboside is a potent NAD+ concentration enhancer in vitro and in vivo. J. Biol. Chem. 294, 9295–9307 (2019).
Zapata-Perez, R. et al. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J. 35, e21456 (2021).
Giroud-Gerbetant, J. et al. A reduced form of nicotinamide riboside defines a new path for NAD+ biosynthesis and acts as an orally bioavailable NAD+ precursor. Mol. Metab. 30, 192–202 (2019).
Liu, Y. et al. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth. J. Proteome Res. 20, 2596–2606 (2021).
Membrez, M. et al. Trigonelline is an NAD+ precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nat. Metab. 6, 433–447 (2024).
Ren, J. et al. Evidence of brain target engagement in Parkinson’s disease and multiple sclerosis by the investigational nanomedicine, CNM-Au8, in the REPAIR phase 2 clinical trials. J. Nanobiotechnology 21, 478 (2023).
Vucic, S. et al. Efficacy and safety of CNM-Au8 in amyotrophic lateral sclerosis (RESCUE-ALS study): a phase 2, randomised, double-blind, placebo-controlled trial and open label extension. EClinicalMedicine 60, 102036 (2023).
Writing Committee for the HEALEY ALS Platform Trial; Berryet al. CNM-Au8 in amyotrophic lateral sclerosis: the HEALEY ALS Platform Trial. JAMA 333, 1138–1149 (2025).
Wang, H. L. et al. A luminescent-based protocol for NAD+/NADH detection in C. elegans, mice, and human whole blood. STAR Protoc. 5, 103428 (2024).
Zhu, X. H., Lu, M., Lee, B. Y., Ugurbil, K. & Chen, W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl Acad. Sci. USA 112, 2876–2881 (2015).
Yu, Q. et al. A biosensor for measuring NAD+ levels at the point of care. Nat. Metab. 1, 1219–1225 (2019).
Cambronne, X. A. & Kraus, W. L. Location, location, location: compartmentalization of NAD+ synthesis and functions in mammalian cells. Trends Biochem. Sci. 45, 858–873 (2020).
Dziadosz, M. et al. Quantification of NAD+ in human brain with 1H MR spectroscopy at 3 T: comparison of three localization techniques with different handling of water magnetization. Magn. Reson. Med. 88, 1027–1038 (2022).
Peng, Y., Zhang, Z., He, L., Li, C. & Liu, M. NMR spectroscopy for metabolomics in the living system: recent progress and future challenges. Anal. Bioanal. Chem. 416, 2319–2334 (2024).
Mevenkamp, J. et al. Development of a 31P magnetic resonance spectroscopy technique to quantify NADH and NAD+ at 3 T. Nat. Commun. 15, 9159 (2024).
Matsuyama, R. et al. Stabilization and quantitative measurement of nicotinamide adenine dinucleotide in human whole blood using dried blood spot sampling. Anal. Bioanal. Chem. 415, 775–785 (2023).
Song, Q. et al. The safety and antiaging effects of nicotinamide mononucleotide in human clinical trials: an update. Adv. Nutr. 14, 1416–1435 (2023).
Damgaard, M. V. & Treebak, J. T. What is really known about the effects of nicotinamide riboside supplementation in humans. Sci. Adv. 9, eadi4862 (2023).
Airhart, S. E. et al. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE 12, e0186459 (2017).
Belenky, P., Christensen, K. C., Gazzaniga, F., Pletnev, A. A. & Brenner, C. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism. J. Biol. Chem. 284, 158–164 (2009).
Yaku, K. et al. BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities. Nat. Commun. 12, 6767 (2021).
Liu, L. et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 27, 1067–1080 (2018).
Ratajczak, J. et al. NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat. Commun. 7, 13103 (2016).
Mateuszuk, Ł. et al. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside. Biochem. Pharmacol. 178, 114019 (2020).
Fletcher, R. S. et al. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol. Metab. 6, 819–832 (2017).
Sociali, G. et al. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Oncotarget 7, 2968–2984 (2016).
Grozio, A. et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat. Metab. 1, 47–57 (2019).
Damgaard, M. V. et al. Intravenous nicotinamide riboside elevates mouse skeletal muscle NAD+ without impacting respiratory capacity or insulin sensitivity. iScience 25, 103863 (2022).
Hawkins, J. et al. Randomized, placebo-controlled, pilot clinical study evaluating acute Niagen®+ IV and NAD+ IV in healthy adults. Preprint at medRxiv https://doi.org/10.1101/2024.06.06.24308565 (2024).
Conlon, N. J. The Role of NAD+ in regenerative medicine. Plast. Reconstr. Surg. 150, 41s–48s (2022).
Lee, S. H. et al. Augmentation of NAD+ by dunnione ameliorates imiquimod-induced psoriasis-like dermatitis in mice. J. Inflamm. Res. 15, 4623–4636 (2022).
Han, K. et al. Boosting NAD preferentially blunts Th17 inflammation via arginine biosynthesis and redox control in healthy and psoriasis subjects. Cell Rep. Med. https://doi.org/10.1016/j.xcrm.2023.101157 (2023).
Zhang, Z., Lu, Y., Qi, J. & Wu, W. An update on oral drug delivery via intestinal lymphatic transport. Acta Pharm. Sin. B 11, 2449–2468 (2021).
Sun, S. et al. Design and preparation of NMN nanoparticles based on protein-marine polysaccharide with increased NAD+ level in d-galactose induced aging mice model. Colloids Surf. B Biointerfaces 239, 113903 (2024).
Zhang, D. et al. Hydroxyapatite-based nano-drug delivery system for nicotinamide mononucleotide (NMN): significantly enhancing NMN bioavailability and replenishing in vivo nicotinamide adenine dinucleotide (NAD+) levels. J. Pharm. Pharmacol. 75, 1569–1580 (2023).
Trammell, S. A. et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat. Commun. 7, 12948 (2016).
Martens, C. R. et al. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat. Commun. 9, 1286 (2018).
Guyton, J. R. & Bays, H. E. Safety considerations with niacin therapy. Am. J. Cardiol. 99, 22c–31c (2007).
Winter, S. L. & Boyer, J. L. Hepatic toxicity from large doses of vitamin B3 (nicotinamide). N. Engl. J. Med. 289, 1180–1182 (1973).
Rader, J. I., Calvert, R. J. & Hathcock, J. N. Hepatic toxicity of unmodified and time-release preparations of niacin. Am. J. Med 92, 77–81 (1992).
Knip, M. et al. Safety of high-dose nicotinamide: a review. Diabetologia 43, 1337–1345 (2000).
Jenkins, D. J. A. et al. Supplemental vitamins and minerals for CVD prevention and treatment. J. Am. Coll. Cardiol. 71, 2570–2584 (2018).
Ferrell, M. et al. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat. Med. 30, 424–434 (2024).
Ferrell, M. et al. Publisher correction: a terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat. Med. 30, 1791 (2024).
Diguet, N. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137, 2256–2273 (2018).
Lv, H. et al. NAD+ metabolism maintains inducible PD-L1 expression to drive tumor immune evasion. Cell Metab. 33, 110–127 (2021).
Bi, T. Q. & Che, X. M. Nampt/PBEF/visfatin and cancer. Cancer Biol. Ther. 10, 119–125 (2010).
Santidrian, A. F. et al. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest. 123, 1068–1081 (2013).
Chen, A. C. et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373, 1618–1626 (2015).
Surjana, D., Halliday, G. M., Martin, A. J., Moloney, F. J. & Damian, D. L. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J. Invest. Dermatol. 132, 1497–1500 (2012).
Yiasemides, E., Sivapirabu, G., Halliday, G. M., Park, J. & Damian, D. L. Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. Carcinogenesis 30, 101–105 (2009).
Nacarelli, T. et al. NAD+ metabolism governs the proinflammatory senescence-associated secretome. Nat. Cell Biol. 21, 397–407 (2019).
Fang, J. et al. NAD+ metabolism-based immunoregulation and therapeutic potential. Cell Biosci. 13, 81 (2023).
Morandi, F., Horenstein, A. L. & Malavasi, F. The key role of NAD+ in anti-tumor immune response: an update. Front. Immunol. 12, 658263 (2021).
Sun, C. et al. Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction. EMBO J. 39, e103420 (2020).
Wang, H., Lautrup, S., Caponio, D., Zhang, J. & Fang, E. F. DNA damage-induced neurodegeneration in accelerated ageing and Alzheimer’s disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22136748 (2021).
Ummarino, S. et al. NAD Modulates DNA methylation and cell differentiation. Cells https://doi.org/10.3390/cells10112986 (2021).
Tomita, T. et al. Sirt1-deficiency causes defective protein quality control. Sci. Rep. 5, 12613 (2015).
Levine, D. C. et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849 (2020).
Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).
Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl Acad. Sci. USA 110, 5522–5527 (2013).
Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).
Miwa, S., Kashyap, S., Chini, E. & von Zglinicki, T. Mitochondrial dysfunction in cell senescence and aging. J. Clin. Invest. https://doi.org/10.1172/JCI158447 (2022).
Allen, A. R., Jones, A., LoBianco, F. V., Krager, K. J. & Aykin-Burns, N. Effect of Sirt3 on hippocampal MnSOD activity, mitochondrial function, physiology, and cognition in an aged murine model. Behav. Brain Res. 444, 114335 (2023).
Chini, C. C. S., Cordeiro, H. S., Tran, N. L. K. & Chini, E. N. NAD metabolism: role in senescence regulation and aging. Aging Cell 23, e13920 (2024).
Pareja-Galeano, H., Sanchis-Gomar, F. & Lucia, A. p16INK4a, NAD+, and sestrins: new targets for combating aging-related chronic illness? J. Cell. Physiol. 229, 1575–1576 (2014).
Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).
Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).
Ying, X., Zheng, X., Zhang, X., Yin, Y. & Wang, X. Kynurenine in IDO1high cancer cell-derived extracellular vesicles promotes angiogenesis by inducing endothelial mitophagy in ovarian cancer. J. Transl. Med. 22, 267 (2024).
Hou, Y. et al. NAD+ supplementation reduces neuroinflammation and cell senescence in a transgenic mouse model of Alzheimer’s disease via cGAS-STING. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2011226118 (2021).
Schmidlin, C. J., Dodson, M. B., Madhavan, L. & Zhang, D. D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med. 134, 702–707 (2019).
Devereaux, J. et al. Alterations in tryptophan metabolism and de novo NAD+ biosynthesis within the microbiota-gut-brain axis in chronic intestinal inflammation. Front. Med. 11, 1379335 (2024).
Dehhaghi, M., Kazemi Shariat Panahi, H. & Guillemin, G. J. Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int. J. Tryptophan Res. 12, 1178646919852996 (2019).
Wellman, A. S. et al. Intestinal epithelial sirtuin 1 regulates intestinal inflammation during aging in mice by altering the intestinal microbiota. Gastroenterology 153, 772–786 (2017).
Minhas, P. S. et al. Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies. Science 385, eabm6131 (2024).
Dan, X. et al. Loss of smelling is an early marker of aging and is associated with inflammation and DNA damage in C57BL/6J mice. Aging Cell 22, e13793 (2023).
Hamilton, H. L. et al. Nicotinamide adenine dinucleotide precursor supplementation modulates neurite complexity and survival in motor neurons from amyotrophic lateral sclerosis models. Antioxid. Redox Signal. 41, 573–589 (2024).
Szot, J. O. et al. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder. J. Clin. Invest. https://doi.org/10.1172/JCI174824 (2024).
Gille, A., Bodor, E. T., Ahmed, K. & Offermanns, S. Nicotinic acid: pharmacological effects and mechanisms of action. Annu. Rev. Pharmacol. Toxicol. 48, 79–106 (2008).
Gindri, I. M. et al. Evaluation of safety and effectiveness of NAD in different clinical conditions: a systematic review. Am. J. Physiol. Endocrinol. Metab. 326, E417–E427 (2024).
Schiuma, G., Lara, D., Clement, J., Narducci, M. & Rizzo, R. Nicotinamide adenine dinucleotide: the redox sensor in aging-related disorders. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2023.0375 (2024).
Avalos, J. L., Bever, K. M. & Wolberger, C. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol. Cell 17, 855–868 (2005).
Roos, J., Zinngrebe, J. & Fischer-Posovszky, P. Nicotinamide mononucleotide: a potential effective natural compound against insulin resistance. Signal Transduct. Target. Ther. 6, 310 (2021).
Zapata-Perez, R. et al. Biotechnological production of reduced and oxidized NAD+ precursors. Food Res. Int. 165, 112560 (2023).
Li, F., Wu, C. & Wang, G. Targeting NAD metabolism for the therapy of age-related neurodegenerative diseases. Neurosci. Bull. 40, 218–240 (2024).
Watne, L. O. et al. Cerebrospinal fluid quinolinic acid is strongly associated with delirium and mortality in hip-fracture patients. J. Clin. Invest. https://doi.org/10.1172/JCI163472 (2023).
Suhs, K. W. et al. Kynurenine is a cerebrospinal fluid biomarker for bacterial and viral central nervous system infections. J. Infect. Dis. 220, 127–138 (2019).
Quist-Paulsen, E. et al. High neopterin and IP-10 levels in cerebrospinal fluid are associated with neurotoxic tryptophan metabolites in acute central nervous system infections. J. Neuroinflammation 15, 327 (2018).
De Pinto, V. Renaissance of VDAC: new insights on a protein family at the interface between mitochondria and cytosol. Biomolecules https://doi.org/10.3390/biom11010107 (2021).
Magri, A. et al. AAV-mediated upregulation of VDAC1 rescues the mitochondrial respiration and sirtuins expression in a SOD1 mouse model of inherited ALS. Cell Death Discov. 10, 178 (2024).
Luongo, T. S. et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature 588, 174–179 (2020).
Canto, C. NAD+ precursors: a questionable redundancy. Metabolites https://doi.org/10.3390/metabo12070630 (2022).
Kropotov, A. et al. Equilibrative nucleoside transporters mediate the import of nicotinamide riboside and nicotinic acid riboside into human cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22031391 (2021).
MacKay, D., Hathcock, J. & Guarneri, E. Niacin: chemical forms, bioavailability, and health effects. Nutr. Rev. 70, 357–366 (2012).
Chen, M. et al. SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters. Nat. Commun. 16, 1181 (2025).
Bahn, A. et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol. Chem. 283, 16332–16341 (2008).
Mathialagan, S. et al. Nicotinic acid transport into human liver involves organic anion transporter 2 (SLC22A7). Biochem. Pharmacol. 174, 113829 (2020).
Acknowledgements
E.F.F. is supported by the Cure Alzheimer’s Fund (282952, 284930), HELSE SØR-ØST (2020001, 2021021, 2023093), the Research Council of Norway (262175, 334361), Molecule AG/VITADAO (282942), NordForsk Foundation (119986), the National Natural Science Foundation of China (81971327), Akershus University Hospital (269901, 261973, 262960), the Civitan Norges Forskningsfond for Alzheimers sykdom (281931), the Czech Republic-Norway KAPPA program (with M. Vyhnálek, TO01000215), the Rosa sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society (207819), Wellcome Leap’s Dynamic Resilience Program (jointly funded by Temasek Trust; 104617) and the Alzheimer’s Association (PTC-Gene-25-1439553). E.F.F., M.S.K., C.C., E.P., M.D., S.B., G.E.J., R.Z.-P. and R.H.H. received funding from the European Union’s Horizon Europe research and innovation program through the NADIS project (101073251). H.L.W. is supported by the Norwegian Health Association (43080). H.L.N. is partially supported by the Research Council of Norway through its Centres of Excellence scheme (project number 332713), KLINBEFORSK (26044), the Research Council of Norway (302483) and the Michael J. Fox Foundation (022355). J.T.T. is supported by the Novo Nordisk Foundation Center for Basic Metabolic Research, which is an independent research center at the University of Copenhagen, partially funded by the Novo Nordisk Foundation (NNF23SA0084103). L.O.W. is funded by the South-Eastern Norway Regional Health Authorities (2017095), the Norwegian Health Association (19536, 1513) and by Wellcome Leap’s Dynamic Resilience Program (jointly funded by Temasek Trust) (104617). T.O. is supported by the Research Council of Norway (326461) and the South-Eastern Norway Regional Health Authority (272931). E.P. has received funding from the European Union’s Horizon Europe research and innovation program under a grant agreement (NADIS; GA-101073251, with R.Z.-P., C.C., M.D., G.E.J., M.S.K., E.F.F., S.B. and R.H.) and from Research Council of Finland Profi 6 funding (336449) awarded to the University of Oulu. M.Z. is supported by grants from the Research Council of Norway (325172, 309567, 302314). R.Z.-P. is supported by grants from Ministerio de Ciencia, Innovación y Universidades – Proyectos de Generación de Conocimiento 2023 (PID2023-147560OA-I00) and from Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia (22011/JLI/22, Ayudas a Proyectos para la Gene-ración de Nuevo Liderazgo Científico Jóvenes Líderes en Investigación 2022). S.B. is supported by Marie Skłodowska-Curie HORIZON-MSCA-DN-2021 (NADIS; GA-101073251, with E.P., R.Z.-P., C.C., M.D., G.E.J., M.S.K., E.F.F. and RH), Fondazione Compagnia di San Paolo (Bando Trapezio) and the Italian Ministry of University and Research (PRIN 2022P9RM9M). M.D. is supported by ERC CoG (PD-GUT-101003329), AFM Telethon (28568), JPND (01ED2005B), Aligning Science Across Parkinson’s (ASAP-000420) and Fondation De France (00147852/WB-2023-51647). K.Y. is supported by the Japan Agency for Medical Research and Development (JP21bm0804016, JP21jm0210096, JP22ym0126066, JP23ek0109622) and the Ministry of Health, Labor and Welfare of Japan (JPMH21FC1016). C.T. is supported by grants from: The Research Council of Norway (288164), Bergen Research Foundation (BFS2017REK05), The KG Jebsen Foundation (SKGJ-MED-023) and the Western Norway Regional Health Authority (F-10229-D11661; IHF). J.Z. is supported by Akershus University Hospital (263928) and the national key clinical specialties program of Hunan Province (20230146). S.L. is supported by the Norwegian Health Association (281956). L.E.W. is funded by a Hevolution/American Federation for Aging Research (AFAR) New Investigator award.
Author information
Authors and Affiliations
Contributions
Conceptualization: J.Z. and E.F.F. Writing—original draft preparation: J.Z., H.L.W., S.L., H.L.N., J.T.T., L.O.W., G.S., L.E.W., T.O., E.P., T.C.C., J.W., M.Z., O.-B.T., R.Z.-P., S.B., C.C., M.D., G.E.J., R.H.H., M.S.K., K.Y., M.K., C.T. and E.F.F. Writing—review and editing: J.Z., H.L.W., S.L., H.L.N., J.T.T., L.O.W., G.S., L.E.W., T.O., E.P., T.C.C., J.W., M.Z., O.-B.T., R.Z.-P., S.B., C.C., M.D., G.E.J., R.H.H., M.S.K., K.Y., M.K., E.V., V.B., C.T., D.A.S. and E.F.F. Visualization: J.Z. and H.L.W. Supervision: E.F.F.
Corresponding author
Ethics declarations
Competing interests
E.F.F. is a co-owner of Fang-S Consultation AS (organization no. 931 410 717) and NO-Age AS (organization no. 933 219 127); has a material transfer agreement with LMITO Therapeutics (South Korea), a CRADA arrangement with ChromaDex (USA), a commercialization agreement with Molecule AG/VITADAO and material transfer agreements with GeneHarbor (Hong Kong) Biotechnologies Limited and Hong Kong Longevity Science Laboratory (Hong Kong); is a consultant for MindRank AI (China), NYO3 (Norway), AgeLab (Vitality Nordic AS, Norway) and Hong Kong Longevity Science Laboratory (Hong Kong). H.L.N. is an owner of NilsenRepairAge Consulting (organization no. 932146797) and NO-Age AS (organization no. 933219127); has a CRADA arrangement with ChromaDex (USA) and is a consultant for Ambr Institute (Norway), MitoTerapeutics (Norway) and AgeLab (Vitality Nordic AS, Norway). C.T. is listed as inventor on international patent applications relating to the use of NR as a treatment for PD. These patents have been filed by the Technology Transfer Office ‘Vestlandets Innovasjonsselskap As (VIS)’ on behalf of Haukeland University Hospital, Bergen, Norway (PCT/EP2022/067408, PCT/EP2022/067412 and PCT/EP2023/060962). G.S. has received honoraria for giving lectures at symposia sponsored by Eisai and Eli Lilly and has participated at advisory board meetings for Eisia, Roche and Eli Lilly concerning the manufacture of disease-modifying therapies for AD. T.O. has received institutional research support from ChromaDex (USA). E.P. reports a relationship with ChromaDex that includes speaking and lecture fees. M.Z. is chief scientist at Blue Helix Health AS. K.Y. and M.K. have received research support from ChromaDex (USA) via their institution. V.B. is a member of the Chromadex Scientific Advisory Board. T.C.C. and J.W. are inventors and consultants in the Hong Kong Longevity Science Laboratory. D.A.S. is a consultant, inventor, board member and, in some cases, an investor in Atai (2021–present) I; Galilei Biosciences SIRT6 activators (2014–present) F, I, E, A, B; InsideTracker (Segterra), Cambridge, MA I, A, IP (2011–present) B (2011–2017); Zymo Research Irvine, CA, molecular biology (2017–present) A; MetroBiotech, an EdenRoc company also known as Bauhaus; NAD boosters (2015–present) F, I, E, A, B (EdenRoc), IP; Life Biosciences Boston, and affiliates, Cantata Bio (formerly Dovetail Genomics and Arc Bio), Delavie Sciences (2017–present) F, I, E, A, B, IP; Levels (2021–present) E, A; Bold Capital (2021–present) E, A; Falcon Edge Capital (2021–present) E; AFAR (American Federation for Aging Research) B, A, F; Life Extension Advocacy Foundation (LEAF) A; Animal Biosciences (2017–present) I, E; Immetas (2018–present) F, I, E, A, B; Jumpstart Fertility, a Life Biosciences Company, F, I, E, A, B, IP; Fully Aligned Co, F, E, B, IP. F, founder; I, investor; E, equity; A, advisor/consultant; B, board of directors; IP, inventor on licensed patents; L, funding for laboratory (for further information about the affiliations of D.A.S., including those judged not relevant to this work, see https://sinclair.hms.harvard.edu/david-sinclairs-affiliations/). L.E.W. is a scientific advisor and shareholder in Metro Biotech and Jumpstart Fertility. The other authors declare no competing interests.
Peer review
Peer review information
Nature Aging thanks Eduardo Chini, Joseph Baur and Shinghua Ding for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, J., Wang, HL., Lautrup, S. et al. Emerging strategies, applications and challenges of targeting NAD+ in the clinic. Nat Aging 5, 1704–1731 (2025). https://doi.org/10.1038/s43587-025-00947-6
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s43587-025-00947-6


