Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unlocking longevity through the comparative biology of aging

Abstract

The comparative biology of aging leverages the remarkable diversity in aging rates and lifespans across species to uncover naturally evolved adaptations that promote longevity, disease resistance and injury resilience. The beauty of comparative biology is that it discovers adaptations that evolved outside of the protected laboratory environment, shaped by natural selection under real-world pressures. In this Review, we outline key approaches in comparative biology of aging studies, including the study of public mechanisms, which are shared between species, and private mechanisms, which are species-specific. Additionally, we present insights gained through high-throughput omics technologies—including genomics, transcriptomics, epigenomics, proteomics and metabolomics—and illustrate how these findings advance our understanding of how to ameliorate the hallmarks of aging, enhance cancer resistance and improve regeneration, with a focus on mammals. Finally, we offer practical guidance for designing and interpreting comparative studies aimed at understanding and translating longevity mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic explanation of the two approaches used in the comparative biology of aging.
Fig. 2: Overview of animal groups suited for studying the correlation of a trait with MLS, disease resistance or injury resilience.
Fig. 3: Selection of species with unique characteristics.
Fig. 4: Species-specific adaptations of the immune system.
Fig. 5: Animal group- or species-specific adaptations to increase genome stability.
Fig. 6: Unique mechanisms for increasing cancer resistance.

Similar content being viewed by others

References

  1. Zhao, Y., Seluanov, A. & Gorbunova, V. Revelations about aging and disease from unconventional vertebrate model organisms. Annu. Rev. Genet. 55, 135–159 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Partridge, L. & Gems, D. Mechanisms of aging: public or private? Nat. Rev. Genet. 3, 165–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Tacutu, R. et al. Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Phillips, K. A. et al. Why primate models matter. Am. J. Primatol. 76, 801–827 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gorbunova, V., Bozzella, M. J. & Seluanov, A. Rodents for comparative aging studies: from mice to beavers. Age 30, 111–119 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gorbunova, V., Seluanov, A., Zhang, Z., Gladyshev, V. N. & Vijg, J. Comparative genetics of longevity and cancer: insights from long-lived rodents. Nat. Rev. Genet. 15, 531–540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O’Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C. & Brodbelt, D. C. Longevity and mortality of owned dogs in England. Vet. J. 198, 638–643 (2013).

    Article  PubMed  Google Scholar 

  9. Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. Biol. Sci. 281, 20140298 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Gorbunova, V., Seluanov, A. & Kennedy, B. K. The world goes bats: living longer and tolerating viruses. Cell Metab. 32, 31–43 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).

    Article  PubMed  Google Scholar 

  12. Breed, G. A., Vermeulen, E. & Corkeron, P. Extreme longevity may be the rule not the exception in balaenid whales. Sci. Adv. https://doi.org/10.1126/sciadv.adq3086 (2024).

  13. Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, C. Z. et al. Epigenetic predictors of species maximum life span and other life-history traits in mammals. Sci. Adv. 10, eadm7273 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. George, J. C. et al. in The Bowhead Whale (eds George, J. C. & Thewissen, J. G. M.) 309–322 (Academic Press, 2021).

  16. Vincze, O. et al. Cancer risk across mammals. Nature 601, 263–267 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Cotton, C. J. Skeletal muscle mass and composition during mammalian hibernation. J. Exp. Biol. 219, 226–234 (2016).

    Article  PubMed  Google Scholar 

  18. Liu, C. et al. A towering genome: experimentally validated adaptations to high blood pressure and extreme stature in the giraffe. Sci. Adv. 7, eabe9459 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuparinen, A., Yeung, E. & Hutchings, J. A. Correlation between body size and longevity: new analysis and data covering six taxonomic classes of vertebrates. Acta Oecol. 119, 103917 (2023).

    Article  Google Scholar 

  20. Speakman, J. R. Body size, energy metabolism and lifespan. J. Exp. Biol. 208, 1717–1730 (2005).

    Article  PubMed  Google Scholar 

  21. Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46, B47–B53 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Weichhart, T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 64, 127–134 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Papadopoli, D. et al. mTOR as a central regulator of lifespan and aging. F1000Res. 8, F1000 Faculty Rev-998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  25. Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).

    Article  Google Scholar 

  26. Symonds, M. R. E. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 105–130 (Springer, 2014).

  27. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  28. Li, Y. & De Magalhães, J. P. Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity. Age 35, 301–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Jobson, R. W., Nabholz, B. & Galtier, N. An evolutionary genome scan for longevity-related natural selection in mammals. Mol. Biol. Evol. 27, 840–847 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Wirthlin, M. et al. Parrot genomes and the evolution of heightened longevity and cognition. Curr. Biol. 28, 4001–4008 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, Z. et al. Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation 2, 100108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Treaster, S. et al. Convergent genomics of longevity in rockfishes highlights the genetics of human life span variation. Sci. Adv. 9, eadd2743 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Seim, I. et al. Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nat. Commun. 4, 2212 (2013).

    Article  PubMed  Google Scholar 

  34. Toren, D. et al. Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell 19, e13158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ma, S. et al. Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. eLife 5, e19130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tyshkovskiy, A. et al. Distinct longevity mechanisms across and within species and their association with aging. Cell 186, 2929–2949 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulaga, A. Y. et al. Machine learning analysis of longevity-associated gene expression landscapes in mammals. Int. J. Mol. Sci. 22, 1073 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lu, J. Y. et al. Comparative transcriptomics reveals circadian and pluripotency networks as two pillars of longevity regulation. Cell Metab. 34, 836–856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Malik, A. et al. Genome maintenance and bioenergetics of the long-lived hypoxia-tolerant and cancer-resistant blind mole rat, Spalax: a cross-species analysis of brain transcriptome. Sci. Rep. 6, 38624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, Z., Whelan, C. V., Dechmann, D. & Teeling, E. C. Genetic variation between long-lived versus short-lived bats illuminates the molecular signatures of longevity. Aging 12, 15962–15977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fushan, A. A. et al. Gene expression defines natural changes in mammalian lifespan. Aging Cell 14, 352–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takasugi, M., Yoshida, Y., Nonaka, Y. & Ohtani, N. Gene expressions associated with longer lifespan and aging exhibit similarity in mammals. Nucleic Acids Res. 51, 7205–7219 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, S. et al. Organization of the mammalian metabolome according to organ function, lineage specialization, and longevity. Cell Metab. 22, 332–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wan, Q.-L. et al. Uric acid induces stress resistance and extends the life span through activating the stress response factor DAF-16/FOXO and SKN-1/NRF2. Aging 12, 2840–2856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mota-Martorell, N. et al. Methionine metabolism is down-regulated in heart of long-lived mammals. Biology 11, 1821 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mota-Martorell, N., Jové, M., Berdún, R. & Pamplona, R. Plasma methionine metabolic profile is associated with longevity in mammals. Commun. Biol. 4, 725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Viltard, M. et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging 11, 4783–4800 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, L., Sadighi Akha, A. A., Miller, R. A. & Harper, J. M. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A Biol. Sci. Med. Sci. 64, 711–722 (2009).

    Article  PubMed  Google Scholar 

  49. Richie, J. P. Jr. et al. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 8, 1302–1307 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, B. C. et al. Methionine restriction extends lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nat. Commun. 5, 3592 (2014).

    Article  PubMed  Google Scholar 

  51. Mitchell, S. J. et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 27, 667–676 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitchell, T. W., Buffenstein, R. & Hulbert, A. J. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Exp. Gerontol. 42, 1053–1062 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Galván, I. et al. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 69, 2776–2784 (2015).

    Article  PubMed  Google Scholar 

  54. Bozek, K. et al. Lipidome determinants of maximal lifespan in mammals. Sci. Rep. 7, 5 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gonzalez-Covarrubias, V. et al. Lipidomics of familial longevity. Aging Cell 12, 426–434 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Wallner, S. & Schmitz, G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem. Phys. Lipids 164, 573–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: meta-analysis and outlook. Ecol. Lett. 22, 1709–1722 (2019).

    Article  PubMed  Google Scholar 

  58. Hilton, H. G. et al. Single-cell transcriptomics of the naked mole-rat reveals unexpected features of mammalian immunity. PLoS Biol. 17, e3000528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Emmrich, S. et al. Characterization of naked mole-rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO J. 41, e109694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He, Z. et al. Cross-species comparison illuminates the importance of iron homeostasis for splenic anti-immunosenescence. Aging Cell 22, e13982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morandini, F. et al. ATAC-clock: an aging clock based on chromatin accessibility. Geroscience 46, 1789–1806 (2024).

    Article  CAS  PubMed  Google Scholar 

  62. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Emmrich, S. et al. Ectopic cervical thymi and no thymic involution until midlife in naked mole rats. Aging Cell 20, e13477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, T. D. et al. Evolution of T cells in the cancer-resistant naked mole-rat. Nat. Commun. 15, 3145 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Izraelson, M. et al. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. Nat. Aging 1, 179–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Moreno Santillán, D. D. et al. Large-scale genome sampling reveals unique immunity and metabolic adaptations in bats. Mol. Ecol. 30, 6449–6467 (2021).

    Article  PubMed  Google Scholar 

  67. Jebb, D. et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583, 578–584 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tian, S. et al. Comparative analyses of bat genomes identify distinct evolution of immunity in Old World fruit bats. Sci. Adv. 9, eadd0141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Deguine, J. & Barton, G. M. MyD88: a central player in innate immune signaling. F1000Prime Rep. 6, 97 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, L. et al. Maintenance of genome sequence integrity in long- and short-lived rodent species. Sci. Adv. 7, eabj3284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacRae, S. L. et al. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell 14, 288–291 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tian, X. et al. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177, 622–638 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mao, Z. et al. SIRT6 promotes DNA repair under stress by activating PARP1. Science 332, 1443–1446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. MacRae, S. L. et al. DNA repair in species with extreme lifespan differences. Aging 7, 1171–1182 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Vazquez, J. M., Kraft, M. & Lynch, V. J. A CDKN2C retroduplication in Bowhead whales is associated with the evolution of extremely long lifespans and alerted cell cycle dynamics. Preprint at bioRxiv https://doi.org/10.1101/2022.09.07.506958 (2022).

  78. Firsanov, D. et al. DNA repair and anti-cancer mechanisms in the longest-living mammal: the bowhead whale. Preprint at bioRxiv https://doi.org/10.1101/2023.05.07.539748 (2023).

  79. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Maréchal, A. & Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 5, a012716 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhou, X. et al. Beaver and naked mole rat genomes reveal common paths to longevity. Cell Rep. 32, 107949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sahm, A. et al. The Greenland shark (Somniosus microcephalus) genome provides insights into extreme longevity. Preprint at bioRxiv https://doi.org/10.1101/2024.09.09.611499 (2024).

  83. Quesada, V. et al. Giant tortoise genomes provide insights into longevity and age-related disease. Nat. Ecol. Evol. 3, 87–95 (2019).

    Article  PubMed  Google Scholar 

  84. Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bertucci-Richter, E. M. & Parrott, B. B. The rate of epigenetic drift scales with maximum lifespan across mammals. Nat. Commun. 14, 7731 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilkinson, G. S. et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nat. Commun. 12, 1615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Crofts, S. J. C., Latorre-Crespo, E. & Chandra, T. DNA methylation rates scale with maximum lifespan across mammals. Nat. Aging 4, 27–32 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Horvath, S., Zhang, J., Haghani, A., Lu, A. T. & Fei, Z. Fundamental equations linking methylation dynamics to maximum lifespan in mammals. Nat. Commun. 15, 8093 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morandini, F., Seluanov, A. & Gorbunova, V. Slow and steady lives the longest. Nat. Aging 4, 7–9 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Haluza, Y. et al. Axolotl epigenetic clocks offer insights into the nature of negligible senescence. Preprint at bioRxiv https://doi.org/10.1101/2024.09.09.611397 (2024).

  91. Morandini, F. et al. Transposable element 5mC methylation state of blood cells predicts age and disease. Nat. Aging https://doi.org/10.1038/s43587-024-00757-2 (2025).

    Article  PubMed  Google Scholar 

  92. Mariner, B. L. et al. DNA methylation of transposons pattern aging differences across a diverse cohort of dogs from the Dog Aging Project. Preprint at bioRxiv https://doi.org/10.1101/2024.10.08.617286 (2024).

  93. Yamaguchi, S. et al. Characterization of an active LINE-1 in the naked mole-rat genome. Sci. Rep. 11, 5725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, E. B. et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, W. et al. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J. 42, e112740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ke, Z. et al. Translation fidelity coevolves with longevity. Aging Cell 16, 988–993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Azpurua, J. et al. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage. Proc. Natl Acad. Sci. USA 110, 17350–17355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Swovick, K. et al. Interspecies differences in proteome turnover kinetics are correlated with life spans and energetic demands. Mol. Cell. Proteomics 20, 100041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rodriguez, K. A., Edrey, Y. H., Osmulski, P., Gaczynska, M. & Buffenstein, R. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS ONE 7, e35890 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pickering, A. M., Lehr, M. & Miller, R. A. Lifespan of mice and primates correlates with immunoproteasome expression. J. Clin. Invest. 125, 2059–2068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rodriguez, K. A. et al. Determinants of rodent longevity in the chaperone-protein degradation network. Cell Stress Chaperones 21, 453–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pride, H. et al. Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species. Biochem. Biophys. Res. Commun. 457, 669–675 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Mota-Martorell, N. et al. Gene expression and regulatory factors of the mechanistic target of rapamycin (mTOR) complex 1 predict mammalian longevity. Geroscience 42, 1157–1173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, L., Harris, T. E., Roth, R. A. & Lawrence, J. C. Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 282, 20036–20044 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Azpurua, J. et al. IGF1R levels in the brain negatively correlate with longevity in 16 rodent species. Aging 5, 304–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawamura, Y. et al. Cellular senescence induction leads to progressive cell death via the INK4a–RB pathway in naked mole-rats. EMBO J. 42, e111133 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chee, W.-Y. et al. β-catenin-promoted cholesterol metabolism protects against cellular senescence in naked mole-rat cells. Commun. Biol. 4, 357 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Attaallah, A. et al. A pro longevity role for cellular senescence. Geroscience 42, 867–879 (2020).

    Article  PubMed  Google Scholar 

  110. Montazid, S. et al. Adult stem cell activity in naked mole rats for long-term tissue maintenance. Nat. Commun. 14, 8484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Udroiu, I. & Sgura, A. Rates of erythropoiesis in mammals and their relationship with lifespan and hematopoietic stem cells aging. Biogerontology 20, 445–456 (2019).

    Article  PubMed  Google Scholar 

  112. Remot, F. et al. Decline in telomere length with increasing age across nonhuman vertebrates: a meta-analysis. Mol. Ecol. 31, 5917–5932 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Voituron, Y., Guillaume, O., Dumet, A., Zahn, S. & Criscuolo, F. Temperature-independent telomere lengthening with age in the long-lived human fish (Proteus anguinus). Proc. Biol. Sci. 290, 20230503 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Foley, N. M. et al. Growing old, yet staying young: the role of telomeres in bats’ exceptional longevity. Sci. Adv. 4, eaao0926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Athar, F. et al. Limited cell-autonomous anticancer mechanisms in long-lived bats. Nat. Commun. 16, 4125 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seluanov, A. et al. Telomerase activity coevolves with body mass not lifespan. Aging Cell 6, 45–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Seluanov, A. et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan. Aging Cell 7, 813–823 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Adwan Shekhidem, H. et al. Telomeres and longevity: a cause or an effect? Int. J. Mol. Sci. 20, 3233 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tricola, G. M. et al. The rate of telomere loss is related to maximum lifespan in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20160445 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dobson, F. S., Schull, Q. & Criscuolo, F. Two aspects of longevity are associated with rates of loss of telomeres in birds. Ecol. Evol. 12, e9364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Domínguez-de-Barros, A. et al. An approach to the effects of longevity, sexual maturity, and reproduction on telomere length and oxidative stress in different Psittacidae species. Front. Genet. 14, 1156730 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pepke, M. L. & Eisenberg, D. T. A. Accounting for phylogenetic relatedness in cross-species analyses of telomere shortening rates. Exp. Results 1, e11 (2020).

    Article  Google Scholar 

  123. Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad. Sci. USA 116, 15122–15127 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aledo, J. C., Li, Y., De Magalhães, J. P., Ruíz‐Camacho, M. & Pérez‐Claros, J. A. Mitochondrially encoded methionine is inversely related to longevity in mammals. Aging Cell 10, 198–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Mota-Martorell, N. et al. Low abundance of NDUFV2 and NDUFS4 subunits of the hydrophilic complex I domain and VDAC1 predicts mammalian longevity. Redox Biol. 34, 101539 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gredilla, R., Sánchez-Román, I., Gómez, A., López-Torres, M. & Barja, G. Mitochondrial base excision repair positively correlates with longevity in the liver and heart of mammals. Geroscience 42, 653–665 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pollard, A. K. et al. A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived pipistrelle bats. Aging 11, 1664–1685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nicholatos, J. W. et al. Cellular energetics and mitochondrial uncoupling in canine aging. Geroscience 41, 229–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hua, X., Cowman, P., Warren, D. & Bromham, L. Longevity is linked to mitochondrial mutation rates in rockfish: a test using Poisson regression. Mol. Biol. Evol. 32, 2633–2645 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Harper, J. M. et al. Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J. Exp. Biol. 214, 1902–1910 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pickering, A. M., Lehr, M., Kohler, W. J., Han, M. L. & Miller, R. A. Fibroblasts from longer-lived species of primates, rodents, bats, carnivores, and birds resist protein damage. J. Gerontol. A Biol. Sci. Med. Sci. 70, 791–799 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Munro, D., Baldy, C., Pamenter, M. E. & Treberg, J. R. The exceptional longevity of the naked mole-rat may be explained by mitochondrial antioxidant defenses. Aging Cell 18, e12916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Csiszar, A. et al. Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J. Gerontol. A Biol. Sci. Med. Sci. 67, 841–852 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Baird, L. & Dinkova-Kostova, A. T. The cytoprotective role of the Keap1–Nrf2 pathway. Arch. Toxicol. 85, 241–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Lewis, K. N. et al. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc. Natl Acad. Sci. USA 112, 3722–3727 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Schmidt, H., Hangmann, J., Shams, I., Avivi, A. & Hankeln, T. Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: the Nrf2–Keap1 pathway. Gene 577, 293–298 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Takasugi, M. et al. CD44 correlates with longevity and enhances basal ATF6 activity and ER stress resistance. Cell Rep. 42, 113130 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Q. et al. Genomic expansion of Aldh1a1 protects beavers against high metabolic aldehydes from lipid oxidation. Cell Rep. 37, 109965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xia, C. & Møller, A. P. Long-lived birds suffer less from oxidative stress. Avian Res. 9, 41 (2018).

    Article  Google Scholar 

  140. Chionh, Y. T. et al. High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones 24, 835–849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Galaris, D., Barbouti, A. & Pantopoulos, K. Iron homeostasis and oxidative stress: an intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 1866, 118535 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Protchenko, O. et al. Iron chaperone poly rC binding protein 1 protects mouse liver from lipid peroxidation and steatosis. Hepatology 73, 1176–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Nair, N. U. et al. Cross-species identification of cancer resistance-associated genes that may mediate human cancer risk. Sci. Adv. 8, eabj7176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tian, X. et al. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20160443 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hua, R. et al. Experimental evidence for cancer resistance in a bat species. Nat. Commun. 15, 1401 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Manov, I. et al. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol. 11, 91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gorbunova, V. et al. Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proc. Natl Acad. Sci. USA 109, 19392–19396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhao, Y. et al. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22, 1219–1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Qin, X.-Q. et al. Interferon-β gene therapy inhibits tumor formation and causes regression of established tumors in immune-deficient mice. Proc. Natl Acad. Sci. USA 95, 14411–14416 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Glaberman, S., Bulls, S. E., Vazquez, J. M., Chiari, Y. & Lynch, V. J. Concurrent evolution of antiaging gene duplications and cellular phenotypes in long-lived turtles. Genome Biol. Evol. 13, evab244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Nasser, N. J. et al. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis. Proc. Natl Acad. Sci. USA 106, 2253–2258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dredge, K. et al. PG545, a dual heparanase and angiogenesis inhibitor, induces potent anti-tumour and anti-metastatic efficacy in preclinical models. Br. J. Cancer 104, 635–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. de Boer, C. et al. Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo. Proc. Natl Acad. Sci. USA 119, e2203167119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Takasugi, M. et al. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat. Commun. 11, 2376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Seluanov, A. et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc. Natl Acad. Sci. USA 106, 19352–19357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tian, X. et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature 499, 346–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tian, X. et al. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc. Natl Acad. Sci. USA 112, 1053–1058 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Z. et al. Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 621, 196–205 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fatima, I. et al. Skin aging in long-lived naked mole-rats is accompanied by increased expression of longevity-associated and tumor suppressor genes. J. Invest. Dermatol. 142, 2853–2863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tollis, M., Schneider-Utaka, A. K. & Maley, C. C. The evolution of human cancer gene duplications across mammals. Mol. Biol. Evol. 37, 2875–2886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Baines, C., Meitern, R., Kreitsberg, R. & Sepp, T. Comparative study of the evolution of cancer gene duplications across fish. Evol. Appl. 15, 1834–1845 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Huang, Z., Jebb, D. & Teeling, E. C. Blood miRNomes and transcriptomes reveal novel longevity mechanisms in the long-lived bat, Myotis myotis. BMC Genomics 17, 906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yun, M. H. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci. 16, 25392–25432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Harn, H. I.-C. et al. Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nat. Commun. 12, 2595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Brant, J. O., Yoon, J. H., Polvadore, T., Barbazuk, W. B. & Maden, M. Cellular events during scar-free skin regeneration in the spiny mouse, Acomys. Wound Repair Regen. 24, 75–88 (2016).

    Article  PubMed  Google Scholar 

  167. Maden, M. Optimal skin regeneration after full thickness thermal burn injury in the spiny mouse, Acomys cahirinus. Burns 44, 1509–1520 (2018).

    Article  PubMed  Google Scholar 

  168. Jiang, T.-X., Harn, H. I.-C., Ou, K.-L., Lei, M. & Chuong, C.-M. Comparative regenerative biology of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. Exp. Dermatol. 28, 442–449 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Tomasso, A., Koopmans, T., Lijnzaad, P., Bartscherer, K. & Seifert, A. W. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice (Acomys). Sci. Adv. 9, eadf2331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Koopmans, T. et al. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). NPJ Regen. Med. 6, 78 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Peng, H. et al. Adult spiny mice (Acomys) exhibit endogenous cardiac recovery in response to myocardial infarction. NPJ Regen. Med. 6, 74 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Qi, Y. et al. Functional heart recovery in an adult mammal, the spiny mouse. Int. J. Cardiol. 338, 196–203 (2021).

    Article  PubMed  Google Scholar 

  173. Okamura, D. M. et al. Spiny mice activate unique transcriptional programs after severe kidney injury regenerating organ function without fibrosis. iScience 24, 103269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Maden, M. et al. Perfect chronic skeletal muscle regeneration in adult spiny mice, Acomys cahirinus. Sci. Rep. 8, 8920 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Nogueira-Rodrigues, J. et al. Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Dev. Cell 57, 440–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Streeter, K. A. et al. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J. Comp. Neurol. 528, 1535–1547 (2020).

    Article  CAS  PubMed  Google Scholar 

  177. Athar, F. et al. African spiny mice show resistance to DMBA/TPA-induced squamous carcinogenesis with distinct benign tumor profile. Protein Cell https://doi.org/10.1093/procel/pwaf024 (2025).

    Article  PubMed  Google Scholar 

  178. Gawriluk, T. R. et al. Complex tissue regeneration in mammals is associated with reduced inflammatory cytokines and an influx of T cells. Front. Immunol. 11, 1695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brant, J. O., Lopez, M.-C., Baker, H. V., Barbazuk, W. B. & Maden, M. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys. PLoS ONE 10, e0142931 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Brant, J. O. et al. Comparative transcriptomic analysis of dermal wound healing reveals de novo skeletal muscle regeneration in Acomys cahirinus. PLoS ONE 14, e0216228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Simkin, J. et al. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev. Cell 59, 496–516 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cyr, J. L. et al. Regeneration-competent and -incompetent murids differ in neutrophil quantity and function. Integr. Comp. Biol. 59, 1138–1149 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Hui, S. P. et al. Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev. Cell 43, 659–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  184. Gawriluk, T. R. et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals. Nat. Commun. 7, 11164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Grigoryan, E. N. & Markitantova, Y. V. Tail and spinal cord regeneration in urodelean amphibians. Life 14, 594 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Martínez, D. E. Rejuvenation of the disposable soma: repeated injury extends lifespan in an asexual annelid. Exp. Gerontol. 31, 699–704 (1996).

    Article  PubMed  Google Scholar 

  187. Nagai, H. et al. Highly regenerative species-specific genes improve age-associated features in the adult Drosophila midgut. BMC Biol. 22, 157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dai, X. et al. Regeneration leads to global tissue rejuvenation in aging sexual planarians. Nat. Aging 5, 780–798 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Perez, K. et al. DNA repair-deficient premature aging models display accelerated epigenetic age. Aging Cell 23, e14058 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. De Magalhães, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 22, 1770–1774 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratories of V.G. and A.S. is supported by grants from the US National Institute on Aging, the Impetus Grant, the Hevolution Foundation, the Michael Antonov Foundation and the Milky Way Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.R., F.M., S.J.K., A.S. and V.G. participated in the writing of this review. C.R. conceptualized and drew the original figures.

Corresponding authors

Correspondence to Andrei Seluanov or Vera Gorbunova.

Ethics declarations

Competing interests

V.G. is a scientific advisor to DoNotAge, Matrix Bio, Genflow Biosciences, Elysium, BellSant and WndrHLTH. The other authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Jean-François Lemaître, Dario Riccardo Valenzano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechsteiner, C., Morandini, F., Kim, S.J. et al. Unlocking longevity through the comparative biology of aging. Nat Aging 5, 1686–1703 (2025). https://doi.org/10.1038/s43587-025-00945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00945-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing