Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The X-Age Project to construct a Chinese aging clock

Abstract

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age‐related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual’s physiological and molecular state, across diverse Chinese cohorts. This Perspective outlines the core objectives, methodological framework and key deliverables of the X-Age Project, including cohort recruitment, standardized sample collection, multimodal data acquisition and clock model development. By integrating interdisciplinary expertise, we aim to provide a practical and scalable platform for understanding aging complexity and heterogeneity, early detection of accelerated aging and evaluation of aging interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the X-Age Project.
Fig. 2: Basic Guidance Framework of the X-Age Project.
Fig. 3: Multilevel framework for biological aging assessment.
Fig. 4: Four pillars for building the X-Age Project.

Similar content being viewed by others

References

  1. Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 186, 3758–3775 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Navaneetham, K. & Arunachalam, D. in Handbook of Aging, Health and Public Policy: Perspectives from Asia (ed. Rajan, S. I.) 1–18 (Springer, 2022).

  3. Elderly to take up one-third of Chinese Population by 2050. The State Council, The People's Republic of China https://english.www.gov.cn/state_council/ministries/2018/07/21/content_281476231195728.htm (2018).

  4. Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 7, 391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2100–2132 (2024).

    Article  Google Scholar 

  6. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Rutledge, J., Oh, H. & Wyss-Coray, T. Measuring biological age using omics data. Nat. Rev. Genet. 23, 715–727 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, O. et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 19, e13149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bao, H. et al. Biomarkers of aging. Sci. China Life Sci. 66, 893–1066 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, J. et al. Determining a multimodal aging clock in a cohort of Chinese women. Med 4, 825–848 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Zheng, Z. et al. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 15, 575–593 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rando, T. A. & Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat. Aging 1, 29–35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cai, Y. et al. The landscape of aging. Sci. China Life Sci. 65, 2354–2454 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yurkovich, J. T. et al. The transition from genomics to phenomics in personalized population health. Nat. Rev. Genet. 25, 286–302 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Peng, Y. et al. Ethical concerns in aging research: perspectives of global frontline researchers. Sci. China Life Sci. 67, 2149–2156 (2024).

    Article  PubMed  Google Scholar 

  21. Peng, Y. et al. Acting on ethics and governance of aging research. Trends Mol. Med. 29, 419–421 (2023).

    Article  PubMed  Google Scholar 

  22. Zheng, Y. et al. Multi-omics data integration using ratio-based quantitative profiling with Quartet reference materials. Nat. Biotechnol. 42, 1133–1149 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Yu, Y. et al. Correcting batch effects in large-scale multiomics studies using a reference-material-based ratio method. Genome Biol. 24, 201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Teixeira, E. et al. Wearable devices for physical activity and healthcare monitoring in elderly people: a critical review. Geriatrics 6, 38 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moguilner, S. et al. Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations. Nat. Med. 30, 3646–3657 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bashyam, V. M. et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain 143, 2312–2324 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yin, C. et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. Proc. Natl Acad. Sci. USA 120, e2214634120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leonardsen, E. H. et al. Deep neural networks learn general and clinically relevant representations of the ageing brain. Neuroimage 256, 119210 (2022).

    Article  PubMed  Google Scholar 

  29. Yang, Z. et al. Brain aging patterns in a large and diverse cohort of 49,482 individuals. Nat. Med. 30, 3015–3026 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, Z. T. et al. Retinal age gap as a predictive biomarker for mortality risk. Br. J. Ophthalmol. 107, 547–554 (2023).

    Article  PubMed  Google Scholar 

  31. Ahadi, S. et al. Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock. eLife 12, e82364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia, X. et al. Three-dimensional facial-image analysis to predict heterogeneity of the human ageing rate and the impact of lifestyle. Nat. Metab. 2, 946–957 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., Mao, K., Zhai, H. & Jackie Han, J. D. Clinical application of facial aging clocks. Lancet Reg. Health West. Pac. 37, 100858 (2023).

    PubMed  PubMed Central  Google Scholar 

  34. Brazier, J. E. et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 305, 160–164 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Folstein, M. F., Folstein, S. E. & McHugh, P. R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article  CAS  PubMed  Google Scholar 

  36. Argentieri, M. A. et al. Integrating the environmental and genetic architectures of aging and mortality. Nat. Med. 31, 1016–1025 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kivimäki, M. et al. Social disadvantage accelerates aging. Nat. Med. 31, 1635–1643 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bowie, C. R. & Harvey, P. D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 1, 2277–2281 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49 (1982).

    Article  PubMed  Google Scholar 

  40. Morley, J. E., Malmstrom, T. K. & Miller, D. K. A simple frailty questionnaire (FRAIL) predicts outcomes in middle aged African Americans. J. Nutr. Health Aging 16, 601–608 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Hilditch, J. R. et al. A menopause-specific quality of life questionnaire: development and psychometric properties. Maturitas 24, 161–175 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Nie, C. et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 38, 110459 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, S. et al. Decoding aging hallmarks at the single-cell level. Annu. Rev. Biomed. Data Sci. 6, 129–152 (2023).

    Article  PubMed  Google Scholar 

  45. Aging Atlas, C. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res. 49, D825–D830 (2021).

    Article  Google Scholar 

  46. Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Melzer, D., Pilling, L. C. & Ferrucci, L. The genetics of human ageing. Nat. Rev. Genet. 21, 88–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Duran, I., Bishop, C. L., Gil, J. & Wallis, R. The promise of machine learning approaches to capture cellular senescence heterogeneity. Nat. Aging 4, 1167–1170 (2024).

    Article  PubMed  Google Scholar 

  49. Liu, Z. et al. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57, 1347–1368 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Ji, Q. et al. Multimodal omics approaches to aging and age-related diseases. Phenomics 4, 56–71 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ma, S. et al. Spatial transcriptomic landscape unveils immunoglobin-associated senescence as a hallmark of aging. Cell 187, 7025–7044 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, S. et al. CHIT1-positive microglia drive motor neuron ageing in the primate spinal cord. Nature 624, 611–620 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, S. et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 180, 585–600 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, W., Qu, J., Liu, G. H. & Belmonte, J. C. I. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Ren, R. et al. Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res. 27, 483–504 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 17, 171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jansen, R. et al. An integrative study of five biological clocks in somatic and mental health. eLife 10, e59479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y. et al. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat. Immunol. 26, 308–322 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McGinnis, C. S. et al. MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat. Methods 16, 619–626 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buckley, M. T. et al. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. Nat. Aging 3, 121–137 (2023).

    Article  PubMed  Google Scholar 

  70. Zhu, H. et al. Human PBMC scRNA-seq-based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. Sci. Adv. 9, eabq7599 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. He, X., Memczak, S., Qu, J., Belmonte, J. C. I. & Liu, G. H. Single-cell omics in ageing: a young and growing field. Nat. Metab. 2, 293–302 (2020).

    Article  PubMed  Google Scholar 

  72. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Goeminne, L. J. E. et al. Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. Cell Metab. 37, 205–222 (2024).

    Article  PubMed  Google Scholar 

  74. Ding, Y. et al. Comprehensive human proteome profiles across a 50-year lifespan reveal aging trajectories and signatures. Cell https://doi.org/10.1016/j.cell.2025.06.047 (2025).

  75. Huang, H. et al. Decoding aging clocks: new insights from metabolomics. Cell Metab. 37, 34–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Panyard, D. J., Yu, B. & Snyder, M. P. The metabolomics of human aging: advances, challenges, and opportunities. Sci. Adv. 8, eadd6155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pu, Y. et al. Gut microbial features and circulating metabolomic signatures of frailty in older adults. Nat. Aging 4, 1249–1262 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, T. et al. Divergent age-associated and metabolism-associated gut microbiome signatures modulate cardiovascular disease risk. Nat. Med. 30, 1722–1731 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    Article  CAS  PubMed  Google Scholar 

  81. Chen, S. et al. Bifidobacterium adolescentis regulates catalase activity and host metabolism and improves healthspan and lifespan in multiple species. Nat. Aging 1, 991–1001 (2021).

    Article  PubMed  Google Scholar 

  82. Liu, X. et al. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287–304 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Bjornsson, B. et al. Digital twins to personalize medicine. Genome Med. 12, 4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li, H. et al. HALL: a comprehensive database for human aging and longevity studies. Nucleic Acids Res. 52, D909–D918 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Waziry, R. et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat. Aging 3, 248–257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Grevendonk, L. et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 12, 4773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao, X., Huang, N., Guo, X. & Huang, T. Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: findings from the UK Biobank cohort. Aging Cell 21, e13610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, Y. et al. Metformin decelerates aging clock in male monkeys. Cell 187, 6358–6378 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).

    Article  PubMed  Google Scholar 

  91. Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ma, S. et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984–1001 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Liu, B., Qu, J., Zhang, W., Izpisua Belmonte, J. C. & Liu, G. H. A stem cell aging framework, from mechanisms to interventions. Cell Rep. 41, 111451 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Lei, J. et al. Senescence resistant human mesenchymal progenitor cells counter aging in primates. Cell https://doi.org/10.1016/j.cell.2025.05.021 (2025).

  95. Aging Biomarker Consortiumet al. A framework of biomarkers for brain aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad017 (2023).

  96. Aging Biomarker Consortium et al. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad033 (2023).

  97. Aging Biomarker Consortium et al. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. Life Med. 2, lnad035 (2023).

  98. Aging Biomarker Consortium et al. A framework of biomarkers for skeletal aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 2, lnad045 (2023).

  99. Aging Biomarker Consortium et al. A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement. Life Med. 3, lnae004 (2024).

  100. Huang, N. et al. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 3, lnaf001 (2024).

    Article  PubMed  Google Scholar 

  101. Aging Biomarker Consortium et al. A biomarker framework for auditory system aging: the Aging Biomarker Consortium consensus statement. Life Med. 4, lnaf011 (2025).

  102. Ma, C. et al. A framework of biomarkers for visual system aging: a consensus statement by the Aging Biomarker Consortium. Life Med. 4, lnaf023 (2025).

  103. Aging Biomarker Consortium et al. A framework of biomarkers for adipose tissue aging: a consensus statement by the Aging Biomarker Consortium. Life Med. https://doi.org/10.1093/lifemedi/lnaf027 (2025).

Download references

Acknowledgements

We acknowledge all members of the ABC for their invaluable support, input and suggestions that helped to shape this Perspective and discussions on X-Age Project planning. This work was supported by the National Natural Science Foundation of China (82488301, 82125011) and the National Key Research and Development Program of China (2022YFA1103700).

Author information

Authors and Affiliations

Authors

Contributions

G.-H.L., G.P., Weiqi Zhang, D.A., Y. Bai, Y. Bi, X.-W.B., P.B., J.-P.C., C.-M.C., F.C., Z.C., R.C., P.C., Chang Chen, C.-S.C., Chunying Chen, D.C., H.-Z.C., L.C., Q.C., Xiao Chen, Xiaochun Chen, Y. Chen, Z.-J.C., W.C., Z.D., Q.D., B.D., J.D., J.-G.F., S.F., X. Feng, Y. Feng, Xiaobing Fu, Xiaolong Fu, F. Gao, J.G., Q.G., S.G., Y. Gu, Y. Guan, F. Guo, J.-D.J.H., H.H., J. Hao, F.H., J. He, Ming He, Mingguang He, Q.H., Zhiying He, Zuhong He, H. Hong, J. Hong, S.H., C. Hu, P. Hu, Z. Hu, C. Huang, J. Huang, K.H., P. Huang, X.J., Y.J., S. Jia, H.J., W.J., L.J., Z.-B.J., S. Ju, Z.J., Q.-P.K., W.K., W.-J.K., X.K., G.L., G.-L.L., Ji Li, Jian Li, M.L., R.L., Wei Li (Guangzhou Medical University), Wei Li (Institute of Zoology, CAS), X.-J.L., X.L., Q. Liang, Z.L., H.L., B.L., C.-Y.L., C.L., F.L., J. Liu, J.-P.L., K.L., L.L., P.L., Qiang Liu (Tianjin Medical University General Hospital), Qiang Liu (University of Science and Technology of China), T.L., W. Liu, X. Liu., Yajun Liu, Young Liu., Youhua Liu, Youshuo Liu, Z. Liu, X. Long, Y. Lu, J. Luo, X. Luo, C.M., S.M., X.M., J.M., Z.M., S.-C.N., G.N., Y.N., Y.P., J.P., J. Qi, L.Q., J. Qiao, Y.Q., A.Q., J. Qu, J.R., R.R., X.Z.R., A. Shi, H.S., J. Shi, K.-F.S., M.S., W.S., Z.S., J. Su, A. Sun, L.S., Q.S., Y.E.S., Y.S., P.T., Q.-Q.T., Y. Tang, J.T., L.T., M.T., X.-L.T., Y. Tian, X.T., C.Y.W., Haibo Wang, Hongmei Wang, Huating Wang, Jianwei Wang (Chinese Academy of Medical Sciences and Peking Union Medical College), Jianwei Wang (Haihe Laboratory of Cell Ecosystem), Jiqiu Wang, Liheng Wang, Lin Wang, M.W., Q.W., Si Wang, Sijia Wang, Songlin Wang, W.W., Xiaoming Wang, Xiaoning Wang, Yan Wang, Y.-J.W., Yuan Wang, Yunfang Wang, Z.W., X.W., J. Weng, H. Wu, J. Wu, X.X., Y. Xia, A.X., G.X., J.X., Y. Xiao, Z.-X.J.X., Z. Xie, W.X., A.X., H.X., L.X., M. Xu, L. Yan, Jiayin Yang, Jichun Yang, L. Yang, Y.-G.Y., Ze Yang, Zhenglin Yang, H. Yao, J. Ye, C.Y., F.Y., H. Yu, Y. Yu, Z. Yu, T.-F.Y., J. Yue, R.Y., Chen Zhang, Chunxiang Zhang, Cuntai Zhang, F.Z., Hongbo Zhang, Hongjia Zhang, Huijie Zhang, Jie Zhang, Jingjing Zhang, Licheng Zhang, Lingqiang Zhang, Luoying Zhang, Q.Z., Wei Zhang, W. J. Zhang, Xin Zhang, Xuan Zhang, Y. Zhang, Y.-W.Z., Zhanjun Zhang, Zhuohua Zhang, B.Z., G.Z., J. Zhao, M.Z., T.Z., J. Zheng, Zhuozhao Zheng, H. Zhou, L. Zhou, X. Zhou, Y. Zhou, Z. Zhou, L. Zhu, Y. Zhu, Z. Zhu, W. Zhuang. and W. Zou contributed intellectual insights and strategic recommendations to the conceptualization and design of this project. Jiaming Li, M.J., Qiaoran Wang, Zikai Zheng, J. Shen, Jingyi Li, M. Xiong, Y. Zheng and X. Lu drafted the initial manuscript. G.-H.L., G.P., Weiqi Zhang, M.S., J.R., Si Wang, S.M., Jiaming Li, M.J., Qiaoran Wang, Zikai Zheng, J. Shen, Jingyi Li, M. Xiong, Y. Zheng and X. Lu provided critical revisions to the manuscript. Y. Cai, Y. Fan, L.G., Q.J., Q.P., S.S., Yuanyuan Wang, Z. Xin, K.Y., Y. Yang, J. Yu and H. Yan contributed to the revisions. All authors participated in reviewing and editing the final version.

Corresponding authors

Correspondence to Ding Ai, Yongping Bai, Yan Bi, Xiu-Wu Bian, Pengcheng Bu, Jian-Ping Cai, Chun-Mei Cao, Feng Cao, Zhongwei Cao, Renjie Chai, Piu Chan, Chang Chen, Cheng-Shui Chen, Chunying Chen, Di Chen, Hou-Zao Chen, Lin Chen, Quan Chen, Xiao Chen, Xiaochun Chen, Yu Chen, Zi-Jiang Chen, Weimin Ci, Zhe Dai, Qiurong Ding, Birong Dong, Jiahong Dong, Jian-Gao Fan, Shiqing Feng, Xin Feng, Yun Feng, Xiaobing Fu, Xiaolong Fu, Feng Gao, Jiangang Gao, Qiang Gao, Shaorong Gao, Yonghao Gu, Youfei Guan, Feifan Guo, Jing-Dong J. Han, Haiping Hao, Jihui Hao, Fuchu He, Jinhan He, Ming He, Mingguang He, Qiyang He, Zhiying He, Zuhong He, Huashan Hong, Jiaxu Hong, Shengping Hou, Cheng Hu, Ping Hu, Zhibin Hu, Canhua Huang, Jun Huang, Kai Huang, Pengyu Huang, Xunming Ji, Yong Ji, Shunji Jia, Hong Jiang, Wenjian Jiang, Lingjing Jin, Zi-Bing Jin, Shenghong Ju, Zhenyu Ju, Qing-Peng Kong, Wei Kong, Wei-Jia Kong, Xiangqing Kong, Guanghua Lei, Geng-Lin Li, Ji Li, Jian Li, Mengfeng Li, Rong Li, Wei Li, Wei Li, Xiao-Jun Li, Xin Li, Qingfeng Liang, Zhen Liang, Haotian Lin, Baohua Liu, Cai-Yue Liu, Changsheng Liu, Feng Liu, Jianfeng Liu, Jun-Ping Liu, Ke Liu, Lin Liu, Pingsheng Liu, Qiang Liu, Qiang Liu, Tiemin Liu, Wenwen Liu, Xingguo Liu, Yajun Liu, Yong Liu, Youhua Liu, Youshuo Liu, Zhili Liu, Xiao Long, Yao Lu, Jian Luo, Xianghang Luo, Chunhong Ma, Shuai Ma, Xinran Ma, Jianhua Mao, Zhiyong Mao, Shyh-Chang Ng, Guangjun Nie, Yuyu Niu, Yaojin Peng, Jun Pu, Jieyu Qi, Li Qiang, Jie Qiao, Yingying Qin, Aijuan Qu, Jing Qu, Jie Ren, Ruibao Ren, Xiong Z. Ruan, Anbing Shi, Haibo Shi, Jie Shi, Kwok-Fai So, Moshi Song, Weihong Song, Zhou Songyang, Jiacan Su, Aijun Sun, Liang Sun, Qiang Sun, Yi Eve Sun, Yu Sun, Peifu Tang, Qi-Qun Tang, Yi Tang, Jun Tao, Ling Tao, Mei Tian, Xiao-Li Tian, Ye Tian, Xiaolin Tong, Cong-Yi Wang, Haibo Wang, Hongmei Wang, Huating Wang, Jianan Wang, Jianwei Wang, Jianwei Wang, Jiqiu Wang, Liheng Wang, Lin Wang, Miao Wang, Qiang Wang, Si Wang, Sijia Wang, Songlin Wang, Wengong Wang, Xiaoming Wang, Xiaoning Wang, Yan Wang, Yan-Jiang Wang, Yuan Wang, Yunfang Wang, Zhenning Wang, Xiawei Wei, Jianping Weng, Haitao Wu, Jihong Wu, Xiaohuan Xia, Yang Xia, Andy Peng Xiang, Guozhi Xiao, Junjie Xiao, Yichuan Xiao, Zhi-Xiong Jim Xiao, Zhengwei Xie, Wei Xiong, Aimin Xu, Hua Xu, Lingyan Xu, Ming Xu, Liying Yan, Jiayin Yang, Jichun Yang, Liu Yang, Yun-Gui Yang, Ze Yang, Zhenglin Yang, Hongjie Yao, Jing Ye, Chengqi Yi, Fan Yi, Honghua Yu, Yang Yu, Zhengrong Yu, Ti-Fei Yuan, Jirong Yue, Rui Yue, Chen Zhang, Chunxiang Zhang, Cuntai Zhang, Feng Zhang, Hongbo Zhang, Hongjia Zhang, Huijie Zhang, Jie Zhang, Jingjing Zhang, Licheng Zhang, Lingqiang Zhang, Luoying Zhang, Qingjiong Zhang, Wei Zhang, Weiping J. Zhang, Xin Zhang, Xuan Zhang, Yong Zhang, Yun-Wu Zhang, Zhanjun Zhang, Zhuohua Zhang, Bing Zhao, Guoguang Zhao, Jiajun Zhao, Meng Zhao, Tongbiao Zhao, Jialin C. Zheng, Junke Zheng, Zhuozhao Zheng, Huixia Zhou, Lili Zhou, Xiangtian Zhou, Yongsheng Zhou, Zhongjun Zhou, Lan Zhu, Yizhun Zhu, Zhiming Zhu, Wenjuan Zhuang, Weiguo Zou, Weiqi Zhang, Gang Pei or Guang-Hui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Daniel Belsky, Chiara Herzog, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jiang, M., Wang, Q. et al. The X-Age Project to construct a Chinese aging clock. Nat Aging 5, 1669–1685 (2025). https://doi.org/10.1038/s43587-025-00935-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43587-025-00935-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing