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Disease staging of Alzheimer’s disease using
a CSF-based biomarker model
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Biological staging of individuals with Alzheimer’s disease (AD) may improve
diagnostic and prognostic workup of dementiain clinical practice and

the design of clinical trials. In this study, we used the Subtype and Stage
Inference (SuStaln) algorithm to establish a robust biological staging

model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis
involved 426 participants from BioFINDER-2 and was validated in 222
participants from the Knight Alzheimer Disease Research Center cohort.
SuStalnidentified a singular biomarker sequence and revealed that five

CSF biomarkers effectively constituted a reliable staging model (ordered:
AB42/40,pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated
mid-region tau). The CSF stages (0-5) demonstrated a correlation with
increased abnormalities in other AD-related biomarkers, such as AB-PET and
tau-PET, and aligned with longitudinal biomarker changes reflective of AD
progression. Higher CSF stages at baseline were associated with an elevated
hazard ratio of clinical decline. This study highlights acommon molecular
pathway underlying AD pathophysiology across all patients, suggesting
that a single CSF collection can accurately indicate the presence of AD
pathologies and characterize the stage of disease progression. The proposed
staging model has implications for enhancing diagnostic and prognostic
assessments in both clinical practice and the design of clinical trials.

Currently, more than 50 million people are affected by dementia,and  (AP) and intracellular tau aggregates in the forms of tau tangles and
this number is expected to more than double by 2050 (ref. 1). Alzhei-  neuropil threads® Over the last two decades, the AD field has moved
mer’s disease (AD) is the most common form of dementia, characterized  toward the use of biomarkers to support the diagnostic and prognostic
by the accumulation of extracellular plaques containing amyloid-B  workup rather than relying solely on clinical symptoms>. This has been
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Table 1| Participant characteristics

BioFINDER-2 (n=426) Knight ADRC
(n=222)

Age, years 71.5(8.5) 71.2(77)
Women, n (%) 211 (49.5%) 112 (50.5%)
APOE-g4 carriership, n (%)° 246 (57.7%) 99 (44.6%)
Years of education® 12.3(3.8) 16.3 (2.5)
Diagnosis, CU-/CU+/MCI+/ADD+/ 80/79/88/100/79 84/98/24/9/7
non-AD*CU-/CU+/Very mild AD/AD
dementia/Other dementias**, n
Amyloid-PET, Centiloids® 37.3(44.2) 44,0 (41.2)
Tau-PET, SUVR® 1.563(0.61) 1.24 (0.22)
Cortical thickness, mm® 2.46 (0.16) 2.52(0.16)
CSF NfLf 245 (175) 1000 (578)
Cognitive composite™ -1.62 (2.03) 0.44 (111)
Progressed to MCI™ 11(2.6%) 41(18.5%)
Progressed to ADD+" 41(9.6%) 30 (14.5%)

Data are shown as mean (s.d.) unless otherwise stated. * BioFINDER-2 participants are classified
by clinical diagnosis and amyloid status based on their CSF AB42/40 levels (AB+: <0.080).

** Knight ADRC participants are classified by clinical diagnosis and amyloid status based on
their CSF AB42/40 levels (AB+: <0.0673). In BioFINDER-2, only participants who progressed

to MCI or patients with dementia due to AD etiology were considered to progress. In Knight
ADRC, patients with very mild AD dementia had CDR=0.5, and patients with mild AD dementia
had CDR21, both with AD as etiology. The ‘Other dementias’ group includes participants with
CDR>0 with non-AD etiology. Only participants who progressed to CDR>0.5 or CDR>1due to
AD etiology were considered to progress. ‘Cognitive composite was mPACC for BioFINDER-2
and a global cognitive composite in Knight ADRC. 'For Knight ADRC, represents progression
to CDR20.5. ¥ For Knight ADRC, represents progression to CDR>1. °One participant missing

in both cohorts. "Four participants missing in BioFINDER-2. °One hundred seventy-five
participants missing in BioFINDER-2. “Nine and three participants missing in BioFINDER-2 and
Knight ADRC, respectively. °Six participants missing in BioFINDER-2. ‘Four and five participants
missing in BioFINDER-2 and Knight ADRC, respectively. 9Thirty-six and two participants missing
in BioFINDER-2 and Knight ADRC, respectively. "Four participants missing in Knight ADRC.
'Eight participants missing in Knight ADRC.

made possible by advancements ofimaging and fluid biomarkers that
accurately track AD pathology in vivo. Given that the accumulation of
pathology can take many years to decades® before any clinical symp-
toms appear, the use of biomarkers is critical to ensuring an early and
reliable detection of AD*. Key biomarkers may help to improve patient
diagnosis, management and prognosis®®. In addition, the use of AD
biomarkers will be even more important when disease-modifying treat-
ments become widely available’ ™. In this context, amore sophisticated
personalized medicine approach to AD, based on high-performing AD
biomarkers, willbecome crucial to select the optimal participants for
specific treatments and for enrollment in clinical trials.

In recent years, multiple cerebrospinal fluid (CSF) biomarkers
targeting different pathophysiological mechanisms have been devel-
oped (see ref. 4 for areview). There has been an increasing interest in
developing biomarkers for measuring tau species phosphorylated at
different residues. Among the phosphorylated tau (p-tau) species,
p-taul8l(refs.12-17), p-tau217 (refs.12,13,15,18,19) and p-tau231 (refs.
15,20-22) or the phosphorylation occupancies (defined as the ratio
between the phosphorylated and non-phosphorylated mid region
tau (np-tau) fragments) have been studied in depth and have shown
strong associations with AP pathology and moderate associations
with tau (as measured by both positron emission tomography (PET)'®*
and neuropathology***). These biomarkers have shown their utility in
improving the diagnostic workup of AD and the prediction of disease
progression'>*1°2627_ Other biomarkers, such as p-tau205 or the occu-
pancy (pT205/T205)*7° and microtubule binding region (MTBR) of
tau containing the 243 residue (MTBR-tau243)**?, have been more
closely related to tau tangle pathology. Importantly, some of these
CSF biomarkers were shown to become abnormal at different phases

during the progression of autosomal dominant Alzheimer’s disease
(ADAD)”, suggesting a sequence of CSF biomarker changes that may
serve asameasurable biological indicator tracking advancing disease
progression.

The progression of A or tau pathology across the brainhasbeen
previously used to stage participants across the AD continuum®%,
However, these models need at least one AB-PET or tau-PET scan, which
isexpensive and requires specialized personnel and facilities. Further-
more, information of only one pathological measure (for example, AR
ortau) canbe obtained from these images, and, therefore, they covera
limited range of the whole continuum. On the contrary, CSF biomark-
ersare less expensive and more accessible, and multiple pathological
measures may be obtained from a single sample. Given this, and with
the idea that different CSF biomarkers may become abnormal at dif-
ferentstages of the disease, we aimed to generate adata-driven staging
scheme for sporadic AD using key CSF tau biomarkers in combination
with CSF AB42/40. Anunresolved questionis whether there isasingle
molecular pathway throughout the AD continuum or whether there
are subtypes of AD following different fluid biomarker trajectories,
as has been shown for regional spread of insoluble tau tangles®****°.

In the present study, we used Subtype and Stage Inference
(SuStaln)* to model the most likely sequence of CSF biomarker abnor-
malities that occur along the AD timecourse. This data-driven method
uses cross-sectional datato order biomarker abnormalitiesina proba-
bilistic manner and, at the same time, addresses possible diverging
trajectories of this ordering. Thus, we staged 426 participants of the
Swedish BioFINDER-2 study, ranging from cognitively unimpaired
(CU) participants to patients with mild cognitive impairment (MCI) or
dementia, and compared to measures of AD pathology and progres-
sion. Finally, wereplicated our resultsin anindependent cohort (from
the Charles F. and Joanne Knight Alzheimer Disease Research Center
(Knight ADRC)), which included 222 participants.

Results

A total of 426 participants from the Swedish BioFINDER-2 study
(NCT03174938)" with complete CSF data were included in the present
study. Of these, 80 were cognitively unimpaired A negative (CU-); 79
were cognitively unimpaired AP positive (CU+); 88 were diagnosed
with MCland were AP positive; 100 were diagnosed with AD dementia
andwere AP positive (ADD+); and 79 were assessed as non-AD patients
(22were AP positive). Demographicinformationis presentedin Table 1
(see Supplementary Table1for demographicinformation by diagnostic
groups). More detailed information about vascular risk factors and
pathologies is provided in Supplementary Table 1, and a description
of the diagnosis for non-AD patients can be found in Supplementary
Table 2. Ofthese, 220 participants had longitudinal CSF data available
(Supplementary Table 3).

CSF staging model

Weinitially applied SuStaln to the BioFINDER-2 cohort using the follow-
ing CSF biomarkers: the AB42/40 ratio, the phosphorylated to np-tau
ratio of pT205/T205, pT181/T181, pT217/T217 and pT231/T231 as well
asthe concentrations of MTBR-tau243 and np-tau (the residue 151-155)
based on availability and previous literature. Of note, the np-tauis dif-
ferent thanthe total-tau measures typically used in the clinical setting,
which include both phosphorylated and np-tau fragments. Through
a process of model optimization (Extended Data Fig. 1; see Methods
for further details), we arrived on amodel that excluded pT181/T181
and pT231/T231duetoinformation redundancy. SuStaln revealed that
asingle biomarker sequence best described the progressive abnor-
mality of the selected biomarkers (Extended Data Fig. 1c). The final
ordering of the model was the Ap42/40 ratio, pT217/T217, pT205/T205,
MTBR-tau243 and np-tau (Fig. 1a), resultingin a five-stage model (plus
stage O as anegative biomarker stage). Of note, the one-subtype model
fitthe databest evenbefore performing the optimization step with all
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Fig.1| CSF staging model. Description of the CSF staging model and the levels
of the biomarkers included in the model by CSF stage. Cross-validated confusion
matrix of the CSF biomarkers of the model is shown in a. Biomarkers are sorted
by the time they become abnormal based on the results of SuStaln. Darkness
represents the probability of that biomarker of becoming abnormal at that
position, with black being 100%. Only amyloid-positive participants are included
inthis analysis. Individual biomarker levels by CSF stage in all BioFINDER-2

participants are showninb. CSF levels are z-scored based on a group of CU-
participants (n = 63), and all increases represent increase in abnormality. Colored
lines and bands represent the LOESS regression and its 95% CI. Horizontal line is
drawnat z-score =1.96, which represents 95% Cl of the reference group (CU-).
Smoothed LOESS lines of all CSF biomarkers are shown in ¢ for comparison.

CSF stage O represents being classified as normal by the model. Black dots and
vertical lines represent mean and 2 s.d. by CSF stage, respectively.
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Fig.2|AD pathology biomarkers and cognition by CSF stages. a, Depiction of
individual biomarker levels, not used in the creation of the model, by CSF stage in
BioFINDER-2 participants. These include biomarkers of amyloid (amyloid-PET)
and tau (tau-PET in the meta-temporal ROI) pathologies, neurodegeneration
(cortical thickness in the AD signature areas and CSF NfL) and cognition
(mPACC). Biomarkers are z-scored based on a group of CU- participants (n = 63),
and allincreases represent increase in abnormality. Significant differences in
contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected). The
horizontal lineis drawn at z-score =1.96, which represents 95% Cl of the reference
group (CU-). Colored lines and bands represent the LOESS regression and its 95%
Cl. Smoothed LOESS lines of all AD biomarkers are shown in b for comparison.

All participants with available data were included in amyloid-PET and tau-PET
analyses. For neurodegeneration (cortical thickness and NfL) and cognitive
(mPACC) measures, we excluded patients with non-AD dementia to avoid bias.
Of note, only few AD dementia cases had amyloid-PET available due to study
design. CSF stage O represents being classified as normal by the model. Black
dots and vertical lines represent mean and 2 s.d. per CSF stage, respectively.
*P<0.05;*P < 0.01; ***P < 0.001. Exact Pvalues shown in the figure are as follows.
Amyloid-PET: 0-1,P=0.032;1-2: P=1.6 x10°%;2-3: P=0.003; 3-4: P=0.0007.
Tau-PET:2-3:P=0.0003;3-4: P=3.3x10™;4-5: P=0.010. Cortical thickness:
2-3:P=0.006.CSF NfL:3-4: P=0.016. mPACC: 2-3: P= 0.004;3-4: P=0.002;
4-5:P=0.0008.

fluid biomarkers (Extended Data Fig. 1a). All BioFINDER-2 participants
were then classified into one of these biomarker-based disease stages
based on their CSF levels, with124 (29.1%) being at CSF stage 0, 35 (8.2%)
being at CSF stage 1, 53 (12.4%) being at CSF stage 2, 49 (11.5%) being

at CSF stage 3, 87 (20.4%) being at CSF stage 4 and 78 (18.3%) being
at CSF stage 5. Demographic, genetic and diagnostic characteristics
of these participants are shown in Extended Data Fig. 2. In brief, the
CSF biomarker-based model was not associated with sex (x*(5) =7.7,
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P=0.180) or years of education (x*(5) = 4.7, P= 0.452), but higher CSF
stage was associated with older age (x*(5) =16.9, P= 0.005), carriership
of an APOE-g4 allele (x*(5) = 72.8, P < 0.001) and a more advanced clini-
cal disease stage (x*(5) =478.6, P<0.001) (Extended Data Fig. 2a—e).

We then examined the distribution of the CSF biomarkersincluded
in the model by CSF biomarker stage. CSF biomarker levels by stage
can be found in Fig. 1b and Supplementary Table 4. These different
biomarker trajectories revealed that the included CSF biomarkers
exhibit different behaviors across the disease continuum, aside from
the biomarker disease stage at which they become abnormal. This is
summarized in Fig. 1c, in which the smoothed locally estimated scat-
terplot smoothing (LOESS) regression of all CSF biomarkers is plotted.
We found that none of the vascular risks (hypertension, hyperlipidemia
or diabetes) nor vascular pathologies (white matter lesions, lacunes,
ischemicinfarcts, hemorrhages, microbleeds or siderosis) have an effect
onourmodel (Supplementary Table1and Supplementary Figs.1and 2).

Finally, we assessed the stability of our model using the longi-
tudinal CSF data over a mean (s.d.) of 2.1(0.2) years (n =220; Sup-
plementary Table1). We observed that most participants remained at
the same stage (n =183, 83.2%) or progressed (n=29,13.2%), whereas
only few regressed (n = 8, 2.9%) (Extended Data Fig. 3a,b). Of those
who progressed, most (n =25, 86.2%) progressed only one CSF stage
duringthe 2-year follow-up. This indicates a high stability of our model
over time. Of note, participants with longitudinal CSF information had
lower levels of pathology as measured by main biomarkers than those
without longitudinal CSF data, even while having similar demographic
characteristics (Supplementary Table 5).

Associations with AD pathology, biomarkers and cognition
Next, we investigated the association between CSF stages and insoluble
AP aggregates (AB-PET), insoluble tau aggregates (tau-PET), neuro-
degeneration (cortical thickness and CSF neurofilament light (NfL))
and cognition, using a global cognitive composite sensitive to early
AD changes (modified version of Preclinical Alzheimer’s Cognitive
Composite (MPACC)*; Fig. 2). The degree of biomarker abnormality
increased with higher CSF stages, although the trajectories were dif-
ferent. Statistics of each of these AD biomarkers and their differences
per CSF stage can be found in Supplementary Table 6.

We further studied the associations between our CSF-based stag-
ingmodel and other biomarkers as additional analyses. For tau-PET, we
quantified the signal in different brain regions, using the previously val-
idated regions of interest (ROIs) reflecting the different Braak stages*
(Extended DataFig. 4 and Supplementary Table 7). We also examined
different measures of cognitive function, including composites for
memory, executive, language and visuospatial functions, respectively
(Extended DataFig. 5 and Supplementary Table 8).

Prediction of AP/tau status and cognitive stages
Subsequently, we looked at the accuracy of our CSF staging model for
predicting AB (A) and tau (T) status, as defined by PET**(Fig. 3a,b). We
firstlooked at eachindependent pathology dichotomously (that s, pos-
itive or negative) and independently, and, later, we looked at the ordinal
categories merging both pathologies (thatis, A-T—, A+T—and A+T+).
The number of positive participants by CSF stage and category are pre-
sented in Fig. 3a. Using receiver operating characteristic (ROC) curve
analyses, we determined that CSF stage 2 was the optimal threshold
for predicting amyloid-PET positivity with high accuracy (area under
the curve and 95% confidenceinterval (AUC (95% ClI) = 0.96 (0.93,0.98),
sensitivity = 0.93 and specificity = 0.89, first column; Fig. 3b and Sup-
plementary Table 9)). Tau-PET positivity was also predicted with high
accuracy when using CSF stage 4 as a threshold (AUC (95% CI) = 0.95
(0.93, 0.97), sensitivity = 0.91 and specificity = 0.92, second column;
Fig.3b and Supplementary Table 9).

Ordinal logistic regression was used to assess the utility of CSF
stages for predicting A/T status (that is, A-T—, A+T-or A+T+), and we

calculated the c-index (an overall measure of discrimination equiva-
lent to AUC for dichotomic outcomes) as a measure of accuracy. We
observed that higher CSF stages were associated with higher pre-
dicted probabilities of being at more advanced A/T PET status (c-index
(95% CI) =0.95 (0.93, 0.97), last column; Fig. 3b and Supplementary
Table 9). More specifically, participants at CSF stages 0 and 1 (negative
biomarkers and AB42/40 stages) had the highest probability of being A-
T-, at CSF stages 2 and 3 of being A+T—and at CSF stages 4 and 5 of being
A+T+.0nly one participant was classified as A-T+and was excluded from
this analysis. As anadditional analysis, we followed a similar approach
with the recently proposed PET staging from the Alzheimer’s Associa-
tionrevised clinical guidelines (https://aaic.alz.org/diagnostic-criteria.
asp). Similarly, higher CSF stages were associated with more advanced
PET-based stages although with slightly lower accuracy (c-index
(95% Cl) =0.92(0.90, 0.94); Supplementary Fig. 3).

Finally, we also aimed at investigating whether our staging model
could be used as a diagnostic tool (Fig. 3c,d). In the first analysis, we
used the CSF staging model for predicting cognitive stages within the
AD continuum (that is, excluding non-AD). Higher CSF stages were
associated with more advanced cognitive stages (c-index (95% CI) =
0.88 (0.86, 0.91), first column; Fig. 3c and Supplementary Table 6).
The model predicted that participants at CSF stage 0 had the high-
est probability of being CU-; at CSF stages 1 and 2, participants were
more probably CU+ (as assessed by CSF); at CSF stage 3, participants
were more probably MCI+; and, finally, at CSF stages 4 and 5, partici-
pants were more probably ADD+. Additionally, we also performed an
analysis looking at the clinical stages based on the National Institute
on Aging-Alzheimer’s Association (NIA-AAA) guidelines from 2018
(merging all dementia stages into one owing to sample size issues)®.
Here, we also had a good predictive accuracy (c-index (95% Cl) = 0.87
(0.84,0.89)), and we observed the expected pattern, with participants
with subjective cognitive decline (SCD) mainly included in CSF stages
1-3 (SupplementaryFig.4). Lastly, we aimed at differentiating cognitive
impairment due to AD or due to other neurodegenerative diseases. We,
therefore, compared patients with AD to patients withnon-AD demen-
tia, including only those with objective cognitive impairment (that s,
patients with MCI and patients with dementia). Participants at CSF
stage 2 or higher with objective cognitive impairment had a high prob-
ability of having AD as the cause of their cognitive impairment (AUC
(95% ClI) =0.95(0.93,0.98), sensitivity = 0.97 and specificity = 0.75, last
column; Fig. 3c,d and Supplementary Table 6).

Assessment of longitudinal rates of change of AD biomarkers
Next, we used longitudinal imaging and cognitive data to assess how
AD biomarkers change over time based on the baseline CSF stage
classification (Supplementary Table 10). The rate of accumulation of
AP aggregates as measured with PET (n =218) increased at early CSF
stages, reaching the highest values at CSF stage 2, and, thereafter, the
rate decreased but still remained positive (Fig. 4 and Supplementary
Table 11). On the other hand, the tau-PET (n = 312), cortical thickness
(n=300) and mPACC (n = 342) exhibited monotonicincreases in rates
of change over time, with the rates starting to be significantly different
from contiguous CSF stages at CSF stage 3 (Fig.4). Figure 4b depicts that
tau-PET, followed by mPACC, had the highest rate of change (z-scored),
whereas amyloid-PET and cortical thickness had lower rates of change
that were in a similar range.

Prediction of clinical progression

In the next set of analyses, we tested whether our CSF staging model
was useful for predicting subsequent clinical progression (up to 5 years
of follow-up after the baseline visit). First, we tested the ability of our
model to predict progression to AD dementia from CU or MCl status
at baseline (progressors: n=41). Based on Kaplan-Meier curves and
Cox proportional hazards analyses (Fig. 5a), participants at higher
CSF stages (4-5) at baseline had higher probability to progress to AD
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(highest percentage) category by CSF stage is framed in black. For ROC analyses,
AUCs and sensitivity and specificity measures from these analyses are shown in
the plot. The optimal cutoffin each caseis shown as a vertical dashed lineina or
c.An A-T+ participant (n =1) was excluded from the A/T status analysis. Non-AD
dementia cases were excluded from the cognitive stages analysis. In addition,
only patients with objective impairment (MCl or dementia) were included in the
analyses of AD versus non-AD. Amyloid-PET and tau-PET were assessed as positive
based on previously validated cutoffs (amyloid-B: SUVR >1.03, tau: SUVR > 1.36).
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Fig. 4| Longitudinal rate of change of AD biomarkers by CSF stages.

a, Depiction of individual biomarker longitudinal rates of change by CSF stage in
BioFINDER-2 participants. These include biomarkers of amyloid (amyloid-PET)
and tau (tau-PET in the meta-temporal ROI) pathologies, neurodegeneration
(cortical thickness in the AD signature) and cognition (mPACC). Biomarkers

are z-scored based on a group of CU- participants (n = 63), and all increases
represent increase in abnormality. Rates of change were calculated with
individual linear regression models. Significant differences in contiguous CSF
stages are shown with asterisks (two-sided, FDR-corrected). Colored lines and
bands represent the LOESS regression and its 95% Cl. Smoothed LOESS lines of all

AD biomarkers are shown in b for comparison. All participants were included in
amyloid-PET and tau-PET analyses. For neurodegeneration (cortical thickness)
and cognitive (MMSE) measures, we excluded patients with non-AD dementia to
avoid bias. CSF stage O represents being classified as normal by the model. Black
dots and vertical lines represent mean and 2 s.d. per CSF stage, respectively.
*P<0.05;**P<0.01;**P< 0.001. Exact Pvalues shown in the figure are as follows.
Amyloid-PET: 0-1,P=8.4 x107%;1-2: P=0.025. Tau-PET: 2-3: P=0.032; 3-4:
P=4.6x107. Cortical thickness: 2-3: P= 0.001; 3-4: P= 0.041. mPACC: 2-3:
P=0.019;3-4:P=0.003.

dementia than those at positive lower CSF stages (that s, 1-3), with 50%
ofthese participants progressing at 3.1 years. When adjusting for age,
sex and clinical status at baseline (thatis, CU or MCI), the hazard ratio
(HR)was 5.2(95%Cl:2.2,12.6, P < 0.001), when comparing participants
at CSF stages 4 or 5 to participants at lower, but positive, CSF stages
(1-3; Fig.5b and Supplementary Table 12). When including only those
with MCl at baseline (progressors: 38/88), we still found that those at
CSF stages 4 or 5 at baseline had a significantly higher probability to
progressto AD dementia (HR (95% CI) = 4.5(1.8,10.8), P < 0.001; Fig. 5c,d
and Supplementary Table 12). After 2.3 years, half of these participants
already progressed to AD dementia. Finally, we investigated the utility
of the CSF staging model when predicting progression from CU to MCI
status (progressors: 11/159). Again, those CU participants at higher CSF
stages (4-5) at baseline were much more prone to progress to MCl with
anHR of16.0 (95% CI: 3.2, 81.1, P< 0.001; Fig. 5e,f and Supplementary
Table12) compared to those instage 1-3, and 50% already progressed
to MCl after 4.1years, supporting the clinical utility of the proposed
staging model. There were no progressors from CSF stage O inany case,
which prevented us from comparing these participants with the other
CSF stages groups. Kaplan-Meier curves for each individual CSF stage
are depicted in Extended Data Fig. 6.

Replicationinanindependent cohort

Finally, we replicated the staging model and the main analyses in the
Knight ADRC cohort (n=222; Table 1). SuStaln selected one unique
subtype as the optimal model with the same CSF abnormality ordering
astheone previously obtained in BioFINDER-2 (Fig. 6a). In this cohort,
however, there was slightly higher uncertainty between the ordering of
thefirsttwo (Af42/40 and pT217/T217) and the last two (MTBR-tau243
and np-tau) stages. These differences may be due mostly to the differ-
ence in sample size, especially in more advanced AD cases (only nine
mild AD dementia cases). Nonetheless, the overall behavior of these
CSF biomarkers by the biomarker stages was similar to that inthe main

cohort (Fig. 6b and Supplementary Table 4). Furthermore, the other AD
biomarkers available (notincluded in the CSF staging model) showed
similar trajectories to those in the main sample (Fig. 6c and Supplemen-
tary Table 6). The main difference compared to BioFINDER-2 was the
lower degree of abnormality for all markersin the last CSF stages. This
might be explained by the lower number of advanced patient casesin
this cohort. The individual plots for each CSF and imaging biomarker
by CSF stages are shown in Extended Data Fig. 7. Details of participant
characteristics (Extended Data Fig. 2), tau-PET binding in different
regions (Extended Data Fig. 4 and Supplementary Table 7) and other
cognitive measures (Extended Data Fig. 5and Supplementary Table 8)
per CSF stage can be found in the Extended Data. Stability analyses,
within participants with available longitudinal CSF measures (n = 51;
Supplementary Table13), also showed that most participants remained
atthesamestage (n=46,90.2%) or progressed (n = 4,7.8%) at follow-up
(Extended Data Fig. 3c,d).

We also calculated the optimal CSF stages for predicting AB-PET
andtau-PET positivity using ROC curves. Asin the case of BioFINDER-2,
CSF stage 2 was optimal for predicting amyloid-PET positivity (AUC
(95% CI) = 0.89 (0.85, 0.94); Fig. 6d,g and Supplementary Table 9),
whereas CSF stage 4 was optimal for predicting tau-PET positivity
(AUC (95% CI) = 0.94 (0.91, 0.96); Fig. 6e,h). Consistent with findings
in BioFINDER-2, higher CSF stages were predictive of more advanced
A/T stages, as assessed by PET (c-index (95% CI) = 0.89 (0.86, 0.92);
Fig. 6f,i and Supplementary Table 9). Being at CSF stages 0 and 1 was
highly predictive of being A-T—; being at CSF stages 2 and 3 was pre-
dictive of being A+T—; and being at CSF stages 4 and 5 was predictive
of being A+T+.

Finally, we investigated the prognostic capacity of our model
for predicting progression to Clinical Dementia Rating (CDR) >1 (AD
dementia, progressors: 41/218) and CDR > 0.5 (MCl or very mild AD
dementia, progressors: 30/214). We found that CU (CDR = 0) and
very mild AD (CDR = 0.5) participants at the highest CSF stages (4-5)
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Fig. 5| CSF stages for predicting clinical progression. Higher CSF stages
groups (4-5) show higher HR of clinical progression compared to lower positive
stages (1-3). Progression from CU or MCl at baseline to AD dementia is shown
inaandb. Progression from MCl at baseline to AD dementia is shownincand

d. Progression from CU at baseline to MCl is shown in e and f. Kaplan-Meier
curves (shaded area: 95% CI) as well as the number of participants per group and
timepoint are shownina, cand e, respectively. Cox proportional hazards models

were used to calculate HR (95% Cl) (square and error bars, respectively) of higher
CSF stages (4-5) compared to the reference (1-3; b, d and f). These analyses
were adjusted for age and sex in all cases and, additionally, for clinical status
atbaseline (CU or MClI) if appropriate. Dashed linesin a, cand eindicate the
timepoint at which 50% of agroup had progressed. Exact Pvalues shownin the
figure are as follows: b: P=0.00025; d: P= 0.00097; f: P= 0.00082.

exhibited an increased risk (HR (95% CI) = 6.9 (3.0,16.0), P< 0.001) of
progressingto AD dementia (CDR > 1) at follow-up, even when adjust-
ing for age, sex and clinical status (that is, CDR =0 or CDR =0.5) at
baseline, compared to participants at CSF stages 1-3 (Fig. 6j,k and
Supplementary Table 12). Half of this group already progressed to
CDR >1after 3.9 years. Similarly, CU participants at higher CSF stages
(thatis, 4-5) had higher risk (HR (95% CI) =4.2 (2.0, 8.8), P< 0.001) of
progressing to very mild AD or more advanced disease stages when
compared to participants at lower, but positive, CSF stages (1-3;
Fig. 61,m and Supplementary Table 12), with 50% of them progressing
after 3.0 years, whereas, for the 1-3 group, it took 7.6 years. In this
case, participants at CSF stages 1-3 also showed significant higher risk
to progress to CDR > 0.5 than those at CSF stage 0 (HR (95% CI) =5.0
(1.6,15.0), P=0.005). There were no progressors to CDR >1 at CSF
stage 0, which prevented us from comparing this group to the others.
Kaplan-Meier curves for each individual CSF stage are depicted in
Extended DataFig. 6.

Discussion

In this study, we created and evaluated a staging model for AD using
five CSF biomarkers reflecting abnormalities of soluble Af and dif-
ferent soluble tau species (Fig. 7). We demonstrate here that a single
CSF collectionis sufficient to accurately stage participants represent-
ing the entire AD continuum. This is possible because CSF biomarker
abnormalities followed a stereotypical trajectory in all participants,
which enabled asingle staging model usable for everyone. Notably, we
were able torelate the CSF stages of our model to abnormality in other
well-described AD biomarkers, such as amyloid-PET and tau-PET, in
magnetic resonance imaging (MRI) and in cognitive measures. Further-
more, our CSF staging model was able to accurately predict positivity
of the imaging biomarkers of A and tau and to predict A/T status, as

assessed by PET. The CSF staging model was also related to cognitive
stages and was able to differentiate cognitive impairment due to AD
from other dementias. Notably, we also observed different longitudinal
rates of change of AD biomarkers at different CSF stages, which may
allow us to determine which participants will progress more in key
aspects of the disease. Inaddition, we showed that participantsin the
more advanced stages of our CSF-based model were at higher risk for
clinical decline. Finally, we were able to replicate the model and main
results in anindependent cohort. Altogether, these results support
the validity of our CSF staging model and indicate promising clinical
utility, suggesting that it may be useful in clinical practice and in clinical
trials if further validated***.

The first aim of this analysis was to establish whether there was a
stereotypic ordering in when key CSF biomarkers become abnormal.
SuStalnisanoptimal approach to answer this question asitallows the
modeling of different trajectories, ifexistent for subgroups of the whole
sample, using cross-sectional data*, as has been successfully applied
to imaging biomarkers®?%*, We observed that the CSF biomarkers
investigated in this study became abnormal in a particular sequence
and, moreimportantly, that this sequence did not vary systematically
across participants. This result is important by itself as it tells us that
there may be asingle cascade of events that leads to sequential abnor-
mality of these soluble proteins in the brain, common to all patients
with AD. Previous studies already suggested that changes in the lev-
els of tau fragments phosphorylated at different sites may be linked
mechanistically and could be associated with disease stages*’~'. Based
onourresults, AR plaques reflected by animbalance of soluble amyloid
species (thatis, low Ap42/40) may drive hyper-phosphorylation of tau
in early phosphorylation site (pT217/T217), as previously suggested
by human and animal data®>**, which would subsequently be followed
by hyper-phosphorylation in later site (pT205/T205) and eventually
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increase other tau fragments (MTBR-tau243 and np-tau) due to tangles
formation and neurodegeneration. Notably, this sequence of events
isinline with previous literature®*>> and demonstrates that late-onset
sporadic AD molecular pathway matches the same sequence of events
asautosomal dominant AD”. Exploringin detail this cascade of events
may provide mechanistic insightsinto disease pathology and progres-
sion. Inturn, it could have important consequences in drug develop-
ment, as targeting some of the earliest events of this sequence may
stop or reduce subsequent events in the cascade and, thereby, have
asignificant effect on tau aggregation*”"*¢,

Perhaps the most important result of our study was proving the
utility of a CSF model as amethod to stage AD in vivo***. In our model,
CSF stages could be related to main molecular changes and clinical
tipping points in the course of the disease, including abnormal lev-
els of deposited AP (CSF stage 2: pT217/T217)'%202>2526282932 gnd tau
(CSF stage 3: pT205/T205) (refs.28,29,32), early cognitive impairment
(CSF stage 4: MTBR-tau243) (ref. 32) and neurodegeneration (CSF stage
5:np-tau), following the expected pattern. With the objective of char-
acterizing the molecular status of the participants using our model,
we observed that participants at CSF stages 2 and 3 (pT217/T217 and
pT205/T205 stages) could be categorized with high accuracy asbeing
AP positive and tau negative by PET (A+T-), whereas participants at
CSF stage 4 (MTBR-tau243) or higher were amyloid-PET and tau-PET
positive (A+T+)". Notably, these cutpoints were reproduced in the
Knight ADRC cohort, even using different PET tracers and quantifica-
tionmethods, supporting the consistency of the model. Being able to
accurately assess AP and tau status with asingle CSF collection may be
very useful to select the optimal participants for aclinical trial, such as
has been done in the donanemab trial (NCT03367403)", without the
need of acquiring bothan amyloid-PET and atau-PET scanto determine
ifapatientis eligible for treatment. In BioFINDER-2, we also observed
the diagnostic utility of this CSF staging model, as it was able to accu-
rately discern AD-related from non-AD-related cognitive impairment
and could differentiate cognitive and clinical stages. Thus, the use of
our model as a diagnostic tool may have important consequences at
the clinical level as well.

Notably, our CSF staging model also showed prognostic utility.
First, we observed that participants at different CSF stages showed
different rates of change in multiple biomarkers. For instance, rates
of ABaccumulationacross CSF stages showed the previously reported
inverted U shape®*, with participants at CSF stage 2 (pT217/T217) exhib-
iting the highest rates of change. On the other hand, the otherimaging
biomarkers and cognitive scores showed increased rate of change with
increasing CSF stages, only plateauing at the last stage, as expected™.
These results support the use of our staging model as an enrichment
technique for clinical trials®. But, more importantly, we also observed
that the CSF staging model was able to predict clinical progression.
Being at the later stages of our modelincreased the risk of progressing
to AD dementia, even when accounting for cognitive status at baseline
(Fig. 5). Furthermore, we also observed a higher risk of progressing
to MCl or very mild AD, although this analysis should be replicated in

larger cohorts with longer follow-up. Notably, the prognostic ability
of our CSF staging model was replicated in the Knight ADRC cohort.
These results suggest a clear prognostic utility on staging participants
based on their CSF profile, which may imply substantial reductionsin
costs and complexity compared to previous staging methods based
on PET34'36'37'61.

We view the present model as afirst step toward providing mean-
ingful disease progression staging using a single CSF measurement***,
We expect that additional biomarkers will be included to the model
eithertogainfurthergranularity inspecific disease stages or to signify to
other pathophysiological events (for example, microglial reactivity)®.
Being able to measure several pathophysiological abnormalities using
onesampleis one of the main advantages of using fluid samples instead
of PET for staging. Another advantage of this model s that the financial
and infrastructure cost of CSF is low compared to other measures,
such as PET. Looking toward the future, we hope to be able translate
these results into plasma biomarkers, which would facilitate even
greater availability and cost-effectiveness. Widespread use of our
fluid biomarker staging model in primary care would likely require
replacing CSF measures with plasma measures without greatly sac-
rificing model performance. Efforts in this direction are currently
underway, but development of reliable plasma assays for pT205/T205
and MTBR-tau243is still ongoing.

The main strength of this study is the proven utility of the model,
whichwasreplicatedinanindependent cohortand, thereby, supports
the generalizability of our staging model. Another important strength
isthe use of several biomarkers measured with very high-performing
assays®®*>*3 which is crucial for the accurate assessment of pathol-
ogy*. However, some limitations must be recognized. Although we
included CSF biomarkers with proven utility, we acknowledge that
there are some other interesting markers, such as p-tau235 (ref. 64),
that have not been analyzed in this study. However, we think that our
CSF staging model inits current form was still successful at signaling
the maininflection points of the disease. Furthermore, p-tau231, which
is thought to become abnormal early in the disease?®*?, although not
always>>*, was excluded from our model asit followed a similar abnor-
mality tendency as pT217/T217, without providing better performance
for staging than the latter. We hypothesize that this may be in part
related to differencein analytical performances, as the mass spectrom-
etry platform used in our study provided rather higher coefficient of
variation for pT231/T231 measurements (12-18% compared to 5-7%
for pT217/T217). Future studies in earlier cohorts or with optimized
assays for measuring p-tau231should test whether the present model
could be improved. Another important issue is that we acknowledge
that CSF collection requires trained clinicians, and we plan to move
toward a plasma-based staging model when these biomarkers become
available. Areplication of these resultsinamore diverse populationis
alsoneeded to confirmthe utility of our modelinaless selected popula-
tion. Furthermore, we could not test the effects that other comorbid
pathologies may have onour staging system. This should be exploredin
future studies with available neuropathological information. We would

Fig. 6 | Replication of main analyses in Knight ADRC participants. Cross-
validated confusion matrix of the CSF biomarkers of the model is shownin
a.Darkness represents the probability of that biomarker becoming abnormal

at that position, with black being 100%. Description of the CSF levels of the
biomarkers included in the model by CSF stages are shown in b. Depiction of
individual biomarker levels, not used in the creation of the model by CSF stages,
areshowninc. Allincreases represent increase in abnormality. The horizontal
lineis drawn at z-score = 1.96, which represents 95% Cl of the reference group
(CU-). CSF stage O represents being classified as normal by the model. Prediction
of amyloid-PET (d-g), tau-PET (e-h) and A/T status (by PET, f-i) are shown

next. The number of participants in each category is colored in d-f. Numbers of
participantsin each category per CSF stage are shown within the bar plots. ROC
curves were used to determine the CSF stage to optimally classify participants

into positive/negative in each case (g and h). The optimal cutoffin each case is
shown as avertical dashed lineind and e, respectively. The heat map represents
the predicted percentage of participantsin each A/T group per CSF stage

(i). The most probable (highest percentage) group per CSF stage is framed in
black. Progression from CDR = 0 or CDR = 0.5 at baseline to CDR > 1isshownin
jandkand from CDR=0to CDR > 0.5inland m. Kaplan-Meier curves (shaded
area: 95% ClI) as well as the number of participants per group and timepoint are
showninjandI. Dashed lines indicate the timepoint at which 50% of agroup had
progressed. Cox proportional hazards models were used to calculate HR (95%
CI) (square and error bars, respectively) of higher CSF stages (4-5) compared to
the reference (1-3, k and m). Exact Pvalues shown in the figure are as follows: k:
P=6.2x10"%m:P=0.00010.
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also like to point out that the CSF stages proposed here are related to
events of the disease and not to time. Thus, it may be possible that the
time for progressing from one CSF stage to the next varies markedly
depending on the CSF stage at baseline. We acknowledge that the
combined use of the continuous measures of the selected biomarkers
couldrender similar accuracies to those obtained by the CSF stages for
some predictive purposes. Nonetheless, we think that the simplicity
of our modelis also akey point for its future utility in clinical practice.
Finally, we cannot rule out that the staging of our model can be affected
by biomarker sensitivity, such that more sensitive biomarkers may be
more likely to be ordered earlier in the model. This has no bearing on
the predictive value of the model as described here, and the biomarker
ordering that we discovered both conforms with previous knowledge
of AD biomarker sequencing and predicts other biomarker changesin
amanner coherent with expectations. Nonetheless, it willbeimportant
for future models to make use of the most sensitive biomarkers avail-
ableand,indoingso, ensure that they are calibrated to these new data.

In conclusion, inthe present study, we developed an accurate stag-
ing model for AD based on only five CSF biomarkers, and we evaluated
itintwolargeindependent cohorts. We showed that the modelis stable
and accurately reflectsbiomarker changesin AD, providing an easier and
cheaper method for characterization of participants for both clinical
setting and trials. Furthermore, our model has demonstrated its utility
for prognosis, being able to identify participants with more pronounced
longitudinal changes in AD biomarkers as well as those individuals
with higher risk of deteriorating in cognitive status. This CSF staging
model may be a useful, cheap and accessible method in clinical trials
for optimal selection of study participants and as a surrogate outcome
measure. Furthermore, the staging model has great potential for usein
clinical practice in the diagnostic and prognostic workup of patients
with cognitive symptoms and potentially also for selecting optimal
candidates for disease-modifying treatments. In addition, we expect
that it may have an influence on the update of the A/T/(N) criteria®.
Altogether, our staging model may be animportant step toward amore
sophisticated personalized medicine approach of AD, which will be key
with the advancement of disease-modifying treatments.

Methods

Participants

BioFINDER-2. We assessed 426 participants from the Swedish
BioFINDER-2 study (NCT03174938)", with the complete set of CSF
biomarkers available. Participants were recruited at Skane University

Hospital and the Hospital of Angelholm in Sweden. These partici-
pants also had amyloid-PET (n = 251), tau-PET (n=417), MRI (n =420)
and cognitive assessment (n =426). In addition, 220 participants had
available CSF biomarkers at follow-up (mean time (s.d.) = 2.05 (0.22)
years). Inclusion and exclusion criterion for this study were detailed
previously”. Insummary, CU participants do not fulfil criteria for MCI
or dementia according to the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5)®. Participants with SCD were
considered as CU, in accordance with the research framework by the
NIA-AA*. Participants with MCl had a Mini-Mental State Examination
(MMSE) score above 23; they did not fulfil the criteria for major neuro-
cognitive disorder (dementia) accordingto DSM-5; and they performed
worse than -1.5s.d. in at least one cognitive domain according to age
and education-stratified test norms. AD dementia was diagnosed
accordingto the DSM-5 criteria for major neurocognitive disorder due
to AD, and an abnormal biomarker for A pathology was also required.
Participants fulfilling the criteria for any other dementia were catego-
rized as non-AD dementia, as previously described".

Knight ADRC. The Knight ADRC cohort consisted of community-
dwelling volunteers enrolled in studies of memory and aging at Wash-
ington University in St. Louis. AllKnight ADRC participants underwent
acomprehensive clinical assessment thatincluded a detailed interview
of a collateral source, a neurological examination of the participant,
the CDR® and the MMSE®’. Individuals witha CDR of 0.5 or higher were
considered to have adementiasyndrome, and the probable etiology of
the dementia syndrome was formulated by clinicians based on clinical
features in accordance with standard criteria and methods®. In the
Knight ADRC cohort, participants were categorized as CU if they scored
CDR =0, either AP negative or AB positive (CU-and CU+, respectively);
patients with very mild AD if they scored CDR = 0.5; and patients with
mild AD dementiaifthey scored CDR >1and the clinical syndrome was
typical of symptomatic AD. Participants with CDR > 0.5 with different
etiology were assessed as being patients with ‘Other dementia’ regard-
less of their amyloid status.

All participants gave written informed consent, and ethical
approval was granted by the Regional Ethical Committee in Lund,
Sweden (protocol:2016_1053), and the Washington University Human
Research Protection Office (protocol: 201109100).

Fluid biomarkers

Measurement of CSF tau species (that is, pT205/T205, pT217/T217,
pT231/T231, MTBR-tau243 and np-tau variants) was performed at
Washington University in both cohorts using the developed IP/MS
method, as previously detailed™. In brief, Taul (generated by Nicholas
Kanaan) and HJ series (HJ8.5, HJ8.7, H)32.11 and HJ34.8) antibodies
(generated by David Holtzman) were used. In BioFINDER-2, CSF levels
of AB42/40 and NfL were measured using the Elecsys platform, as
previously described”. AB positivity was assessed using CSF Ap42/40
(<0.080), unless otherwise stated, based on Gaussian mixture mod-
eling.InKnight ADRC, CSF AB42/40 levels were measured as described
previously?®®’, The CSF AB42/40 positivity threshold (0.0673) had
the maximum combined sensitivity and specificity in distinguishing
amyloid-PET status. CSF NfL was measured with a commercial ELISA
kit (UMAN Diagnostics), as described previously’. Data analysis was
performed blinded to the diagnostics of the participants.

Image acquisition and processing

Image acquisitionand processing details from BioFINDER-2 were pre-
viously reported™. In brief, amyloid-PET and tau-PET were acquired
using [*®F]flutemetamol and ["®*F]JR0948, respectively. Amyloid-PET
binding was measured as standardized uptake value ratio (SUVR)
using a neocortical meta-ROI and with the cerebellar gray as a refer-
ence region. Of note, most of the patients with AD dementia did not
undergo amyloid-PET in BioFINDER-2 owing to the study design. For
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mainanalyses, tau-PET binding was measured inatemporal meta-ROI”,
which included entorhinal, amygdala, parahippocampal, fusiform,
inferior temporal and middle temporal ROIs, using the inferior cer-
ebellar cortex asareference region without partial volume correction.
Additionally, tau-PET binding was also measured in regions covering
early (Braak ), intermediate (Braak IlI-1V) and late (Braak V-VI) tau
deposition areas*’. For assessing cortical thickness, T1-weighted ana-
tomical magnetization-prepared rapid gradientecho (MPRAGE) images
(I-mmisotropic voxels) were used. A cortical thickness meta-ROI was
calculated including entorhinal, inferior temporal, middle temporal
and fusiform using FreeSurfer (version 6.0; https://surfer.nmr.mgh.
harvard.edu) parcellation, which are areas known to be susceptible
to AD-related atrophy”.

Methodological details forimaging processing and quantification
for the Knight ADRC cohort were also previously reported’”. In brief,
MPRAGE datawere processed using FreeSurfer (version 6.0) to generate
ROIs. Amyloid-PET was acquired with either ["C]PIB or [*F]florbetapir
and was quantified in a neocortical meta-ROl using cerebellar gray as
areference region. SUVR values were transformed to Centiloids™ to
allow direct comparison between tracers using previously validated
transformations™. ["®F]flortaucipir (['*F]AV1451) was used as atau-PET
tracer, and images were quantified in the same temporal meta-ROl asin
BioFINDER-2 and assessed as positive if SUVR >1.32, based on previous
work”. The same additional regions as in BioFINDER-2 were also used
to quantify tau-PET bindingin early, intermediate and late tau deposi-
tionregions.Inall cases, cerebellar gray was used as areference region.
T1-weighted images were used to measure cortical thickness using the
same approach asinthe BioFINDER-2 cohort.

Neuropsychological testing

mPACC and a global cognitive composite were used as the main
cognitive outcome in BioFINDER-2 and Knight ADRC participants,
respectively. In BioFINDER-2 participants, the mPACC-5 composite
was calculated using mean of z-scores of Alzheimer’s Disease Assess-
ment Scale (ADAS) delayed recall (weighted double), animal fluency,
MMSE®” and Trail Making Test-A (TMT-A)”, as a sensitive measure of
early cognitive impairment’®. We calculated z-scores with a group of
CU- as reference. Furthermore, we also calculated several cognitive
composites by averaging z-scores of different cognitive tests. For the
memory composite, we used ADAS delayed and immediate word recall;
for the executive function composite, we used TMT-A, TMT-B and the
symbol digit test; for the language composite, we used the animal flu-
ency test and the Boston Naming Test (BNT) total score’; and, finally,
for the visuo-spatial composite, we used the visual object and space
perception (VOSP) cube and letters tests.

InKnight ADRC, the global cognitive composite was created using
mean of z-scores of free and cued selective reminding test (FCSRT)
free recall®®, animal fluency, TMT-A and TMT-B. We calculated z-scores
froma CU-group as areference. For the executive function composite,
we used TMT-A and TMT-B. We could not obtain any other cognitive
composite similar to those derived in BioFINDER-2 due to lack of simi-
lar tests. However, we selected individual tests to try to recapitulate
similar cognitive measures. For memory, we used FCSRT, and, for
language, we used animal fluency. No tests were available related to
visuo-spatial capacity.

Model creation

Model development was done with SuStaln*' using cross-sectional
data of amyloid-positive participants based on CSF A342/40 levels.
We selected these participants because we wanted to create a staging
model focused on AD. However, using the whole sample alsorendered a
single subtype model with the same ordering in the abnormality of the
CSF biomarkers. SuStalnis a Bayesian technique that unravels temporal
progression patterns (stages), allowing for multiple different trajec-
tories (subtypes). For our purpose, we used the event-based model®

(or mixture SuStaln®), in which the input data are the probability of
each biomarker being abnormal for each participant. In our case, we
used a Gaussian mixture modeling approach (with two Gaussians) to
obtain these probabilities. With thisinformation, SuStaln provides the
maximum likelihood sequence by which biomarkers become abnormal
and gives a probability for this ordering, for all subtypes. The number
of SuStaln stages is defined by the number of biomarkers provided
to the model (that is, one per biomarker plus a biomarker negative
stage). The selection of the optimal number was determined using
cross-validation, optimizing on cross-validation-based information
criterion (CVIC), and out-of-sample log-likelihood was calculated. The
optimal number of subtypes was then selected based onthese criteria,
using the minimal number of subtypes that had the lowest CVIC and
higher log-likelihood™. In this study, we used pySuStaln®, a Python
implementation of the original method (downloaded in August 2022).

In our initial model with BioFINDER-2 participants, we included
all biomarkers available and performed the cross-correlation in
models with one, two and three subtypes. We included only one
non-phosphorylated peptide due to the extremely high correlation
that all have among them (r > 0.98; Supplementary Fig. 5). Although
CVIC measures were lower in the three-subtype model, the similar
log-likelihood in all three models supported the one-subtype model
as the optimal one due to its lower complexity®*. Upon examining the
outcome of this model, we observed that pT217/T217, pT231/T231
and pT181/T181 position certainty was low, as they seemed to com-
pete for the second position (Extended Data Fig. 1a). To avoid stages
with low certainty, we decided to try to optimize this model through
iterative removal of these biomarkers. All the possible combinations
were created (thatis, removing pT217/T217 and/or pT231/T231and/or
pT181/T181) and compared using the CVIC (Extended Data Fig. 1b). We
observed that modelsincluding only one of these biomarkers (models
5-7) were better than those including two (models 2-4) or all three
(model 1). Furthermore, models including pT181/T181 performed
worse, and those including pT217/T217 performed better. Thus, the
optimalmodel was selected asthatincludingonly pT217/T217 (model 7).
Once the biomarkers to be included in the model were selected, we
repeated the cross-validation with models up to three subtypes. Com-
paring CVIC and log-likelihood values, we once again selected the
one-subtype model as the optimal (Extended Data Fig.1c). Based on this
cross-validated model, we then staged all BioFINDER-2 participants.

We also did some sensitivity analyses in the creation of the model.
First, we created amodelincluding all np-tau variants available by the
mass spectrometry analyses. We observed that the high correlation
between the different np-tau variants prevented the algorithm from
findinga clear orderingamong them but not for the otherincluded AD
biomarkers (Supplementary Fig. 6). This supports the inclusion of a
single np-tauinthe final model. Next, we created new models using dif-
ferent np-tau fragments that rendered very similar results (Supplemen-
tary Methods). Furthermore, we also created the model in 10 different
random samples (random shuffle per biomarker without resampling).
With this sensitivity analysis, we showed that the performance of our
final model on explaining the provided data was significantly better
thanwhat could be expected from amodel created by chance. Finally,
we simulated new datasets with two and three underlying subtypes to
assess the minimal size a subtype must be to be detected by SuStaln
(Supplementary Methods). We observed that SuStaln was able to detect
two and three underlying subtypes until the smaller subtypesincluded
more than 5% of the original sample (Supplementary Figs. 8 and 9).
Thus, we showed that the lack of different subtypes in our main analysis
is, with high probability, due to the existence of one single sequence
and not due to sample size problems.

For Knight ADRC, we followed the same main approach. We first
started with seven biomarkers and tested the optimal number of sub-
types, whichwas, again, one (CVIC: subtype1=629.5,subtype2 = 649.4,
subtype 3 = 658.4, log-likelihood: subtype1=-32.3,subtype 2 =-33.3,
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subtype 3 =-33.8; Supplementary Fig.10a). Then, given the high over-
lap between biomarkers, we tested removing pT217/T217, pT231/T231
and/or pT181/T181 again. Based on CVIC (model 1: 629.5, model 2:
590.1, model 3: 564.6, model 4: 567.1, model 5: 520.7, model 6: 524.0
and model 7:497.2) and log-likelihood (median: model 1: -31.8, model
2:-29.8, model 3: -28.1, model 4: -28.4, model 5: -25.9, model 6: -26.1
and model 7: -24.8) metrics, the model with only pT217/T217 (model 7)
was again selected asthe optimal (Supplementary Fig. 10b). Finally, we
created models for1-3 subtypes and based on CVIC (subtypes:1=497.2,
2=524.5and 3 =550.6) and log-likelihood (median:1=-24.8,2 =-27.0
and 3 =-28.3), and the less complex model (that is, one subtype) was
selected as the best fit to the data (Supplementary Fig. 10c). We then
staged all Knight ADRC participants based on this cross-validated
model. As a sensitivity analysis, we also used the model created with
BioFINDER-2 data and applied to the Knight ADRC cohort instead of
creating the modelin the Knight ADRC cohort. Very similar results were
found, with 213 of 222 participants (96%) assigned to the same stage
aswhenwefitted the model on the Knight ADRC data. Of note, all nine
cases changed from CSF stage 5 (creating the model in Knight ADRC)
to CSF stage 4 (using BioFINDER-2 model). This change may be due to
the lower severity of Knight ADRC participants compared to those in
BioFINDER-2, as they all had the lowest np-tau levels in CSF stage 5.

As a sensitivity analysis, we compared the levels of the two bio-
markers excluded (pT231/T231 and pT181/T181) with those of pT217/
T217 in the optimal model. In summary, we observed that these bio-
markers followed a similar trajectory across CSF stages as pT217/
T217 although with lower increases in the two cohorts (Extended Data
Fig. 8a,b), which supports our decision of removing them from the
model to have more stable and independent stages.

Statistics and reproducibility

All biomarkers were z-scored using participants older than 60 years
from the CU- group as areference (BioFINDER-2: n = 63 and Knight
ADRC: n=71). When necessary, biomarker data were inverted such
that higher z-scores related to higher abnormality across all biomark-
ers. Differences in biomarkers by CSF stages were assessed using the
Kruskal-Wallis test. The Wilcoxon test was used for post hoc compari-
sons adjusted for multiple comparisons with false discovery rate (FDR)
correction (only differences in consecutive CSF stages are shownin the
figures, but all comparisons are shown in supplementary tables). For
categorical data (thatis, sex, APOE carriership and diagnosis), we used
chi-squared tests. LOESS regressions were used to fit the progression of
biomarker abnormalities across the CSF stages. ROC curves were used to
assess the utility of CSF stages for predicting amyloid-PET and tau-PET
positivity and to compare AD to non-AD objective cognitive impairment
(MClor dementiastates). Maximization of Youden’s index was used to
select the optimal CSF stage cutoffin each case (‘pROC’ and ‘cutpointr’
packages were used). For ordinal categories (thatis, A/T PET status and
diagnosis), ordinal logistic regression models were used (‘MASS’ and
‘Imr’ packages). An equivalent measure to AUC, the c-index, was used to
assess the performance of the CSF staging®. Cls were calculated using
bootstrapping. Predicted probabilities of the outcome groups per each
CSF stages were calculated using the ‘predict’ function. For longitudinal
analyses, we first calculated longitudinal rates of change using linear
regression models individually for each participant and biomarker.
For eachbiomarker, we compared participants’ rates of change by their
CSF stages at baseline as done in the cross-sectional analyses. LOESS
regressions were also used to fit the progression of biomarkers’ rates
of change across the CSF stages. One participant with a very negative
rate of change inamyloid-PET (z-score < -1.8) was considered an outlier
by visualinspection and was excluded from the analysis. Kaplan-Meier
curves were used to assess clinical progression using the ‘survival’ and
‘survminer’ packages. Cox proportional hazards models were used to
calculate the risk of clinical progression adjusting for age and sexin all
cases and further baseline clinical status if necessary.

All analyses were performed with R (version 4.1.0). Two-sided
Pvalues less than 0.05 were considered statistically significant. For
comparisons between CSF stages (that is, biomarker levels and rates
of change), FDR correction was applied to account for multiple com-
parisons. All plots were done with the ‘ggplot’ package. Data distribu-
tion was assumed to be normal, but this was not formally tested. No
statistical methods were used to pre-determine sample sizes, but our
sample sizes per number of biomarkers are similar to those reported
in previous publications®**. Data collection was performed blinded
to diagnostic characteristics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets generated and/or analyzed during the present study are
available fromthe authors (O.HandR.).B). The corresponding author
will share datasets within the restrictions of institutional review board
ethics approvals upon reasonable request.

For BioFINDER-2 data, anonymized datawill be shared by request from
a qualified academic investigator for the sole purpose of replicating
procedures and results presented in this article and as long as data
transferisinagreement with European Union legislation on the general
data protection regulation and decisions by the Ethical Review Board
of Sweden and Region Skane, which should be regulated in a material
transfer agreement. Knight ADRC data are available to qualified inves-
tigators who have a proposal approved by an institutional commit-
tee (https://knightadrc.wustl.edu/Research/ResourceRequest.htm).
The study must be approved by aninstitutional review board to ensure
ethical research practices, and investigators must agree to the terms
and conditions of the data use agreement, which includes not distribut-
ing the data without permission. All other data are available from the
corresponding author upon reasonable request.
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Extended Data Fig.1| Creation and optimization of the model in the
BioFINDER-2 cohort. Initial model with all CSF biomarkers (AB2/40, pT217/T217,
pT231/T231, pT181/T181, pT205/T205, MTBR-tau243 and np-tau) isshownin A.
First two columns represent the statistics, CVIC and log-likelihood, of this model
for one, two and three subtypes. Each dot in log-likelihood plot represents one
ofthe ten cross-validation sets of data. Lower CVIC and higher log-likelihood
values represent better performance of the model. Although higher number

of subtypes had higher CVIC, the comparable log-likelihood across subtypes
suggests that one subtype is complex enough to explain the variability observed
inthe data. Cross-validated confusion matrix of the one subtype model is
shownin the last column. Here, biomarkers are sorted by the time they become
abnormal based on the results of SuStaln. Darkness represents the probability of
that biomarker of becoming abnormal at that position, with black being 100%.
Given that some biomarkers (pT217/T217, pT231/T231and pT181/T181) show high

overlap on the ordering, we optimized the model by removing these biomarkers
systematically (B). Allmodels without one or two of these biomarkers were tested
(models 2to 7). CVIC (left) and cross-validated confusion matrixes (right) for each
of these models are shown in B, respectively. CVIC shows that the optimal model
was that excluding both pT231/T231and pT181/T181 (model 7, shown in C). Both
CVIC and log-likelihood measures show that one subtype was the optimal model
when using this set of biomarkers. In boxplots, dots represent each of the ten-fold
permutations, central band of the boxplot represents the median of the group,
the lower and upper hinges correspond to the first and third quartiles, and the
whiskers represent the maximum/minimum value or the 1.51QR from the hinge,
whatever is lower. Abbreviations: A, amyloid-; CVIC, cross-validation
information criterion; MTBR, microtubule binding region; np-tau, non-
phosphorylated mid-region tau; pT, phosphorylated tau; SuStaln, subtype and
stage inference.
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Extended Data Fig. 2| Demographic, genetic and clinical characteristics
by CSF stage. Depiction of basic characteristics of BioFINDER-2 (A-E) and
Knight-ADRC (F-J) by CSF stage. Kruskal-Wallis or chi-square tests were used
toinvestigate the association between each of these characteristics and CSF
stages. Two-sided p-values of these tests are shown at the top right of each

subplot. Number of individuals in each category are shown inside the barplots.

Black central dot and verticallinesin A, B, F and G represent the mean and two

standard deviations of each stage, respectively. Abbreviations: AD, Alzheimer’s
disease; ADD+, Alzheimer’s disease dementia amyloid positive; CU-, cognitively
unimpaired amyloid negative; CU+, cognitively unimpaired amyloid positive;
CSF, cerebrospinal fluid; MCI+, mild cognitive impairment amyloid positive;
nonAD, non-Alzheimer’s related disease; other Dem, non-Alzheimer’s type
dementia.
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stages. Depiction of tau-PET binding in different areas of tau deposition, by

CSF stage in all BioFINDER-2 (A) and Knight-ADRC participants (B). These areas
include regions of early (Braak I-Il), intermediate (Braak II-IV) and late (Braak V-VI)
tau deposition. Tau-PET levels are z-scored based on a group of CU- participants
(BioFINDER-2: n = 63 and Knight-ADRC: n=71) and all increases represent
increase in abnormality. Significant differences in contiguous CSF stages are
shown with asterisks (two-sided, FDR-corrected). Horizontal line is drawn at
z-score =1.96 which represents 95%Cl of the reference group (CU-). Black central
dotand verticallinesin A, and Crepresent the mean and two standard deviations
of each stage, respectively. Colored lines and bands represent the LOESS

CSF stages

regression and its 95%CIl. Smoothed LOESS lines of all AD biomarkers are shown
in B (BioFIDNER-2) and D (Knight-ADRC) for comparison. CSF stage O represent
being classified as normal by the model. *: p < 0.05; **: p < 0.01; ***: p <0.001.
Exact p-values shown in the figure are, Braak I-11: 2-3: p=5.8-107; 3-4: p=9.2:10";
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p=0.0005; 3-4: p=6.3-107; for BioFINDER-2; and: Braak I-Il: 3-4: p=1.4-10"%;
Braak IlI-1V: 3-4: p=5.2:10"; for Knight-ADRC. Abbreviations: AB, amyloid-B;

AD, Alzheimer’s disease; Cl, confidence interval; CU-, cognitively unimpaired
amyloid negative; CSF, cerebrospinal fluid; LOESS, locally estimated scatterplot
smoothing; PET, positron emission tomography; ROI, region of interest.
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TMT-B), an executive function composite (TMT-A and TMT-B), amemory (FCSRT)
and language (animal fluency) tests. Cognitive scores are z-scored based
onagroup of CU- participants (BioFINDER-2: n= 60 and Knight-ADRC:

n=71)and allincreases represent increase in abnormality. Significant differences
in contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected).
Horizontal line is drawn at z-score =1.96 which represents 95%Cl of the reference
group (CU-). Black central dot and vertical linesin A and C represent the mean
and two standard deviations of each stage, respectively. Colored lines and bands
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represent the LOESS regression and its 95%Cl. Smoothed LOESS lines of all AD
biomarkers are shown in B (BioFIDNER-2) and D (Knight-ADRC) for comparison.
We excluded non-AD dementia patients to avoid bias in these analyses. CSF stage
O represents being classified as normal by the model. *: p < 0.05; **: p < 0.01; ***:
p<0.001.Exact p-values shown in the figure are, MPACC: 2-3: p=0.004; 3-4:
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Extended Data Fig. 6 | Individual CSF stages for predicting clinical B and; progression from CU at baseline to MClis shown in C. For Knight-ADRC,
progression. Kaplan-Meier curves (shaded area: 95%ClI) for all individual progression from CDR =0 or CDR=0.5 at baseline to CDR>1is showninD and;
CSF stages in BioFINDER-2 (A-C) and Knight-ADRC (D-E) participants. For progression from CDR =0 at baseline to CDR>0.5is shown in E. Abbreviations:
BioFINDER-2, progression from CU or MCl at baseline to AD dementiais AD, Alzheimer’s disease; CDR, clinical dementia rating; CSF, cerebrospinal fluid;
shownin A; progression from MCl at baseline to AD dementia is shown in CU, cognitively unimpaired; MCI, mild cognitive impairment.
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Extended Data Fig. 7 | Individual biomarker levels by CSF stage in Knight-
ADRC participants. Individual CSF biomarker levels, included in the model,

by CSF stage participants are shownin A including all Knight-ADRC participants.

Depiction of individual AD-biomarker levels, not used in the creation of the
model, per CSF stage are shown in B. All biomarker levels are z-scored based
onagroup of CU- participants (n=71) and allincreases represent increase in
abnormality. Significant differences in contiguous CSF stages are shown with
asterisks (two-sided, FDR-corrected). Horizontal line is drawn at z-score =1.96
which represents 95%Cl of the reference group (CU-). Black central dot and
vertical lines represent the mean and two standard deviations of each stage,
respectively. Colored lines and bands represent the LOESS regression and its

95%Cl. CSF stage O represent being classified as normal by the model. Black dots
and vertical lines represent mean and SD per CSF stage. *: p < 0.05; **: p < 0.01; ***:
p<0.001. Exact p-values shown in the figure are, Amyloid-PET: 2-3: p=0.003;
3-4:p=0.005; Tau-PET: 3-4: p=4.4-10"; Cortical thickness: 2-3: p=0.007; 3-4:
p=3.0-107;4-5: p=0.032; CSF NfL: 2-3: p=0.35. Abbreviations: Ap, amyloid-B;
Cl, confidence interval; CU-, cognitively unimpaired amyloid negative; CSF,
cerebrospinal fluid; MMSE, Mini-Mental state examination; MTBR, microtubule
binding region; NfL, neurofilament light; PET, positron emission tomography;
np-tau, non-phosphorylated mid-region tau; pT, phosphorylated tau; SuStaln,
subtype and stage inference.
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Extended Data Fig. 8 | Excluded CSF biomarkers by CSF stage. Depiction of
the CSF biomarkers excluded in the optimal model (pT231/T231and pT181/
T181) by CSF stage in BioFINDER-2 (A-B) and Knight-ADRC (C-D) participants.
CSF pT217/T217 is also shown for comparison. CSF levels are z-scored based
onagroup of CU- participants (BioFINDER-2: n = 63, Knight-ADRC: n=71) and
allincreases represent increase in abnormality. Significant differencesin
contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected).
Horizontal line is drawn at z-score =1.96 which represents 95%Cl of the reference
group (CU-). Black central dot and vertical linesin A and C represent the mean
and two standard deviations of each stage, respectively. Colored lines and bands
represent the LOESS regression and its 95%Cl. Smoothed LOESS lines of all CSF
biomarkers are shown in B (BioFIDNER-2) and D (Knight-ADRC) for comparison.

0 1 2 3 4 5
CSF stages

CSF stage O represent being classified as normal by the model. Black dots and
vertical lines represent mean and SD per CSF stage, respectively. *: p < 0.05; **:
p<0.0L;**:p<0.001. Exact p-values shown in the figure are, pT217/T217:1-2:
p=3.710";2-3:p=3.110";3-4:p=3.3-10"%4-5: p=4.710""; pT181/T181: 1-2:
p=13107;3-4:p=1.8107;4-5:p=1.8:107pT231/T231: 0-1: p=0.0004; 1-2:
p=2.9-10"7;3-4:p=9.8-10";4-5: p=0.007 for BioFINDER-2; and pT217/T217: 0-1:
p=0.041;1-2:p=0.0004;2-3: p=0.0008; 3-4: p=3.7-10"; pT181/T18L: 1-2: p=
0.006;4-5: p=0.012; pT231/T231:1-2: p=0.0019 for Knight-ADRC. Abbreviations:
AR, amyloid-B; CI, confidence interval; CU-, cognitively unimpaired amyloid
negative; CSF, cerebrospinal fluid; LOESS, locally estimated scatterplot
smoothing; MTBR, microtubule binding region; np-tau, non-phosphorylated
mid-region tau; pT, phosphorylated tau; SuStaln, subtype and stage inference.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested

X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X ][]

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

OXX O OO0 000F%
X

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis R version 4.1.0 was used for comparison analyses. The main packages used were pROC and cutpointr for ROC analyses, stats for linear
regression models, MASS and Imr for logistic regression models, survival and survminer for Kaplan-Meier curves, and ggplot2 for creating
plots. PySuStaln (downloaded 08/2022) was used for creating the CSF staging model. FreeSurfer (v.6.0.) was used to parcelate MRI.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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For BioFINDER-2 data, anonymized data will be shared by request from a qualified academic investigator for the sole purpose of replicating procedures and results
presented in the article and as long as data transfer is in agreement with EU legislation on the general data protection regulation and decisions by the Ethical




Review Board of Sweden and Region Skane, which should be regulated in a material transfer agreement. For Knight ADRC data are available to qualified
investigators who have a proposal approbed by an institutional committee (https://knightadrc.wustl.edu/Research/ResourceRequest.htm) that meets monthly. the
study must be approved by an institutional review board to ensure ethical reseearch practives and investigators must agree to the terms and conditions of the data
use agreement, which includes not distributing the data without permission. Contact persons are Oskar Hansson and Randall J Bateman, respectively. After
contacting the person, they will respond within a month.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Sex is reported in the the descriptive tables.

Population characteristics Please see main tables of the manuscript.
Recruitment Recruitment is described in the manuscript, and on www.clinicaltrials.gov for NCT03174938 (BioFINDER-2).
Ethics oversight The Swedish Ethical Review Authority and Washington University Human Research Protection Office

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The study included two prospective studies (BioFINDER-2 [n=426] and Knight ADRC [n=222]) with large sample sizes. All participants with
available CSF measures at baseline were analyzed in this study.

Data exclusions  Only extreme outliers in longitudinal analyses were excluded. Excluded outliers are detailed in the text.

Replication We replicated key findings in two large independent cohorts (BioFINDER-2 and Knight ADRC) with significant differences in demographics and
outcome measures.

Randomization  There was no randomization in this study. We did not perform any adjustment for covariates due to the comparison of biomarkers within the
same sample.

Blinding CSF analyses were performed by individuals who were blinded to the clinical data. Co-authors who performed the data preprocessing were
blinded to demographic and clinical characteristics of individuals.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Antibodies

Antibodies used

Validation

Clinical data

Taul (generated by Drs Nicholas Kanaan) and HJ series (HJ8.5, HJ8.7, HJ32.11 and HJ34.8) antibodies (generated by Dr. David
Holtzman) were used. Detailed information of the immunoassays in the manuscript has been published previously (and is referred to
in the manuscript).

Taul, HJ8.5 and HJ8.7 were validated in the following studies:

-Barthélemy NR, et al. Site-specific cerebrospinal fluid tau hyperphosphorylation in response to Alzheimer's disease brain patholgy:
Not all tau phospho-sites are hyperphosphorylated. Journal of Alzheimer's disease, 2022, 85(1): 415-29.

-Sato, et al. Tau kinetic in neurons and the human central nervous sytem. Neuron 2018. 98(4): 861-4.

HJ32.11 and HJ34.8 were newly generated antibodies and we confirmed that immunoprecipitation procedures using there antibodies
worked well by the two replicate cohorts analyses.

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration
Study protocol

Data collection

Outcomes

BioFINDER-2 study was registered at www.clinicaltrials.gov for NCT03174938 .
Please see www.clinicaltrials.gov for the outlines of NCT03174938 (BioFINDER-2) .

BioFINDER-2 data are collected at the memory clinics of Skdne University Hospital and Angelholm's hospital in Sweden. Participants
in Knight ADRC cohort were community-dwelling volunteers enrolled in studies of memory and aging.

The primary outcome is CSF stages determined by SuStaln using CSF biomarkers abnormalities. These stages were then compared to
amyloid- and tau-PET, neurodegeneration and cognitive measures, both cross-sectional and longitudinally. CSF stages were also used
to predict amyloid- and tau-PET status (positive/negative), diagnosis, and clinical progression.
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