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Disease staging of Alzheimer’s disease using  
a CSF-based biomarker model
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Biological staging of individuals with Alzheimer’s disease (AD) may improve 
diagnostic and prognostic workup of dementia in clinical practice and 
the design of clinical trials. In this study, we used the Subtype and Stage 
Inference (SuStaIn) algorithm to establish a robust biological staging 
model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis 
involved 426 participants from BioFINDER-2 and was validated in 222 
participants from the Knight Alzheimer Disease Research Center cohort. 
SuStaIn identified a singular biomarker sequence and revealed that five 
CSF biomarkers effectively constituted a reliable staging model (ordered: 
Aβ42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated 
mid-region tau). The CSF stages (0–5) demonstrated a correlation with 
increased abnormalities in other AD-related biomarkers, such as Aβ-PET and 
tau-PET, and aligned with longitudinal biomarker changes reflective of AD 
progression. Higher CSF stages at baseline were associated with an elevated 
hazard ratio of clinical decline. This study highlights a common molecular 
pathway underlying AD pathophysiology across all patients, suggesting 
that a single CSF collection can accurately indicate the presence of AD 
pathologies and characterize the stage of disease progression. The proposed 
staging model has implications for enhancing diagnostic and prognostic 
assessments in both clinical practice and the design of clinical trials.

Currently, more than 50 million people are affected by dementia, and 
this number is expected to more than double by 2050 (ref. 1). Alzhei-
mer’s disease (AD) is the most common form of dementia, characterized 
by the accumulation of extracellular plaques containing amyloid-β 

(Aβ) and intracellular tau aggregates in the forms of tau tangles and 
neuropil threads2. Over the last two decades, the AD field has moved 
toward the use of biomarkers to support the diagnostic and prognostic 
workup rather than relying solely on clinical symptoms3. This has been 
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during the progression of autosomal dominant Alzheimer’s disease 
(ADAD)29, suggesting a sequence of CSF biomarker changes that may 
serve as a measurable biological indicator tracking advancing disease 
progression.

The progression of Aβ or tau pathology across the brain has been 
previously used to stage participants across the AD continuum33–38. 
However, these models need at least one Aβ-PET or tau-PET scan, which 
is expensive and requires specialized personnel and facilities. Further-
more, information of only one pathological measure (for example, Aβ 
or tau) can be obtained from these images, and, therefore, they cover a 
limited range of the whole continuum. On the contrary, CSF biomark-
ers are less expensive and more accessible, and multiple pathological 
measures may be obtained from a single sample. Given this, and with 
the idea that different CSF biomarkers may become abnormal at dif-
ferent stages of the disease, we aimed to generate a data-driven staging 
scheme for sporadic AD using key CSF tau biomarkers in combination 
with CSF Aβ42/40. An unresolved question is whether there is a single 
molecular pathway throughout the AD continuum or whether there 
are subtypes of AD following different fluid biomarker trajectories, 
as has been shown for regional spread of insoluble tau tangles36,39,40.

In the present study, we used Subtype and Stage Inference  
(SuStaIn)41 to model the most likely sequence of CSF biomarker abnor-
malities that occur along the AD timecourse. This data-driven method 
uses cross-sectional data to order biomarker abnormalities in a proba-
bilistic manner and, at the same time, addresses possible diverging 
trajectories of this ordering. Thus, we staged 426 participants of the 
Swedish BioFINDER-2 study, ranging from cognitively unimpaired 
(CU) participants to patients with mild cognitive impairment (MCI) or 
dementia, and compared to measures of AD pathology and progres-
sion. Finally, we replicated our results in an independent cohort (from 
the Charles F. and Joanne Knight Alzheimer Disease Research Center 
(Knight ADRC)), which included 222 participants.

Results
A total of 426 participants from the Swedish BioFINDER-2 study 
(NCT03174938)19 with complete CSF data were included in the present 
study. Of these, 80 were cognitively unimpaired Aβ negative (CU−); 79 
were cognitively unimpaired Aβ positive (CU+); 88 were diagnosed 
with MCI and were Aβ positive; 100 were diagnosed with AD dementia 
and were Aβ positive (ADD+); and 79 were assessed as non-AD patients  
(22 were Aβ positive). Demographic information is presented in Table 1 
(see Supplementary Table 1 for demographic information by diagnostic 
groups). More detailed information about vascular risk factors and 
pathologies is provided in Supplementary Table 1, and a description 
of the diagnosis for non-AD patients can be found in Supplementary 
Table 2. Of these, 220 participants had longitudinal CSF data available 
(Supplementary Table 3).

CSF staging model
We initially applied SuStaIn to the BioFINDER-2 cohort using the follow-
ing CSF biomarkers: the Aβ42/40 ratio, the phosphorylated to np-tau 
ratio of pT205/T205, pT181/T181, pT217/T217 and pT231/T231 as well 
as the concentrations of MTBR-tau243 and np-tau (the residue 151–155) 
based on availability and previous literature. Of note, the np-tau is dif-
ferent than the total-tau measures typically used in the clinical setting, 
which include both phosphorylated and np-tau fragments. Through 
a process of model optimization (Extended Data Fig. 1; see Methods 
for further details), we arrived on a model that excluded pT181/T181 
and pT231/T231 due to information redundancy. SuStaIn revealed that 
a single biomarker sequence best described the progressive abnor-
mality of the selected biomarkers (Extended Data Fig. 1c). The final 
ordering of the model was the Aβ42/40 ratio, pT217/T217, pT205/T205, 
MTBR-tau243 and np-tau (Fig. 1a), resulting in a five-stage model (plus 
stage 0 as a negative biomarker stage). Of note, the one-subtype model 
fit the data best even before performing the optimization step with all 

made possible by advancements of imaging and fluid biomarkers that 
accurately track AD pathology in vivo. Given that the accumulation of 
pathology can take many years to decades3 before any clinical symp-
toms appear, the use of biomarkers is critical to ensuring an early and 
reliable detection of AD4. Key biomarkers may help to improve patient 
diagnosis, management and prognosis5–8. In addition, the use of AD 
biomarkers will be even more important when disease-modifying treat-
ments become widely available9–11. In this context, a more sophisticated 
personalized medicine approach to AD, based on high-performing AD 
biomarkers, will become crucial to select the optimal participants for 
specific treatments and for enrollment in clinical trials.

In recent years, multiple cerebrospinal fluid (CSF) biomarkers 
targeting different pathophysiological mechanisms have been devel-
oped (see ref. 4 for a review). There has been an increasing interest in 
developing biomarkers for measuring tau species phosphorylated at 
different residues. Among the phosphorylated tau (p-tau) species, 
p-tau181 (refs. 12–17), p-tau217 (refs. 12,13,15,18,19) and p-tau231 (refs. 
15,20–22) or the phosphorylation occupancies (defined as the ratio 
between the phosphorylated and non-phosphorylated mid region 
tau (np-tau) fragments) have been studied in depth and have shown 
strong associations with Aβ pathology and moderate associations 
with tau (as measured by both positron emission tomography (PET)18,23 
and neuropathology24,25). These biomarkers have shown their utility in 
improving the diagnostic workup of AD and the prediction of disease 
progression12,13,19,26,27. Other biomarkers, such as p-tau205 or the occu-
pancy (pT205/T205)28–30 and microtubule binding region (MTBR) of 
tau containing the 243 residue (MTBR-tau243)31,32, have been more 
closely related to tau tangle pathology. Importantly, some of these 
CSF biomarkers were shown to become abnormal at different phases 

Table 1 | Participant characteristics

BioFINDER-2 (n = 426) Knight ADRC 
(n = 222)

Age, years 71.5 (8.5) 71.2 (7.7)

Women, n (%) 211 (49.5%) 112 (50.5%)

APOE-ε4 carriership, n (%)a 246 (57.7%) 99 (44.6%)

Years of educationb 12.3 (3.8) 16.3 (2.5)

Diagnosis, CU−/CU+/MCI+/ADD+/
non-AD*CU−/CU+/Very mild AD/AD 
dementia/Other dementias**, n

80/79/88/100/79 84/98/24/9/7

Amyloid-PET, Centiloidsc 37.3 (44.2) 44.0 (41.2)

Tau-PET, SUVRd 1.53 (0.61) 1.24 (0.22)

Cortical thickness, mme 2.46 (0.16) 2.52 (0.16)

CSF NfLf 245 (175) 1000 (578)

Cognitive composite#g −1.62 (2.03) 0.44 (1.11)

Progressed to MCI†h 11 (2.6%) 41 (18.5%)

Progressed to ADD+¥i 41 (9.6%) 30 (14.5%)

Data are shown as mean (s.d.) unless otherwise stated. * BioFINDER-2 participants are classified 
by clinical diagnosis and amyloid status based on their CSF Aβ42/40 levels (Aβ+: <0.080). 
** Knight ADRC participants are classified by clinical diagnosis and amyloid status based on 
their CSF Aβ42/40 levels (Aβ+: <0.0673). In BioFINDER-2, only participants who progressed 
to MCI or patients with dementia due to AD etiology were considered to progress. In Knight 
ADRC, patients with very mild AD dementia had CDR = 0.5, and patients with mild AD dementia 
had CDR ≥ 1, both with AD as etiology. The ‘Other dementias’ group includes participants with 
CDR > 0 with non-AD etiology. Only participants who progressed to CDR ≥ 0.5 or CDR ≥ 1 due to 
AD etiology were considered to progress. #Cognitive composite was mPACC for BioFINDER-2 
and a global cognitive composite in Knight ADRC. †For Knight ADRC, represents progression 
to CDR ≥ 0.5. ¥ For Knight ADRC, represents progression to CDR ≥ 1. aOne participant missing 
in both cohorts. bFour participants missing in BioFINDER-2. cOne hundred seventy-five 
participants missing in BioFINDER-2. dNine and three participants missing in BioFINDER-2 and 
Knight ADRC, respectively. eSix participants missing in BioFINDER-2. fFour and five participants 
missing in BioFINDER-2 and Knight ADRC, respectively. gThirty-six and two participants missing 
in BioFINDER-2 and Knight ADRC, respectively. hFour participants missing in Knight ADRC. 
iEight participants missing in Knight ADRC.
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fluid biomarkers (Extended Data Fig. 1a). All BioFINDER-2 participants 
were then classified into one of these biomarker-based disease stages 
based on their CSF levels, with 124 (29.1%) being at CSF stage 0, 35 (8.2%) 
being at CSF stage 1, 53 (12.4%) being at CSF stage 2, 49 (11.5%) being 

at CSF stage 3, 87 (20.4%) being at CSF stage 4 and 78 (18.3%) being 
at CSF stage 5. Demographic, genetic and diagnostic characteristics 
of these participants are shown in Extended Data Fig. 2. In brief, the 
CSF biomarker-based model was not associated with sex (χ2(5) = 7.7, 
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Fig. 1 | CSF staging model. Description of the CSF staging model and the levels 
of the biomarkers included in the model by CSF stage. Cross-validated confusion 
matrix of the CSF biomarkers of the model is shown in a. Biomarkers are sorted 
by the time they become abnormal based on the results of SuStaIn. Darkness 
represents the probability of that biomarker of becoming abnormal at that 
position, with black being 100%. Only amyloid-positive participants are included 
in this analysis. Individual biomarker levels by CSF stage in all BioFINDER-2 

participants are shown in b. CSF levels are z-scored based on a group of CU− 
participants (n = 63), and all increases represent increase in abnormality. Colored 
lines and bands represent the LOESS regression and its 95% CI. Horizontal line is 
drawn at z-score = 1.96, which represents 95% CI of the reference group (CU−). 
Smoothed LOESS lines of all CSF biomarkers are shown in c for comparison. 
CSF stage 0 represents being classified as normal by the model. Black dots and 
vertical lines represent mean and 2 s.d. by CSF stage, respectively.
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Fig. 2 | AD pathology biomarkers and cognition by CSF stages. a, Depiction of 
individual biomarker levels, not used in the creation of the model, by CSF stage in 
BioFINDER-2 participants. These include biomarkers of amyloid (amyloid-PET) 
and tau (tau-PET in the meta-temporal ROI) pathologies, neurodegeneration 
(cortical thickness in the AD signature areas and CSF NfL) and cognition 
(mPACC). Biomarkers are z-scored based on a group of CU− participants (n = 63), 
and all increases represent increase in abnormality. Significant differences in 
contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected). The 
horizontal line is drawn at z-score = 1.96, which represents 95% CI of the reference 
group (CU−). Colored lines and bands represent the LOESS regression and its 95% 
CI. Smoothed LOESS lines of all AD biomarkers are shown in b for comparison. 

All participants with available data were included in amyloid-PET and tau-PET 
analyses. For neurodegeneration (cortical thickness and NfL) and cognitive 
(mPACC) measures, we excluded patients with non-AD dementia to avoid bias. 
Of note, only few AD dementia cases had amyloid-PET available due to study 
design. CSF stage 0 represents being classified as normal by the model. Black 
dots and vertical lines represent mean and 2 s.d. per CSF stage, respectively. 
*P < 0.05; **P < 0.01; ***P < 0.001. Exact P values shown in the figure are as follows. 
Amyloid-PET: 0–1, P = 0.032; 1–2: P = 1.6 × 10−6; 2–3: P = 0.003; 3–4: P = 0.0007. 
Tau-PET: 2–3: P = 0.0003; 3–4: P = 3.3 × 10−11; 4–5: P = 0.010. Cortical thickness: 
2–3: P = 0.006. CSF NfL: 3–4: P = 0.016. mPACC: 2–3: P = 0.004; 3–4: P = 0.002; 
4–5: P = 0.0008.
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P = 0.180) or years of education (χ2(5) = 4.7, P = 0.452), but higher CSF 
stage was associated with older age (χ2(5) = 16.9, P = 0.005), carriership 
of an APOE-ε4 allele (χ2(5) = 72.8, P < 0.001) and a more advanced clini-
cal disease stage (χ2(5) = 478.6, P < 0.001) (Extended Data Fig. 2a–e).

We then examined the distribution of the CSF biomarkers included 
in the model by CSF biomarker stage. CSF biomarker levels by stage 
can be found in Fig. 1b and Supplementary Table 4. These different 
biomarker trajectories revealed that the included CSF biomarkers 
exhibit different behaviors across the disease continuum, aside from 
the biomarker disease stage at which they become abnormal. This is 
summarized in Fig. 1c, in which the smoothed locally estimated scat-
terplot smoothing (LOESS) regression of all CSF biomarkers is plotted. 
We found that none of the vascular risks (hypertension, hyperlipidemia 
or diabetes) nor vascular pathologies (white matter lesions, lacunes, 
ischemic infarcts, hemorrhages, microbleeds or siderosis) have an effect 
on our model (Supplementary Table 1 and Supplementary Figs. 1 and 2).

Finally, we assessed the stability of our model using the longi-
tudinal CSF data over a mean (s.d.) of 2.1 (0.2) years (n = 220; Sup-
plementary Table 1). We observed that most participants remained at 
the same stage (n = 183, 83.2%) or progressed (n = 29, 13.2%), whereas 
only few regressed (n = 8, 2.9%) (Extended Data Fig. 3a,b). Of those 
who progressed, most (n = 25, 86.2%) progressed only one CSF stage 
during the 2-year follow-up. This indicates a high stability of our model 
over time. Of note, participants with longitudinal CSF information had 
lower levels of pathology as measured by main biomarkers than those 
without longitudinal CSF data, even while having similar demographic 
characteristics (Supplementary Table 5).

Associations with AD pathology, biomarkers and cognition
Next, we investigated the association between CSF stages and insoluble 
Aβ aggregates (Aβ-PET), insoluble tau aggregates (tau-PET), neuro-
degeneration (cortical thickness and CSF neurofilament light (NfL)) 
and cognition, using a global cognitive composite sensitive to early 
AD changes (modified version of Preclinical Alzheimer’s Cognitive 
Composite (mPACC)35; Fig. 2). The degree of biomarker abnormality 
increased with higher CSF stages, although the trajectories were dif-
ferent. Statistics of each of these AD biomarkers and their differences 
per CSF stage can be found in Supplementary Table 6.

We further studied the associations between our CSF-based stag-
ing model and other biomarkers as additional analyses. For tau-PET, we 
quantified the signal in different brain regions, using the previously val-
idated regions of interest (ROIs) reflecting the different Braak stages42 
(Extended Data Fig. 4 and Supplementary Table 7). We also examined 
different measures of cognitive function, including composites for 
memory, executive, language and visuospatial functions, respectively 
(Extended Data Fig. 5 and Supplementary Table 8).

Prediction of Aβ/tau status and cognitive stages
Subsequently, we looked at the accuracy of our CSF staging model for 
predicting Aβ (A) and tau (T) status, as defined by PET34(Fig. 3a,b). We 
first looked at each independent pathology dichotomously (that is, pos-
itive or negative) and independently, and, later, we looked at the ordinal 
categories merging both pathologies (that is, A−T−, A+T− and A+T+).  
The number of positive participants by CSF stage and category are pre-
sented in Fig. 3a. Using receiver operating characteristic (ROC) curve 
analyses, we determined that CSF stage 2 was the optimal threshold 
for predicting amyloid-PET positivity with high accuracy (area under 
the curve and 95% confidence interval (AUC (95% CI) = 0.96 (0.93, 0.98), 
sensitivity = 0.93 and specificity = 0.89, first column; Fig. 3b and Sup-
plementary Table 9)). Tau-PET positivity was also predicted with high 
accuracy when using CSF stage 4 as a threshold (AUC (95% CI) = 0.95 
(0.93, 0.97), sensitivity = 0.91 and specificity = 0.92, second column; 
Fig. 3b and Supplementary Table 9).

Ordinal logistic regression was used to assess the utility of CSF 
stages for predicting A/T status (that is, A−T−, A+T− or A+T+), and we 

calculated the c-index (an overall measure of discrimination equiva-
lent to AUC for dichotomic outcomes) as a measure of accuracy. We 
observed that higher CSF stages were associated with higher pre-
dicted probabilities of being at more advanced A/T PET status (c-index  
(95% CI) = 0.95 (0.93, 0.97), last column; Fig. 3b and Supplementary 
Table 9). More specifically, participants at CSF stages 0 and 1 (negative 
biomarkers and Aβ42/40 stages) had the highest probability of being A−
T−, at CSF stages 2 and 3 of being A+T− and at CSF stages 4 and 5 of being 
A+T+. Only one participant was classified as A−T+ and was excluded from 
this analysis. As an additional analysis, we followed a similar approach 
with the recently proposed PET staging from the Alzheimer’s Associa-
tion revised clinical guidelines (https://aaic.alz.org/diagnostic-criteria.
asp). Similarly, higher CSF stages were associated with more advanced 
PET-based stages although with slightly lower accuracy (c-index  
(95% CI) = 0.92 (0.90, 0.94); Supplementary Fig. 3).

Finally, we also aimed at investigating whether our staging model 
could be used as a diagnostic tool (Fig. 3c,d). In the first analysis, we 
used the CSF staging model for predicting cognitive stages within the 
AD continuum (that is, excluding non-AD). Higher CSF stages were 
associated with more advanced cognitive stages (c-index (95% CI) =  
0.88 (0.86, 0.91), first column; Fig. 3c and Supplementary Table 6). 
The model predicted that participants at CSF stage 0 had the high-
est probability of being CU−; at CSF stages 1 and 2, participants were 
more probably CU+ (as assessed by CSF); at CSF stage 3, participants 
were more probably MCI+; and, finally, at CSF stages 4 and 5, partici-
pants were more probably ADD+. Additionally, we also performed an 
analysis looking at the clinical stages based on the National Institute 
on Aging-Alzheimer’s Association (NIA-AAA) guidelines from 2018 
(merging all dementia stages into one owing to sample size issues)43. 
Here, we also had a good predictive accuracy (c-index (95% CI) = 0.87 
(0.84,0.89)), and we observed the expected pattern, with participants 
with subjective cognitive decline (SCD) mainly included in CSF stages 
1–3 (Supplementary Fig. 4). Lastly, we aimed at differentiating cognitive 
impairment due to AD or due to other neurodegenerative diseases. We, 
therefore, compared patients with AD to patients with non-AD demen-
tia, including only those with objective cognitive impairment (that is, 
patients with MCI and patients with dementia). Participants at CSF 
stage 2 or higher with objective cognitive impairment had a high prob-
ability of having AD as the cause of their cognitive impairment (AUC 
(95% CI) = 0.95 (0.93, 0.98), sensitivity = 0.97 and specificity = 0.75, last 
column; Fig. 3c,d and Supplementary Table 6).

Assessment of longitudinal rates of change of AD biomarkers
Next, we used longitudinal imaging and cognitive data to assess how 
AD biomarkers change over time based on the baseline CSF stage 
classification (Supplementary Table 10). The rate of accumulation of 
Aβ aggregates as measured with PET (n = 218) increased at early CSF 
stages, reaching the highest values at CSF stage 2, and, thereafter, the 
rate decreased but still remained positive (Fig. 4 and Supplementary 
Table 11). On the other hand, the tau-PET (n = 312), cortical thickness 
(n = 300) and mPACC (n = 342) exhibited monotonic increases in rates 
of change over time, with the rates starting to be significantly different 
from contiguous CSF stages at CSF stage 3 (Fig. 4). Figure 4b depicts that 
tau-PET, followed by mPACC, had the highest rate of change (z-scored), 
whereas amyloid-PET and cortical thickness had lower rates of change 
that were in a similar range.

Prediction of clinical progression
In the next set of analyses, we tested whether our CSF staging model 
was useful for predicting subsequent clinical progression (up to 5 years 
of follow-up after the baseline visit). First, we tested the ability of our 
model to predict progression to AD dementia from CU or MCI status 
at baseline (progressors: n = 41). Based on Kaplan–Meier curves and 
Cox proportional hazards analyses (Fig. 5a), participants at higher 
CSF stages (4–5) at baseline had higher probability to progress to AD 
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dementia than those at positive lower CSF stages (that is, 1–3), with 50% 
of these participants progressing at 3.1 years. When adjusting for age, 
sex and clinical status at baseline (that is, CU or MCI), the hazard ratio 
(HR) was 5.2 (95% CI: 2.2, 12.6, P < 0.001), when comparing participants 
at CSF stages 4 or 5 to participants at lower, but positive, CSF stages 
(1–3; Fig. 5b and Supplementary Table 12). When including only those 
with MCI at baseline (progressors: 38/88), we still found that those at 
CSF stages 4 or 5 at baseline had a significantly higher probability to 
progress to AD dementia (HR (95% CI) = 4.5 (1.8, 10.8), P < 0.001; Fig. 5c,d 
and Supplementary Table 12). After 2.3 years, half of these participants 
already progressed to AD dementia. Finally, we investigated the utility 
of the CSF staging model when predicting progression from CU to MCI 
status (progressors: 11/159). Again, those CU participants at higher CSF 
stages (4–5) at baseline were much more prone to progress to MCI with 
an HR of 16.0 (95% CI: 3.2, 81.1, P < 0.001; Fig. 5e,f and Supplementary 
Table 12) compared to those in stage 1–3, and 50% already progressed 
to MCI after 4.1 years, supporting the clinical utility of the proposed 
staging model. There were no progressors from CSF stage 0 in any case, 
which prevented us from comparing these participants with the other 
CSF stages groups. Kaplan–Meier curves for each individual CSF stage 
are depicted in Extended Data Fig. 6.

Replication in an independent cohort
Finally, we replicated the staging model and the main analyses in the 
Knight ADRC cohort (n = 222; Table 1). SuStaIn selected one unique 
subtype as the optimal model with the same CSF abnormality ordering 
as the one previously obtained in BioFINDER-2 (Fig. 6a). In this cohort, 
however, there was slightly higher uncertainty between the ordering of 
the first two (Aβ42/40 and pT217/T217) and the last two (MTBR-tau243 
and np-tau) stages. These differences may be due mostly to the differ-
ence in sample size, especially in more advanced AD cases (only nine 
mild AD dementia cases). Nonetheless, the overall behavior of these 
CSF biomarkers by the biomarker stages was similar to that in the main 

cohort (Fig. 6b and Supplementary Table 4). Furthermore, the other AD 
biomarkers available (not included in the CSF staging model) showed 
similar trajectories to those in the main sample (Fig. 6c and Supplemen-
tary Table 6). The main difference compared to BioFINDER-2 was the 
lower degree of abnormality for all markers in the last CSF stages. This 
might be explained by the lower number of advanced patient cases in 
this cohort. The individual plots for each CSF and imaging biomarker 
by CSF stages are shown in Extended Data Fig. 7. Details of participant 
characteristics (Extended Data Fig. 2), tau-PET binding in different 
regions (Extended Data Fig. 4 and Supplementary Table 7) and other 
cognitive measures (Extended Data Fig. 5 and Supplementary Table 8) 
per CSF stage can be found in the Extended Data. Stability analyses, 
within participants with available longitudinal CSF measures (n = 51; 
Supplementary Table 13), also showed that most participants remained 
at the same stage (n = 46, 90.2%) or progressed (n = 4, 7.8%) at follow-up 
(Extended Data Fig. 3c,d).

We also calculated the optimal CSF stages for predicting Aβ-PET 
and tau-PET positivity using ROC curves. As in the case of BioFINDER-2, 
CSF stage 2 was optimal for predicting amyloid-PET positivity (AUC 
(95% CI) = 0.89 (0.85, 0.94); Fig. 6d,g and Supplementary Table 9), 
whereas CSF stage 4 was optimal for predicting tau-PET positivity 
(AUC (95% CI) = 0.94 (0.91, 0.96); Fig. 6e,h). Consistent with findings 
in BioFINDER-2, higher CSF stages were predictive of more advanced 
A/T stages, as assessed by PET (c-index (95% CI) = 0.89 (0.86, 0.92); 
Fig. 6f,i and Supplementary Table 9). Being at CSF stages 0 and 1 was 
highly predictive of being A−T−; being at CSF stages 2 and 3 was pre-
dictive of being A+T−; and being at CSF stages 4 and 5 was predictive 
of being A+T+.

Finally, we investigated the prognostic capacity of our model 
for predicting progression to Clinical Dementia Rating (CDR) ≥ 1 (AD 
dementia, progressors: 41/218) and CDR ≥ 0.5 (MCI or very mild AD 
dementia, progressors: 30/214). We found that CU (CDR = 0) and 
very mild AD (CDR = 0.5) participants at the highest CSF stages (4–5) 
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exhibited an increased risk (HR (95% CI) = 6.9 (3.0, 16.0), P < 0.001) of 
progressing to AD dementia (CDR ≥ 1) at follow-up, even when adjust-
ing for age, sex and clinical status (that is, CDR = 0 or CDR = 0.5) at 
baseline, compared to participants at CSF stages 1–3 (Fig. 6j,k and 
Supplementary Table 12). Half of this group already progressed to 
CDR ≥ 1 after 3.9 years. Similarly, CU participants at higher CSF stages 
(that is, 4–5) had higher risk (HR (95% CI) = 4.2 (2.0, 8.8), P < 0.001) of 
progressing to very mild AD or more advanced disease stages when 
compared to participants at lower, but positive, CSF stages (1–3; 
Fig. 6l,m and Supplementary Table 12), with 50% of them progressing 
after 3.0 years, whereas, for the 1–3 group, it took 7.6 years. In this 
case, participants at CSF stages 1–3 also showed significant higher risk 
to progress to CDR ≥ 0.5 than those at CSF stage 0 (HR (95% CI) = 5.0 
(1.6, 15.0), P = 0.005). There were no progressors to CDR ≥ 1 at CSF 
stage 0, which prevented us from comparing this group to the others. 
Kaplan–Meier curves for each individual CSF stage are depicted in 
Extended Data Fig. 6.

Discussion
In this study, we created and evaluated a staging model for AD using 
five CSF biomarkers reflecting abnormalities of soluble Aβ and dif-
ferent soluble tau species (Fig. 7). We demonstrate here that a single 
CSF collection is sufficient to accurately stage participants represent-
ing the entire AD continuum. This is possible because CSF biomarker 
abnormalities followed a stereotypical trajectory in all participants, 
which enabled a single staging model usable for everyone. Notably, we 
were able to relate the CSF stages of our model to abnormality in other 
well-described AD biomarkers, such as amyloid-PET and tau-PET, in 
magnetic resonance imaging (MRI) and in cognitive measures. Further-
more, our CSF staging model was able to accurately predict positivity 
of the imaging biomarkers of Aβ and tau and to predict A/T status, as 

assessed by PET. The CSF staging model was also related to cognitive 
stages and was able to differentiate cognitive impairment due to AD 
from other dementias. Notably, we also observed different longitudinal 
rates of change of AD biomarkers at different CSF stages, which may 
allow us to determine which participants will progress more in key 
aspects of the disease. In addition, we showed that participants in the 
more advanced stages of our CSF-based model were at higher risk for 
clinical decline. Finally, we were able to replicate the model and main 
results in an independent cohort. Altogether, these results support 
the validity of our CSF staging model and indicate promising clinical 
utility, suggesting that it may be useful in clinical practice and in clinical 
trials if further validated44,45.

The first aim of this analysis was to establish whether there was a 
stereotypic ordering in when key CSF biomarkers become abnormal. 
SuStaIn is an optimal approach to answer this question as it allows the 
modeling of different trajectories, if existent for subgroups of the whole 
sample, using cross-sectional data41, as has been successfully applied 
to imaging biomarkers35,36,46. We observed that the CSF biomarkers 
investigated in this study became abnormal in a particular sequence 
and, more importantly, that this sequence did not vary systematically 
across participants. This result is important by itself as it tells us that 
there may be a single cascade of events that leads to sequential abnor-
mality of these soluble proteins in the brain, common to all patients 
with AD. Previous studies already suggested that changes in the lev-
els of tau fragments phosphorylated at different sites may be linked 
mechanistically and could be associated with disease stages47–51. Based 
on our results, Aβ plaques reflected by an imbalance of soluble amyloid 
species (that is, low Aβ42/40) may drive hyper-phosphorylation of tau 
in early phosphorylation site (pT217/T217), as previously suggested 
by human and animal data52,53, which would subsequently be followed 
by hyper-phosphorylation in later site (pT205/T205) and eventually 
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CSF stages (4–5) compared to the reference (1–3; b, d and f). These analyses 
were adjusted for age and sex in all cases and, additionally, for clinical status 
at baseline (CU or MCI) if appropriate. Dashed lines in a, c and e indicate the 
timepoint at which 50% of a group had progressed. Exact P values shown in the 
figure are as follows: b: P = 0.00025; d: P = 0.00097; f: P = 0.00082.
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increase other tau fragments (MTBR-tau243 and np-tau) due to tangles 
formation and neurodegeneration. Notably, this sequence of events 
is in line with previous literature54,55 and demonstrates that late-onset 
sporadic AD molecular pathway matches the same sequence of events 
as autosomal dominant AD29. Exploring in detail this cascade of events 
may provide mechanistic insights into disease pathology and progres-
sion. In turn, it could have important consequences in drug develop-
ment, as targeting some of the earliest events of this sequence may 
stop or reduce subsequent events in the cascade and, thereby, have  
a significant effect on tau aggregation47,51,56.

Perhaps the most important result of our study was proving the 
utility of a CSF model as a method to stage AD in vivo44,45. In our model, 
CSF stages could be related to main molecular changes and clinical 
tipping points in the course of the disease, including abnormal lev-
els of deposited Aβ (CSF stage 2: pT217/T217)19,20,23,25,26,28,29,32 and tau  
(CSF stage 3: pT205/T205) (refs. 28,29,32), early cognitive impairment 
(CSF stage 4: MTBR-tau243) (ref. 32) and neurodegeneration (CSF stage 
5: np-tau), following the expected pattern. With the objective of char-
acterizing the molecular status of the participants using our model, 
we observed that participants at CSF stages 2 and 3 (pT217/T217 and 
pT205/T205 stages) could be categorized with high accuracy as being 
Aβ positive and tau negative by PET (A+T−), whereas participants at 
CSF stage 4 (MTBR-tau243) or higher were amyloid-PET and tau-PET 
positive (A+T+)57. Notably, these cutpoints were reproduced in the 
Knight ADRC cohort, even using different PET tracers and quantifica-
tion methods, supporting the consistency of the model. Being able to 
accurately assess Aβ and tau status with a single CSF collection may be 
very useful to select the optimal participants for a clinical trial, such as 
has been done in the donanemab trial (NCT03367403)11, without the 
need of acquiring both an amyloid-PET and a tau-PET scan to determine 
if a patient is eligible for treatment. In BioFINDER-2, we also observed 
the diagnostic utility of this CSF staging model, as it was able to accu-
rately discern AD-related from non-AD-related cognitive impairment 
and could differentiate cognitive and clinical stages. Thus, the use of 
our model as a diagnostic tool may have important consequences at 
the clinical level as well.

Notably, our CSF staging model also showed prognostic utility. 
First, we observed that participants at different CSF stages showed 
different rates of change in multiple biomarkers. For instance, rates 
of Aβ accumulation across CSF stages showed the previously reported 
inverted U shape3,58, with participants at CSF stage 2 (pT217/T217) exhib-
iting the highest rates of change. On the other hand, the other imaging 
biomarkers and cognitive scores showed increased rate of change with 
increasing CSF stages, only plateauing at the last stage, as expected59. 
These results support the use of our staging model as an enrichment 
technique for clinical trials60. But, more importantly, we also observed 
that the CSF staging model was able to predict clinical progression. 
Being at the later stages of our model increased the risk of progressing 
to AD dementia, even when accounting for cognitive status at baseline 
(Fig. 5). Furthermore, we also observed a higher risk of progressing 
to MCI or very mild AD, although this analysis should be replicated in 

larger cohorts with longer follow-up. Notably, the prognostic ability 
of our CSF staging model was replicated in the Knight ADRC cohort. 
These results suggest a clear prognostic utility on staging participants 
based on their CSF profile, which may imply substantial reductions in 
costs and complexity compared to previous staging methods based 
on PET34,36,37,61.

We view the present model as a first step toward providing mean-
ingful disease progression staging using a single CSF measurement44,45. 
We expect that additional biomarkers will be included to the model 
either to gain further granularity in specific disease stages or to signify to 
other pathophysiological events (for example, microglial reactivity)62.  
Being able to measure several pathophysiological abnormalities using 
one sample is one of the main advantages of using fluid samples instead 
of PET for staging. Another advantage of this model is that the financial 
and infrastructure cost of CSF is low compared to other measures, 
such as PET. Looking toward the future, we hope to be able translate 
these results into plasma biomarkers, which would facilitate even 
greater availability and cost-effectiveness. Widespread use of our 
fluid biomarker staging model in primary care would likely require 
replacing CSF measures with plasma measures without greatly sac-
rificing model performance. Efforts in this direction are currently 
underway, but development of reliable plasma assays for pT205/T205 
and MTBR-tau243 is still ongoing.

The main strength of this study is the proven utility of the model, 
which was replicated in an independent cohort and, thereby, supports 
the generalizability of our staging model. Another important strength 
is the use of several biomarkers measured with very high-performing 
assays28,32,63, which is crucial for the accurate assessment of pathol-
ogy4. However, some limitations must be recognized. Although we 
included CSF biomarkers with proven utility, we acknowledge that 
there are some other interesting markers, such as p-tau235 (ref. 64), 
that have not been analyzed in this study. However, we think that our 
CSF staging model in its current form was still successful at signaling 
the main inflection points of the disease. Furthermore, p-tau231, which 
is thought to become abnormal early in the disease20–22, although not 
always25,63, was excluded from our model as it followed a similar abnor-
mality tendency as pT217/T217, without providing better performance 
for staging than the latter. We hypothesize that this may be in part 
related to difference in analytical performances, as the mass spectrom-
etry platform used in our study provided rather higher coefficient of 
variation for pT231/T231 measurements (12–18% compared to 5–7% 
for pT217/T217). Future studies in earlier cohorts or with optimized 
assays for measuring p-tau231 should test whether the present model 
could be improved. Another important issue is that we acknowledge 
that CSF collection requires trained clinicians, and we plan to move 
toward a plasma-based staging model when these biomarkers become 
available. A replication of these results in a more diverse population is 
also needed to confirm the utility of our model in a less selected popula-
tion. Furthermore, we could not test the effects that other comorbid 
pathologies may have on our staging system. This should be explored in 
future studies with available neuropathological information. We would 

Fig. 6 | Replication of main analyses in Knight ADRC participants. Cross-
validated confusion matrix of the CSF biomarkers of the model is shown in  
a. Darkness represents the probability of that biomarker becoming abnormal 
at that position, with black being 100%. Description of the CSF levels of the 
biomarkers included in the model by CSF stages are shown in b. Depiction of 
individual biomarker levels, not used in the creation of the model by CSF stages, 
are shown in c. All increases represent increase in abnormality. The horizontal 
line is drawn at z-score = 1.96, which represents 95% CI of the reference group 
(CU−). CSF stage 0 represents being classified as normal by the model. Prediction 
of amyloid-PET (d–g), tau-PET (e–h) and A/T status (by PET, f–i) are shown 
next. The number of participants in each category is colored in d–f. Numbers of 
participants in each category per CSF stage are shown within the bar plots. ROC 
curves were used to determine the CSF stage to optimally classify participants 

into positive/negative in each case (g and h). The optimal cutoff in each case is 
shown as a vertical dashed line in d and e, respectively. The heat map represents 
the predicted percentage of participants in each A/T group per CSF stage  
(i). The most probable (highest percentage) group per CSF stage is framed in 
black. Progression from CDR = 0 or CDR = 0.5 at baseline to CDR ≥ 1 is shown in 
j and k and from CDR = 0 to CDR ≥ 0.5 in l and m. Kaplan–Meier curves (shaded 
area: 95% CI) as well as the number of participants per group and timepoint are 
shown in j and l. Dashed lines indicate the timepoint at which 50% of a group had 
progressed. Cox proportional hazards models were used to calculate HR (95% 
CI) (square and error bars, respectively) of higher CSF stages (4–5) compared to 
the reference (1–3, k and m). Exact P values shown in the figure are as follows: k: 
P = 6.2 × 10−6; m: P = 0.00010.
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also like to point out that the CSF stages proposed here are related to 
events of the disease and not to time. Thus, it may be possible that the 
time for progressing from one CSF stage to the next varies markedly 
depending on the CSF stage at baseline. We acknowledge that the 
combined use of the continuous measures of the selected biomarkers 
could render similar accuracies to those obtained by the CSF stages for 
some predictive purposes. Nonetheless, we think that the simplicity 
of our model is also a key point for its future utility in clinical practice. 
Finally, we cannot rule out that the staging of our model can be affected 
by biomarker sensitivity, such that more sensitive biomarkers may be 
more likely to be ordered earlier in the model. This has no bearing on 
the predictive value of the model as described here, and the biomarker 
ordering that we discovered both conforms with previous knowledge 
of AD biomarker sequencing and predicts other biomarker changes in 
a manner coherent with expectations. Nonetheless, it will be important 
for future models to make use of the most sensitive biomarkers avail-
able and, in doing so, ensure that they are calibrated to these new data.

In conclusion, in the present study, we developed an accurate stag-
ing model for AD based on only five CSF biomarkers, and we evaluated 
it in two large independent cohorts. We showed that the model is stable 
and accurately reflects biomarker changes in AD, providing an easier and 
cheaper method for characterization of participants for both clinical 
setting and trials. Furthermore, our model has demonstrated its utility 
for prognosis, being able to identify participants with more pronounced 
longitudinal changes in AD biomarkers as well as those individuals 
with higher risk of deteriorating in cognitive status. This CSF staging 
model may be a useful, cheap and accessible method in clinical trials 
for optimal selection of study participants and as a surrogate outcome 
measure. Furthermore, the staging model has great potential for use in 
clinical practice in the diagnostic and prognostic workup of patients 
with cognitive symptoms and potentially also for selecting optimal 
candidates for disease-modifying treatments. In addition, we expect 
that it may have an influence on the update of the A/T/(N) criteria57. 
Altogether, our staging model may be an important step toward a more 
sophisticated personalized medicine approach of AD, which will be key 
with the advancement of disease-modifying treatments.

Methods
Participants
BioFINDER-2. We assessed 426 participants from the Swedish 
BioFINDER-2 study (NCT03174938)19, with the complete set of CSF 
biomarkers available. Participants were recruited at Skåne University 

Hospital and the Hospital of Ängelholm in Sweden. These partici-
pants also had amyloid-PET (n = 251), tau-PET (n = 417), MRI (n = 420) 
and cognitive assessment (n = 426). In addition, 220 participants had 
available CSF biomarkers at follow-up (mean time (s.d.) = 2.05 (0.22) 
years). Inclusion and exclusion criterion for this study were detailed 
previously19. In summary, CU participants do not fulfil criteria for MCI 
or dementia according to the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5)65. Participants with SCD were 
considered as CU, in accordance with the research framework by the 
NIA-AA43. Participants with MCI had a Mini-Mental State Examination 
(MMSE) score above 23; they did not fulfil the criteria for major neuro-
cognitive disorder (dementia) according to DSM-5; and they performed 
worse than −1.5 s.d. in at least one cognitive domain according to age 
and education-stratified test norms. AD dementia was diagnosed 
according to the DSM-5 criteria for major neurocognitive disorder due 
to AD, and an abnormal biomarker for Aβ pathology was also required. 
Participants fulfilling the criteria for any other dementia were catego-
rized as non-AD dementia, as previously described19.

Knight ADRC. The Knight ADRC cohort consisted of community- 
dwelling volunteers enrolled in studies of memory and aging at Wash-
ington University in St. Louis. All Knight ADRC participants underwent 
a comprehensive clinical assessment that included a detailed interview 
of a collateral source, a neurological examination of the participant, 
the CDR66 and the MMSE67. Individuals with a CDR of 0.5 or higher were 
considered to have a dementia syndrome, and the probable etiology of 
the dementia syndrome was formulated by clinicians based on clinical 
features in accordance with standard criteria and methods68. In the 
Knight ADRC cohort, participants were categorized as CU if they scored 
CDR = 0, either Aβ negative or Aβ positive (CU− and CU+, respectively); 
patients with very mild AD if they scored CDR = 0.5; and patients with 
mild AD dementia if they scored CDR ≥ 1 and the clinical syndrome was 
typical of symptomatic AD. Participants with CDR ≥ 0.5 with different 
etiology were assessed as being patients with ‘Other dementia’ regard-
less of their amyloid status.

All participants gave written informed consent, and ethical 
approval was granted by the Regional Ethical Committee in Lund, 
Sweden (protocol: 2016_1053), and the Washington University Human 
Research Protection Office (protocol: 201109100).

Fluid biomarkers
Measurement of CSF tau species (that is, pT205/T205, pT217/T217, 
pT231/T231, MTBR-tau243 and np-tau variants) was performed at 
Washington University in both cohorts using the developed IP/MS 
method, as previously detailed32. In brief, Tau1 (generated by Nicholas 
Kanaan) and HJ series (HJ8.5, HJ8.7, HJ32.11 and HJ34.8) antibodies 
(generated by David Holtzman) were used. In BioFINDER-2, CSF levels 
of Aβ42/40 and NfL were measured using the Elecsys platform, as 
previously described19. Aβ positivity was assessed using CSF Aβ42/40 
(<0.080), unless otherwise stated, based on Gaussian mixture mod-
eling. In Knight ADRC, CSF Aβ42/40 levels were measured as described 
previously28,69. The CSF Aβ42/40 positivity threshold (0.0673) had 
the maximum combined sensitivity and specificity in distinguishing 
amyloid-PET status. CSF NfL was measured with a commercial ELISA 
kit (UMAN Diagnostics), as described previously70. Data analysis was 
performed blinded to the diagnostics of the participants.

Image acquisition and processing
Image acquisition and processing details from BioFINDER-2 were pre-
viously reported19. In brief, amyloid-PET and tau-PET were acquired 
using [18F]flutemetamol and [18F]RO948, respectively. Amyloid-PET 
binding was measured as standardized uptake value ratio (SUVR) 
using a neocortical meta-ROI and with the cerebellar gray as a refer-
ence region. Of note, most of the patients with AD dementia did not 
undergo amyloid-PET in BioFINDER-2 owing to the study design. For 

Normal

Maximal

0 1 2 3 4 5

CSF stages

pT217/T217

pT205/T205

Aβ42/40

D
eg

re
e 

of
 a

bn
or

m
al

ity

Abnormality

MTBR-tau243

np-tau

Cortical Aβ
depositionNormal aging

Increased
phosphorylation
and secretion of

soluble tau

Widespread cortical
fibrillar tau deposition,
neurodegeneration and
cognitive impairment

Fig. 7 | CSF stages and disease progression. Simplified version of the CSF 
biomarkers trajectory across CSF s nship with disease progression. The text 
above is hypothetical and is based on previous studies4,28,29,32,53,86.

http://www.nature.com/nataging
https://clinicaltrials.gov/ct2/show/NCT03174938


Nature Aging

Article https://doi.org/10.1038/s43587-024-00599-y

main analyses, tau-PET binding was measured in a temporal meta-ROI71, 
which included entorhinal, amygdala, parahippocampal, fusiform, 
inferior temporal and middle temporal ROIs, using the inferior cer-
ebellar cortex as a reference region without partial volume correction. 
Additionally, tau-PET binding was also measured in regions covering 
early (Braak I), intermediate (Braak III–IV) and late (Braak V–VI) tau 
deposition areas42. For assessing cortical thickness, T1-weighted ana-
tomical magnetization-prepared rapid gradient echo (MPRAGE) images 
(1-mm isotropic voxels) were used. A cortical thickness meta-ROI was 
calculated including entorhinal, inferior temporal, middle temporal 
and fusiform using FreeSurfer (version 6.0; https://surfer.nmr.mgh.
harvard.edu) parcellation, which are areas known to be susceptible 
to AD-related atrophy72.

Methodological details for imaging processing and quantification 
for the Knight ADRC cohort were also previously reported72,73. In brief, 
MPRAGE data were processed using FreeSurfer (version 6.0) to generate 
ROIs. Amyloid-PET was acquired with either [11C]PIB or [18F]florbetapir 
and was quantified in a neocortical meta-ROI using cerebellar gray as 
a reference region. SUVR values were transformed to Centiloids74 to 
allow direct comparison between tracers using previously validated 
transformations75. [18F]flortaucipir ([18F]AV1451) was used as a tau-PET 
tracer, and images were quantified in the same temporal meta-ROI as in 
BioFINDER-2 and assessed as positive if SUVR > 1.32, based on previous 
work76. The same additional regions as in BioFINDER-2 were also used 
to quantify tau-PET binding in early, intermediate and late tau deposi-
tion regions. In all cases, cerebellar gray was used as a reference region. 
T1-weighted images were used to measure cortical thickness using the 
same approach as in the BioFINDER-2 cohort.

Neuropsychological testing
mPACC and a global cognitive composite were used as the main 
cognitive outcome in BioFINDER-2 and Knight ADRC participants, 
respectively. In BioFINDER-2 participants, the mPACC-5 composite 
was calculated using mean of z-scores of Alzheimer’s Disease Assess-
ment Scale (ADAS) delayed recall (weighted double), animal fluency, 
MMSE67 and Trail Making Test-A (TMT-A)77, as a sensitive measure of 
early cognitive impairment78. We calculated z-scores with a group of 
CU− as reference. Furthermore, we also calculated several cognitive 
composites by averaging z-scores of different cognitive tests. For the 
memory composite, we used ADAS delayed and immediate word recall; 
for the executive function composite, we used TMT-A, TMT-B and the 
symbol digit test; for the language composite, we used the animal flu-
ency test and the Boston Naming Test (BNT) total score79; and, finally, 
for the visuo-spatial composite, we used the visual object and space 
perception (VOSP) cube and letters tests.

In Knight ADRC, the global cognitive composite was created using 
mean of z-scores of free and cued selective reminding test (FCSRT) 
free recall80, animal fluency, TMT-A and TMT-B. We calculated z-scores 
from a CU− group as a reference. For the executive function composite, 
we used TMT-A and TMT-B. We could not obtain any other cognitive 
composite similar to those derived in BioFINDER-2 due to lack of simi-
lar tests. However, we selected individual tests to try to recapitulate 
similar cognitive measures. For memory, we used FCSRT, and, for 
language, we used animal fluency. No tests were available related to 
visuo-spatial capacity.

Model creation
Model development was done with SuStaIn41 using cross-sectional 
data of amyloid-positive participants based on CSF Aβ42/40 levels. 
We selected these participants because we wanted to create a staging 
model focused on AD. However, using the whole sample also rendered a 
single subtype model with the same ordering in the abnormality of the 
CSF biomarkers. SuStaIn is a Bayesian technique that unravels temporal 
progression patterns (stages), allowing for multiple different trajec-
tories (subtypes). For our purpose, we used the event-based model81 

(or mixture SuStaIn82), in which the input data are the probability of 
each biomarker being abnormal for each participant. In our case, we 
used a Gaussian mixture modeling approach (with two Gaussians) to 
obtain these probabilities. With this information, SuStaIn provides the 
maximum likelihood sequence by which biomarkers become abnormal 
and gives a probability for this ordering, for all subtypes. The number 
of SuStaIn stages is defined by the number of biomarkers provided 
to the model (that is, one per biomarker plus a biomarker negative 
stage). The selection of the optimal number was determined using 
cross-validation, optimizing on cross-validation-based information 
criterion (CVIC), and out-of-sample log-likelihood was calculated. The 
optimal number of subtypes was then selected based on these criteria, 
using the minimal number of subtypes that had the lowest CVIC and 
higher log-likelihood41. In this study, we used pySuStaIn83, a Python 
implementation of the original method (downloaded in August 2022).

In our initial model with BioFINDER-2 participants, we included 
all biomarkers available and performed the cross-correlation in 
models with one, two and three subtypes. We included only one 
non-phosphorylated peptide due to the extremely high correlation 
that all have among them (r ≥ 0.98; Supplementary Fig. 5). Although 
CVIC measures were lower in the three-subtype model, the similar 
log-likelihood in all three models supported the one-subtype model 
as the optimal one due to its lower complexity84. Upon examining the 
outcome of this model, we observed that pT217/T217, pT231/T231 
and pT181/T181 position certainty was low, as they seemed to com-
pete for the second position (Extended Data Fig. 1a). To avoid stages 
with low certainty, we decided to try to optimize this model through 
iterative removal of these biomarkers. All the possible combinations 
were created (that is, removing pT217/T217 and/or pT231/T231 and/or 
pT181/T181) and compared using the CVIC (Extended Data Fig. 1b). We 
observed that models including only one of these biomarkers (models 
5–7) were better than those including two (models 2–4) or all three 
(model 1). Furthermore, models including pT181/T181 performed 
worse, and those including pT217/T217 performed better. Thus, the 
optimal model was selected as that including only pT217/T217 (model 7).  
Once the biomarkers to be included in the model were selected, we 
repeated the cross-validation with models up to three subtypes. Com-
paring CVIC and log-likelihood values, we once again selected the 
one-subtype model as the optimal (Extended Data Fig. 1c). Based on this 
cross-validated model, we then staged all BioFINDER-2 participants.

We also did some sensitivity analyses in the creation of the model. 
First, we created a model including all np-tau variants available by the 
mass spectrometry analyses. We observed that the high correlation 
between the different np-tau variants prevented the algorithm from 
finding a clear ordering among them but not for the other included AD 
biomarkers (Supplementary Fig. 6). This supports the inclusion of a 
single np-tau in the final model. Next, we created new models using dif-
ferent np-tau fragments that rendered very similar results (Supplemen-
tary Methods). Furthermore, we also created the model in 10 different 
random samples (random shuffle per biomarker without resampling). 
With this sensitivity analysis, we showed that the performance of our 
final model on explaining the provided data was significantly better 
than what could be expected from a model created by chance. Finally, 
we simulated new datasets with two and three underlying subtypes to 
assess the minimal size a subtype must be to be detected by SuStaIn 
(Supplementary Methods). We observed that SuStaIn was able to detect 
two and three underlying subtypes until the smaller subtypes included 
more than 5% of the original sample (Supplementary Figs. 8 and 9). 
Thus, we showed that the lack of different subtypes in our main analysis 
is, with high probability, due to the existence of one single sequence 
and not due to sample size problems.

For Knight ADRC, we followed the same main approach. We first 
started with seven biomarkers and tested the optimal number of sub-
types, which was, again, one (CVIC: subtype 1 = 629.5, subtype 2 = 649.4, 
subtype 3 = 658.4, log-likelihood: subtype 1 = −32.3, subtype 2 = −33.3, 
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subtype 3 = −33.8; Supplementary Fig. 10a). Then, given the high over-
lap between biomarkers, we tested removing pT217/T217, pT231/T231 
and/or pT181/T181 again. Based on CVIC (model 1: 629.5, model 2: 
590.1, model 3: 564.6, model 4: 567.1, model 5: 520.7, model 6: 524.0 
and model 7: 497.2) and log-likelihood (median: model 1: −31.8, model 
2: −29.8, model 3: −28.1, model 4: −28.4, model 5: −25.9, model 6: −26.1 
and model 7: −24.8) metrics, the model with only pT217/T217 (model 7) 
was again selected as the optimal (Supplementary Fig. 10b). Finally, we 
created models for 1–3 subtypes and based on CVIC (subtypes: 1 = 497.2, 
2 = 524.5 and 3 = 550.6) and log-likelihood (median: 1 = −24.8, 2 = −27.0 
and 3 = −28.3), and the less complex model (that is, one subtype) was 
selected as the best fit to the data (Supplementary Fig. 10c). We then 
staged all Knight ADRC participants based on this cross-validated 
model. As a sensitivity analysis, we also used the model created with 
BioFINDER-2 data and applied to the Knight ADRC cohort instead of 
creating the model in the Knight ADRC cohort. Very similar results were 
found, with 213 of 222 participants (96%) assigned to the same stage 
as when we fitted the model on the Knight ADRC data. Of note, all nine 
cases changed from CSF stage 5 (creating the model in Knight ADRC) 
to CSF stage 4 (using BioFINDER-2 model). This change may be due to 
the lower severity of Knight ADRC participants compared to those in 
BioFINDER-2, as they all had the lowest np-tau levels in CSF stage 5.

As a sensitivity analysis, we compared the levels of the two bio-
markers excluded (pT231/T231 and pT181/T181) with those of pT217/
T217 in the optimal model. In summary, we observed that these bio-
markers followed a similar trajectory across CSF stages as pT217/
T217 although with lower increases in the two cohorts (Extended Data 
Fig. 8a,b), which supports our decision of removing them from the 
model to have more stable and independent stages.

Statistics and reproducibility
All biomarkers were z-scored using participants older than 60 years 
from the CU− group as a reference (BioFINDER-2: n = 63 and Knight 
ADRC: n = 71). When necessary, biomarker data were inverted such 
that higher z-scores related to higher abnormality across all biomark-
ers. Differences in biomarkers by CSF stages were assessed using the 
Kruskal–Wallis test. The Wilcoxon test was used for post hoc compari-
sons adjusted for multiple comparisons with false discovery rate (FDR) 
correction (only differences in consecutive CSF stages are shown in the 
figures, but all comparisons are shown in supplementary tables). For 
categorical data (that is, sex, APOE carriership and diagnosis), we used 
chi-squared tests. LOESS regressions were used to fit the progression of 
biomarker abnormalities across the CSF stages. ROC curves were used to 
assess the utility of CSF stages for predicting amyloid-PET and tau-PET 
positivity and to compare AD to non-AD objective cognitive impairment 
(MCI or dementia states). Maximization of Youden’s index was used to 
select the optimal CSF stage cutoff in each case (‘pROC’ and ‘cutpointr’ 
packages were used). For ordinal categories (that is, A/T PET status and 
diagnosis), ordinal logistic regression models were used (‘MASS’ and 
‘lmr’ packages). An equivalent measure to AUC, the c-index, was used to 
assess the performance of the CSF staging85. CIs were calculated using 
bootstrapping. Predicted probabilities of the outcome groups per each 
CSF stages were calculated using the ‘predict’ function. For longitudinal 
analyses, we first calculated longitudinal rates of change using linear 
regression models individually for each participant and biomarker. 
For each biomarker, we compared participants’ rates of change by their 
CSF stages at baseline as done in the cross-sectional analyses. LOESS 
regressions were also used to fit the progression of biomarkers’ rates 
of change across the CSF stages. One participant with a very negative 
rate of change in amyloid-PET (z-score < −1.8) was considered an outlier 
by visual inspection and was excluded from the analysis. Kaplan–Meier 
curves were used to assess clinical progression using the ‘survival’ and 
‘survminer’ packages. Cox proportional hazards models were used to 
calculate the risk of clinical progression adjusting for age and sex in all 
cases and further baseline clinical status if necessary.

All analyses were performed with R (version 4.1.0). Two-sided 
P values less than 0.05 were considered statistically significant. For 
comparisons between CSF stages (that is, biomarker levels and rates 
of change), FDR correction was applied to account for multiple com-
parisons. All plots were done with the ‘ggplot’ package. Data distribu-
tion was assumed to be normal, but this was not formally tested. No 
statistical methods were used to pre-determine sample sizes, but our 
sample sizes per number of biomarkers are similar to those reported 
in previous publications36,41. Data collection was performed blinded 
to diagnostic characteristics.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the present study are 
available from the authors (O.H and R.J.B). The corresponding author 
will share datasets within the restrictions of institutional review board 
ethics approvals upon reasonable request.
For BioFINDER-2 data, anonymized data will be shared by request from 
a qualified academic investigator for the sole purpose of replicating 
procedures and results presented in this article and as long as data 
transfer is in agreement with European Union legislation on the general 
data protection regulation and decisions by the Ethical Review Board 
of Sweden and Region Skåne, which should be regulated in a material 
transfer agreement. Knight ADRC data are available to qualified inves-
tigators who have a proposal approved by an institutional commit-
tee (https://knightadrc.wustl.edu/Research/ResourceRequest.htm).  
The study must be approved by an institutional review board to ensure 
ethical research practices, and investigators must agree to the terms 
and conditions of the data use agreement, which includes not distribut-
ing the data without permission. All other data are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Creation and optimization of the model in the 
BioFINDER-2 cohort. Initial model with all CSF biomarkers (Aβ2/40, pT217/T217, 
pT231/T231, pT181/T181, pT205/T205, MTBR-tau243 and np-tau) is shown in A. 
First two columns represent the statistics, CVIC and log-likelihood, of this model 
for one, two and three subtypes. Each dot in log-likelihood plot represents one 
of the ten cross-validation sets of data. Lower CVIC and higher log-likelihood 
values represent better performance of the model. Although higher number 
of subtypes had higher CVIC, the comparable log-likelihood across subtypes 
suggests that one subtype is complex enough to explain the variability observed 
in the data. Cross-validated confusion matrix of the one subtype model is 
shown in the last column. Here, biomarkers are sorted by the time they become 
abnormal based on the results of SuStaIn. Darkness represents the probability of 
that biomarker of becoming abnormal at that position, with black being 100%. 
Given that some biomarkers (pT217/T217, pT231/T231 and pT181/T181) show high 

overlap on the ordering, we optimized the model by removing these biomarkers 
systematically (B). All models without one or two of these biomarkers were tested 
(models 2 to 7). CVIC (left) and cross-validated confusion matrixes (right) for each 
of these models are shown in B, respectively. CVIC shows that the optimal model 
was that excluding both pT231/T231 and pT181/T181 (model 7, shown in C). Both 
CVIC and log-likelihood measures show that one subtype was the optimal model 
when using this set of biomarkers. In boxplots, dots represent each of the ten-fold 
permutations, central band of the boxplot represents the median of the group, 
the lower and upper hinges correspond to the first and third quartiles, and the 
whiskers represent the maximum/minimum value or the 1.5 IQR from the hinge, 
whatever is lower. Abbreviations: Aβ, amyloid-β; CVIC, cross-validation  
information criterion; MTBR, microtubule binding region; np-tau, non-
phosphorylated mid-region tau; pT, phosphorylated tau; SuStaIn, subtype and 
stage inference.

http://www.nature.com/nataging


Nature Aging

Article https://doi.org/10.1038/s43587-024-00599-y

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Demographic, genetic and clinical characteristics 
by CSF stage. Depiction of basic characteristics of BioFINDER-2 (A-E) and 
Knight-ADRC (F-J) by CSF stage. Kruskal-Wallis or chi-square tests were used 
to investigate the association between each of these characteristics and CSF 
stages. Two-sided p-values of these tests are shown at the top right of each 
subplot. Number of individuals in each category are shown inside the barplots. 
Black central dot and vertical lines in A, B, F and G represent the mean and two 

standard deviations of each stage, respectively. Abbreviations: AD, Alzheimer’s 
disease; ADD+, Alzheimer’s disease dementia amyloid positive; CU-, cognitively 
unimpaired amyloid negative; CU+, cognitively unimpaired amyloid positive; 
CSF, cerebrospinal fluid; MCI+, mild cognitive impairment amyloid positive; 
nonAD, non-Alzheimer’s related disease; other Dem, non-Alzheimer’s type 
dementia.
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Extended Data Fig. 3 | Model stability. Depiction of the evolution of CSF stages 
in BioFINDER-2 (n = 220, A-B) and Knight-ADRC participants (n = 51, C-D) with 
longitudinal CSF available. As longitudinal CSF Aβ42/40 levels were not available 
for any BioFINDER-2 participant, we imputed this data with their baseline levels. 
We show the number of progressors, regressors and stable participants in  

A and C, for each cohort respectively. In B and D, we further show the CSF stages 
at follow-up. For those Knight-ADRC with more than one longitudinal visit we 
took the one more distant from the baseline. Abbreviations: Aβ, amyloid-β; CSF, 
cerebrospinal fluid.
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Extended Data Fig. 4 | Tau-PET binding in different Braak regions by CSF 
stages. Depiction of tau-PET binding in different areas of tau deposition, by 
CSF stage in all BioFINDER-2 (A) and Knight-ADRC participants (B). These areas 
include regions of early (Braak I-II), intermediate (Braak II-IV) and late (Braak V-VI) 
tau deposition. Tau-PET levels are z-scored based on a group of CU- participants 
(BioFINDER-2: n = 63 and Knight-ADRC: n = 71) and all increases represent 
increase in abnormality. Significant differences in contiguous CSF stages are 
shown with asterisks (two-sided, FDR-corrected). Horizontal line is drawn at 
z-score = 1.96 which represents 95%CI of the reference group (CU-). Black central 
dot and vertical lines in A, and C represent the mean and two standard deviations 
of each stage, respectively. Colored lines and bands represent the LOESS 

regression and its 95%CI. Smoothed LOESS lines of all AD biomarkers are shown 
in B (BioFIDNER-2) and D (Knight-ADRC) for comparison. CSF stage 0 represent 
being classified as normal by the model. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
Exact p-values shown in the figure are, Braak I-II: 2-3: p = 5.8·10−7; 3-4: p = 9.2·10−13; 
4-5: p = 0.041; Braak III-IV: 2-3: p = 0.0007; 3-4: 3-4: p = 5.8·10−11; Braak V-VI: 2-3: 
p = 0.0005; 3-4: p = 6.3·10−7; for BioFINDER-2; and: Braak I-II: 3-4: p = 1.4·10−6; 
Braak III-IV: 3-4: p = 5.2·10−10; for Knight-ADRC. Abbreviations: Aβ, amyloid-β; 
AD, Alzheimer’s disease; CI, confidence interval; CU-, cognitively unimpaired 
amyloid negative; CSF, cerebrospinal fluid; LOESS, locally estimated scatterplot 
smoothing; PET, positron emission tomography; ROI, region of interest.
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Extended Data Fig. 5 | Cognitive composites by CSF stages. Depiction of 
different cognitive measures, by CSF stage in BioFINDER-2 (A) and Knight-ADRC 
participants (B). These measures include: mPACC (ADAS-delayed, animal fluency, 
MMSE and TMT-A), memory (ADAS-delayed and ADAS-immediate), executive 
function (TMT-A, TMT-B and symbols digit), language (animal fluency and BNT-
15) and visuospatial (VOSP-cube and VOSP-incomplete) for BioFINDER-2. For 
Knight-ADRC we had a global cognitive composite (FCSRT, animals, TMT-A and 
TMT-B), an executive function composite (TMT-A and TMT-B), a memory (FCSRT) 
and language (animal fluency) tests. Cognitive scores are z-scored based  
on a group of CU- participants (BioFINDER-2: n = 60 and Knight-ADRC:  
n = 71) and all increases represent increase in abnormality. Significant differences 
in contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected). 
Horizontal line is drawn at z-score = 1.96 which represents 95%CI of the reference 
group (CU-). Black central dot and vertical lines in A and C represent the mean 
and two standard deviations of each stage, respectively. Colored lines and bands 

represent the LOESS regression and its 95%CI. Smoothed LOESS lines of all AD 
biomarkers are shown in B (BioFIDNER-2) and D (Knight-ADRC) for comparison. 
We excluded non-AD dementia patients to avoid bias in these analyses. CSF stage 
0 represents being classified as normal by the model. *: p < 0.05; **: p < 0.01; ***:  
p < 0.001. Exact p-values shown in the figure are, mPACC: 2-3: p = 0.004; 3-4:  
p = 0.002; 4-5: p = 0.0008; Memory: 0-1: p = 0.049; 2-3: p = 0.045; 3-4: p = 0.0002; 
4-5: p = 0.011; Language: 4-5: p = 0.001; for BioFINDER-2; and Executive: 1-2: p = 0.044;  
Language: 3-4: p = 0.019 for Knight-ADRC. Abbreviations: AD, Alzheimer’s 
disease; ADAS, Alzheimer’s disease assessment scale; BNT, Boston naming 
test; CI, confidence interval; CU-, cognitively unimpaired amyloid negative; 
CSF, cerebrospinal fluid; FCSRT, free and cued selective reminding test; LOESS, 
locally estimated scatterplot smoothing; MMSE, Mini-Mental state examination; 
mPACC, modified version of preclinical Alzheimer’s disease cognitive composite; 
TMT, trial making test; VOSP, visual object and space perception battery.
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Extended Data Fig. 6 | Individual CSF stages for predicting clinical 
progression. Kaplan-Meier curves (shaded area: 95%CI) for all individual 
CSF stages in BioFINDER-2 (A-C) and Knight-ADRC (D-E) participants. For 
BioFINDER-2, progression from CU or MCI at baseline to AD dementia is  
shown in A; progression from MCI at baseline to AD dementia is shown in  

B and; progression from CU at baseline to MCI is shown in C. For Knight-ADRC, 
progression from CDR = 0 or CDR = 0.5 at baseline to CDR≥1 is shown in D and; 
progression from CDR = 0 at baseline to CDR≥0.5 is shown in E. Abbreviations: 
AD, Alzheimer’s disease; CDR, clinical dementia rating; CSF, cerebrospinal fluid; 
CU, cognitively unimpaired; MCI, mild cognitive impairment.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Individual biomarker levels by CSF stage in Knight-
ADRC participants. Individual CSF biomarker levels, included in the model,  
by CSF stage participants are shown in A including all Knight-ADRC participants. 
Depiction of individual AD-biomarker levels, not used in the creation of the 
model, per CSF stage are shown in B. All biomarker levels are z-scored based 
on a group of CU- participants (n = 71) and all increases represent increase in 
abnormality. Significant differences in contiguous CSF stages are shown with 
asterisks (two-sided, FDR-corrected). Horizontal line is drawn at z-score = 1.96 
which represents 95%CI of the reference group (CU-). Black central dot and 
vertical lines represent the mean and two standard deviations of each stage, 
respectively. Colored lines and bands represent the LOESS regression and its 

95%CI. CSF stage 0 represent being classified as normal by the model. Black dots 
and vertical lines represent mean and SD per CSF stage. *: p < 0.05; **: p < 0.01; ***:  
p < 0.001. Exact p-values shown in the figure are, Amyloid-PET: 2-3: p = 0.003; 
3-4: p = 0.005; Tau-PET: 3-4: p = 4.4·10−10; Cortical thickness: 2-3: p = 0.007; 3-4: 
p = 3.0·10−5; 4-5: p = 0.032; CSF NfL: 2-3: p = 0.35. Abbreviations: Aβ, amyloid-β; 
CI, confidence interval; CU-, cognitively unimpaired amyloid negative; CSF, 
cerebrospinal fluid; MMSE, Mini-Mental state examination; MTBR, microtubule 
binding region; NfL, neurofilament light; PET, positron emission tomography; 
np-tau, non-phosphorylated mid-region tau; pT, phosphorylated tau; SuStaIn, 
subtype and stage inference.
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Extended Data Fig. 8 | Excluded CSF biomarkers by CSF stage. Depiction of 
the CSF biomarkers excluded in the optimal model (pT231/T231 and pT181/
T181) by CSF stage in BioFINDER-2 (A-B) and Knight-ADRC (C-D) participants. 
CSF pT217/T217 is also shown for comparison. CSF levels are z-scored based 
on a group of CU- participants (BioFINDER-2: n = 63, Knight-ADRC: n = 71) and 
all increases represent increase in abnormality. Significant differences in 
contiguous CSF stages are shown with asterisks (two-sided, FDR-corrected). 
Horizontal line is drawn at z-score = 1.96 which represents 95%CI of the reference 
group (CU-). Black central dot and vertical lines in A and C represent the mean 
and two standard deviations of each stage, respectively. Colored lines and bands 
represent the LOESS regression and its 95%CI. Smoothed LOESS lines of all CSF 
biomarkers are shown in B (BioFIDNER-2) and D (Knight-ADRC) for comparison. 

CSF stage 0 represent being classified as normal by the model. Black dots and 
vertical lines represent mean and SD per CSF stage, respectively. *: p < 0.05; **:  
p < 0.01; ***: p < 0.001. Exact p-values shown in the figure are, pT217/T217: 1-2:  
p = 3.7·10−15; 2-3: p = 3.1·10−5; 3-4: p = 3.3·10−12; 4-5: p = 4.7·10−10; pT181/T181: 1-2:  
p = 1.3·10−7; 3-4: p = 1.8·10−7; 4-5: p = 1.8·10−7pT231/T231: 0-1: p = 0.0004; 1-2:  
p = 2.9·10−9; 3-4: p = 9.8·10−5; 4-5: p = 0.007 for BioFINDER-2; and pT217/T217: 0-1:  
p = 0.041; 1-2: p = 0.0004; 2-3: p = 0.0008; 3-4: p = 3.7·10−6; pT181/T181: 1-2: p = 
0.006; 4-5: p = 0.012; pT231/T231: 1-2: p = 0.0019 for Knight-ADRC. Abbreviations: 
Aβ, amyloid-β; CI, confidence interval; CU-, cognitively unimpaired amyloid 
negative; CSF, cerebrospinal fluid; LOESS, locally estimated scatterplot 
smoothing; MTBR, microtubule binding region; np-tau, non-phosphorylated 
mid-region tau; pT, phosphorylated tau; SuStaIn, subtype and stage inference.
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