
Nature Aging | Volume 3 | November 2023 | 1430–1445 1430

nature aging

Resource https://doi.org/10.1038/s43587-023-00513-y

Spatial and single-cell profiling of the 
metabolome, transcriptome and epigenome 
of the aging mouse liver

Chrysa Nikopoulou    1,2,13, Niklas Kleinenkuhnen1,3,13, Swati Parekh    1,11,13, 
Tonantzi Sandoval1, Christoph Ziegenhain    4, Farina Schneider5, 
Patrick Giavalisco    6, Kat-Folz Donahue7, Anna Juliane Vesting8, 
Marcel Kirchner    7, Mihaela Bozukova1, Christian Vossen8, Janine Altmüller9, 
Thomas Wunderlich    2,8, Rickard Sandberg    4, Vangelis Kondylis    5,10, 
Achim Tresch    2,3  & Peter Tessarz    1,2,12 

Tissues within an organism and even cell types within a tissue can age 
with different velocities. However, it is unclear whether cells of one type 
experience different aging trajectories within a tissue depending on their 
spatial location. Here, we used spatial transcriptomics in combination 
with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to 
address how cells in the male murine liver are affected by age-related changes 
in the microenvironment. Integration of the datasets revealed zonation-
specific and age-related changes in metabolic states, the epigenome and 
transcriptome. The epigenome changed in a zonation-dependent manner 
and functionally, periportal hepatocytes were characterized by decreased 
mitochondrial fitness, whereas pericentral hepatocytes accumulated large 
lipid droplets. Together, we provide evidence that c ha ng ing m ic ro en vi ro n-
ments within a tissue exert strong influences on their resident cells that can 
shape epigenetic, metabolic and phenotypic outputs.

Aging is characterized by a general physiological decline that is accom-
panied by metabolic, epigenetic and transcriptional changes1. A com-
mon attribute for these alterations is an increased inter-individual 
heterogeneity as observed in large cohorts. Even on an organismal 
level within populations of genetically identical individuals, variability 

seems intrinsically interconnected with aging. For example, in cohorts 
of Caenorhabditis elegans or mice, some individuals die much earlier 
than others2.

It is largely appreciated that transcriptional variability increases 
with age3–5. Although whole-tissue omics approaches have been 
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protein known to be enriched at the outer membrane of lipid droplets 
(LDs)15, showed that large LDs accumulate around the central vein 
in aged livers.

The apparent zone-dependent deposition of lipids in the aging 
liver prompted us to investigate the underlying transcriptional events. 
We used the 10X Genomics Visium Platform and ran 10 µm tissue cryo-
sections from livers of two young and two old mice (see Supplementary 
Table 2 for sequencing metrics). Initially, we visualized the normalized 
spatial gene expression of the zonation markers Cyp2f2, Cyp2e1 and 
Glul in young and old liver (Fig. 1b and Extended Data Fig. 1e). Based 
on the spatial expression patterns of these marker genes, we were 
able to resolve pericentral and -portal areas. Principal Components 
analysis showed that spots from the two young liver slides cluster 
together, while spots from the two old slides separate (Extended 
Data Fig. 1f). We merged young and old samples individually using 
canonical correlation analysis16 to remove batch effects. Subsequently, 
we analyzed zonal expression effects. Then, we merged all datasets 
using the same strategy. To assess whether the sample separation 
reflected gene expression differences based on age or were mostly 
due to a potential batch effect, we used the loadings calculated in 
the principal-component analysis (PCA) and intersected those with a 
recently published resource, in which global aging genes were defined 
organismal and tissue-wide17. Of the top 50 genes that contributed to 
the first principal component, the majority (35/50) were part of the 
liver-specific global aging genes (Extended Data Fig. 1g), indicating 
that our analysis preserved age-related expression differences. Next, 
we assigned spots based on Cyp2e1 and Cyp2f2 expression levels to 
mark pericentral and periportal region, respectively (Fig. 1c and Meth-
ods). Finally, we performed differential expression analysis based 
on a two-part, generalized linear hurdle model18 (Fig. 1d,f). Overall, 
429 genes were differentially expressed in the aged pericentral zone 
and 544 in the periportal zone. 375 genes were commonly deregu-
lated in both zones (Supplementary Table 3). To understand which 
biological processes were affected most by age and zonation, we 
performed pathway enrichment using Metascape19 (Supplementary 
Table 3). Reactome pathways indicated that amino acid metabolism, 
lipid metabolic processes and mitochondrial energy production were 
downregulated, while complement cascade and IGF transport and 
uptake was upregulated in both zones (Fig. 1e,g). Specific to the peri-
central zones was an upregulation of plasma lipoprotein assembly, 
remodeling and clearance as well as lipid particle organization (Fig. 1e).  
The periportal zone was characterized by an upregulation of  
heme scavenging and a down-regulation of stress signaling pathways 
(Fig. 1g). Important to note is the observation that while hepatocyte 
are dominating the transcriptional profiles in the spatial dataset, 
underlying marker gene expression for other cell types suggest that 
this dataset might be used to interrogate non-parenchymal cells, 
particularly Kupffer, endothelial and stellate cells (Extended Data  
Fig. 2a–c). Finally, we wanted to understand whether the transcrip-
tional changes were driven by a dedicated set of transcription factors. 
We used the iRegulon app within Cytoscape20,21 and visualized the top 
three most significant TFs (normalized enrichment score > 4) based on 
age-dependent differential expression within the two zones. Shared 
between the zones is Hnf1, which has been shown to regulate many 
hepatic genes22. Genes in the periportal area were predicted to be 
regulated by Hnf4a and Foxa3 (Fig. 1h). Hnf4a is a master regulator 
during hepatic differentiation and plays an important role during liver 
regeneration23, similarly to Foxa324. In addition, Hnf4a has recently 
been shown to possess anti-proliferative capacity and thus protects 
against hepatocellular carcinoma23. On the other hand, genes in the 
pericentral zone were predicted to be regulated by Cebp and Nr4a2 
(Fig. 1h), two TFs that regulate glucose and lipid metabolism25,26. Taken 
together, spatial transcriptomics revealed that aging is accompanied 
by zonation-specific metabolic rewiring, which is driven by a network 
of dedicated transcription factors.

important to get an insight into the uniform changes that occur on 
the organ level during aging, such methods cannot investigate het-
erogeneity on a cellular level. It is therefore unresolved whether all 
cells of the same cell type in a tissue age in the same way or whether 
the location of the cells within a tissue matters in this context. The 
development of single-cell and spatial omics methods renders it now 
possible to obtain (spatially resolved) molecular profiles at close to 
single-cell resolution, thus providing promising tools for deciphering 
the multifaceted process of aging6.

The liver is a heterogeneous tissue that consists of hepatocytes 
arranged in repeating units of hexagonally shaped lobules. Blood flows 
into the lobule from portal veins and hepatic arteries at the corners of 
the lobules to the central veins. This architecture creates gradients of 
oxygen, nutrients and hormones7. This gradual change in the lobule’s 
microenvironment is also referred to as liver zonation8, and the result-
ing spatial division of labor is essential for the optimal function of 
the liver. For example, the outer highly oxygenated periportal lobule 
layers perform mitochondrial-dependent metabolic tasks such as 
β-oxidation whereas the low oxygen concentrations at the pericentral 
areas will drive glycolysis7. As hepatocytes are the primary cells that 
perform these metabolic processes and their metabolic characteris-
tics depend on location, the liver is an attractive tissue to address the 
impact of location and metabolic state on the aging trajectory within 
a dedicated cell type.

Here, we used spatial transcriptomics, single-cell assay for trans-
posase-accessible chromatin with sequencing (scATAC-seq) and single-
cell RNA sequencing (scRNA-seq) in combination with lipidomics and 
functional assays for mitochondrial activity to reveal zonation-spe-
cific patterns of hepatocyte aging. An obvious phenotypic difference 
between the young and aging liver is the deposition of fat, which is 
concentrated mainly around the central vein. Using spatial transcrip-
tomics, we gain insight into this phenotype’s molecular underpinnings 
by identifying genes involved in lipid biosynthetic pathways. On the 
other hand, the most substantial age-related changes in the periportal 
region are associated with mitochondrial dysfunction. Zonation and 
age are important axes of separation in single-cell ATAC data, indicating 
that location and organismal aging are major drivers of epigenomic 
changes in the liver. Using scRNA-seq on sorted hepatocytes, we show 
that transcriptional noise is buffered by an increase in ploidy. The 
data presented here shed light on age-related changes in liver tissue 
microenvironments and will serve as a resource for the hepatic and 
aging community.

Results
Spatial transcriptomics gives insights into zonation-specific 
and age-related metabolic rearrangements
Transcriptional profiling of the mouse liver has revealed alterations 
in metabolic pathways9–11, with a major fraction of genes contribut-
ing to alterations in lipid metabolism (Extended Data Fig. 1a,b and  
Supplementary Table 1). Changes in lipid metabolism have been 
described to occur during aging and recently lipidomics started to iden-
tify corresponding changes in lipid profiles12. Liver pathologies that 
involve fat deposition, such as nonalcoholic fatty liver disease (NAFLD)  
show a tendency towards zonated lipid deposition around the central 
area13, but we were not aware of any dataset investigating lipid depo-
sition in the aging liver with respect to the specific zones. To assess  
the lipid deposition around the main zones, we performed RNAScope 
for pericentral (Cyp2e1, Glul) and periportal markers (Albumin, 
Cyp2f2) (ref. 14) combined with hematoxylin and eosin (H&E) stain-
ing in liver isolated from young (3–4 months) and old (18–22 months)  
mice (Fig. 1a and Extended Data Fig. 1c). Importantly, Sirius red 
staining showed no profound increase in liver fibrosis in old  
livers (Extended Data Fig. 1c). On the contrary, oil red O (O-R-O) stain-
ing (Extended Data Fig. 1d, upper panel) and immunohistochemi-
cal (IHC) staining for PLIN2 (Extended Data Fig. 1d, lower panel), a 
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Fig. 1 | Age-related and zonation-specific transcriptional alterations.  
a, RNAscope of zone-specific marker genes Glul (magenta, upper panel), Cyp2f2 
(cyan, upper panel), Cyp2e1 (magenta, lower panel) and albumin (cyan, lower 
panel) in paraffin-embedded liver sections from young (3-month-old) and old 
(18-month-old) mice. Scale bars, 100 µm. b, H&E staining of one young (upper 
panel) and one old (lower panel) liver specimen used for spatial transcriptomics 
(scale bar, 500 µm) and plots showing the expression levels of Glul, Cyp2f2 
and Cyp2e1 indicated by color. The color gradient represents normalized gene 
expression. c, UMAP projection of the spatial data; color-coded are the different 
zones and ages (left panel) and the expression of Glul, Cyp2e1 and Cyp2f2 
(right panel). PP: periportal, PC: pericentral. d, MA ((M (log2 ratio) and A (mean 
average)) plots of gene expression changes upon aging in the pericentral zone. 
Significantly changed genes are colored in red and blue (based on MAST18). 

Bonferroni correction was applied for multiple testing adjustments of P values 
(threshold of 0.05). e, Top five Reactome pathways for up- and downregulated 
genes in the pericentral region analyzed using Metascape. f, MA plots of gene 
expression changes upon aging in the periportal zone. Significantly changed 
genes were colored in and blue (based on MAST18). Bonferroni correction was 
applied for multiple testing adjustments of P values (threshold of 0.05). g, Top 
five Reactome pathways for up- and downregulated genes in the periportal 
region analyzed using Metascape. h, Transcription factor (TF) activity prediction 
from the age-dependent differentially expressed genes by the iRegulon app 
in Cytoscape (based on Supplementary Table 3; see Methods for details). For 
each zone, the top predicted transcription factors are shown as well as their 
interaction to regulate transcripts. Numbers indicate the genes in every cluster.
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The aging liver is characterized by lipid remodeling and loss of 
SRC in periportal mitochondria
The spatial transcriptomic data suggested age-related metabolic 
alterations that depend on the location of cells with respect to  
central or portal regions. To gain more insight into the metabolic altera-
tions, we first performed lipidomics to characterize the changes in 
lipid metabolism within the aging liver (Supplementary Table 4). This 
approach allowed us to not only address storage and membrane lipids 
but also analyze levels of cardiolipins (CLs) and ubiquinones to further 
investigate the observed alterations in mitochondrial metabolism. We 
extracted lipids from the livers of young and old mice. PCA (Extended 

Data Fig. 3a) suggested a strong lipid remodeling for most of the major 
lipid classes. Hierarchical clustering using LipidSig27 showed that long-
chained polyunsaturated fatty acids in the form of triacylglyerides were 
increased in the aging liver as were several diacylglyerides (DAGs), in 
line with the increase in LDs. Conversely, levels of phosphatidylcho-
line (PC) and sphingomylein (SM) were decreased (Fig. 2a). Interest-
ingly, an increase in DAGs as well as a decrease in SMs has been linked 
to reduced insulin insensitivity28, a well-known hallmark of aging and 
a pathway that was also evident in the spatial transcriptomics data 
(Fig. 1d,e). Another class of lipids that showed increased levels upon 
aging were CLs (Fig. 2a), which indicated changes in the composition 
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Fig. 2 | Lipid remodeling and alterations in mitochondrial metabolism in the 
aging liver. a, Heatmap with hierarchical clustering of lipid datasets derived 
from five old and five young mouse livers, showing the differentially regulated 
classes of lipids. Hierarchical clustering was performed using LipidSig based 
on data available in Supplementary Table 4. b, Bar plot showing the expression 
of Ubiquinones CoQ9 and CoQ10 in young (n = 5) and old (n = 5) liver. Data 
are presented as mean values ± standard error of the mean (s.e.m.). Statistical 
significance was determined using an unpaired two-tailed t-test. c, Exemplary 

FACS profiles of sorted hepatocytes based on CD73 (pericentral) and E-cadherin 
(periportal). d, Seahorse profile of hepatocytes purified from indicated sources. 
Error bars represent s.e.m. from n = 5 (n represents data derived from individual 
animals). e, Mitochondrial function as measured by Seahorse Mitochondrial 
Stress kit (parameter on top of graph) expressed as periportal versus pericentral 
and young-old n = 5 (n represents data derived from individual animals). Error 
bars represent s.e.m. Statistical significance was determined using a two-tailed 
unpaired t-test.
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of mitochondrial membranes and hence the function of mitochondrial 
inner membrane proteins, including the electron transport chain29. This 
hypothesis was also supported by the observation that ubiquinones, 
lipids that transfer the electron between the different complexes of  
the electron transport chain, were strongly downregulated with age 
(Fig. 2b). These findings in combination with the spatial transcriptom-
ics data supported the hypothesis of age-dependent mitochondrial 
changes. As the spatial transcriptomic data and the lipidome analy-
sis pointed towards a strong impact on mitochondrial metabolism, 
we wanted to investigate this phenotype in more detail, particularly 
in a zone-specific manner. In order to do this, we used a previously 
published protocol30 to sort hepatocytes into pericentral and peri-
portal upon perfusion of the liver (Fig. 2c and Extended Data Fig. 3b). 
This approach depends on the zonation-dependent expression of 
E-cadherin (periportal) and CD73 (Nt5e, pericentral)30 and was able 
to separate pericentral and periportal hepatocytes as judged by expres-
sion of Glul and Cyp2f2 (Extended Data Fig. 3c). Intriguingly, aging 
was accompanied by a strong decrease in E-Cadherin (Fig. 2c), which 
might indicate changes in cell-to-cell adhesion and communication. 
To address mitochondrial function, we first measured mitochondrial 
content which was variable across different animals, but largely unal-
tered with age (Extended Data Fig. 3d). Finally, we performed Seahorse 
analysis using the mitochondrial stress kit to assess mitochondrial func-
tion. While basal respiration and ATP production changed only mildly 
with age (Fig. 2d,e), we observed a striking reduction in the maximal 
and thus, spare respiratory capacity (SRC) in periportal hepatocytes 
(Fig. 2d,e). On the other hand, pericentral hepatocytes showed no dif-
ference in maximal respiration upon aging. Loss of SRC sensitizes the 
cells to surges in ATP demand31, and it has been proposed that SRC can 
be used as a measure of mitochondrial health32. Taken together, spatial 
data, lipidomics and bioenergetics measurements point toward an 
age-dependent decrease in hepatic mitochondrial fitness and function, 
specifically in the periportal zone of the liver.

Chromatin accessibility in mouse liver carries a hepatocyte 
aging signature
Having defined the transcriptional, lipid and functional alterations that 
occur within the periportal and pericentral zones of the aging liver, we 
next wanted to investigate if epigenetic changes underlie these differ-
ences. Therefore, we performed scATAC-seq using the 10x Chromium 
platform. In two independent experiments, we profiled a total of 6,579 
nuclei (4,320/2,259) prepared from young liver tissue and 5750 nuclei 
(3,260/2,490) from old liver tissue. For each experiment, the puri-
fied liver nuclei of four mice were mixed 1:1:1:1 prior tagmentation. 
Sequencing metrics can be found in Supplementary Table 2, and the ini-
tial analysis and comparison of the two individual biological replicates 
using Signac33 can be found in Extended Data Fig. 4. In both independ-
ent datasets, we identified several clusters indicating that we profiled 
different liver-resident cells. Interestingly, all smaller clusters showed 
integration of young and old cells, suggesting that their epigenome 
did not change dramatically with age. On the other hand, the larger 
clusters clearly separated young and old tissue, indicating that their 
epigenome changed significantly with age. For further analysis, we 
turned to CisTopic34 to identify cluster-specific regions in the genome 
that might represent aging signatures. Projecting cells in a UMAP based 
on CisTopic-mediated clustering confirmed the separation of the 

large cluster depending on age (Fig. 3a and Extended Data Fig. 5a).  
To identify cell types, we inferred transcriptional activity from the 
respective promoter accessibility, as described previously35. We used 
known marker genes14,36 and CellMarker (http://bio-bigdata.hrbmu.
edu.cn/CellMarker/) to infer the cellular identity of each cluster, which 
enabled us to resolve all expected cell types of the liver, except for 
cholangiocytes (Fig. 3b,c and Extended Data Fig. 5b,c). We were not 
able to distinguish different immune cell types, as their marker genes’ 
imputed activity was ambiguous (Fig. 3b,c and Extended Data Fig. 5b,c). 
In line with the observation that the livers were not fibrotic, we did not 
observe a notable increase in immune or hepatic stellate cells. Notably, 
young and old cells of one type mapped well into the same cluster 
for all but the hepatocytes. We conclude that epigenomic changes in 
hepatocytes are more pronounced than in the other detected cell types  
(Fig. 3a,b and Extended Data Fig. 5a,b). It is well established that 
the aging liver accumulates polyploid hepatocytes37. Fluorescence-
activated cell sorting (FACS) analysis of nuclei obtained by our 
scATAC nuclear isolation protocol found nuclei of 2n up to 16n ploidy 
(Extended Data Fig. 6a). Consistent with previous findings37, the rate of 
polyploidy was higher in old cells (60.5%) than in young cells (43.7%). 
Higher ploidy levels might increase coverage in the scATAC-seq pro-
files and confound age or cell type-related differences. Because, to 
the best of our knowledge, it is not possible to infer ploidy levels from 
scATAC data, we took coverage as a proxy. We observed a substantially 
higher coverage in hepatocytes than in other cell types (Extended Data  
Fig. 6b,c). Yet, coverage levels in the old and the young hepatocytes 
clusters were comparable and most likely not a cause for the age sepa-
ration of hepatocytes.

To check whether liver zonation is reflected in scATAC profiles  
as well, we plotted the imputed gene activity of the known zonation 
markers Glul, Cyp2e1 and Cyp2f2 (Fig. 3d and Extended Data Fig. 5d; 
compare to general hepatocyte markers Acly, Ass1 and Alb). Their 
activity is highest in the hepatocyte clusters, and the activity patterns 
of the pericentral markers Glul and Cyp2e1 are complementary to 
that of Cyp2f2. As we were specifically interested in understanding 
whether there were any dedicated profiles in hepatocytes with respect 
to aging and/or zonation, we made use of the inferred cis-regulatory 
topics that underlie the latent Dirichlet allocation (LDA) used by cis-
Topic34 and transferred the topic assignments to the individual clusters. 
These topics are defined by specific accessible regions in the genome, 
thus factoring in open promoters, enhancers and transcription factor 
motifs. Thus, topics can be for instance used to predict cell types34. 
Indeed, using endothelial cells as an example, the topic probability 
highlights this cluster (Fig. 3e). The corresponding gene signature and 
its corresponding pathways can also be visualized using Gene Ontol-
ogy (GO) terms, which highlights the role of endothelial cells in the 
vascular system (Fig. 3f). Using the identical approach and rationale 
on hepatocytes, it became apparent that age and zonation were pre-
dicted to belong to different topics (Fig. 3e and Extended Data Fig. 5e). 
This finding supported our hypothesis that the different zones in the 
liver had different impacts on the age-related epigenetic changes. On 
a pathway level, fatty and amino acid metabolic pathways were differ-
entially regulated between the different topics within the hepatocytes 
(Fig. 3f and Extended Data Fig. 5f). Finally, we wanted to investigate 
whether there were specific transcription factors underlying the dif-
ferences in topic distribution using Rcistarget38. The difference in 

Fig. 3 | Differential chromatin accessibility in aged liver hepatocytes.  
a,b, UMAP projection of scATAC-seq data of mouse liver nuclei. a, Different 
colors represent liver cells from young and old age groups identified using 
cisTopic. b, Different colors represent different cell types based on imputed 
marker gene activity. c, Heatmap showing the accessibility of indicated marker 
gene promoters used to call cell types. d, Examples of hepatic marker genes and 
the respective accessibility at their promoters. e, Examples of topics as identified 
by CisTopic (for details, see text). Color code of the UMAPs is according to the 

normalized topic score for each cell. f, GO term analysis of the highlighted  
topics as shown in e. hep: hepatocyte; Binom_fold_enr.: binomial fold 
enrichment; Binom_adjp: adjusted p-value. Significance threshold was set at 
0.05. g, Uniquely enriched transcription factors and their corresponding motifs 
for the highlighted zones/age groups. h, Exemplary tracks of differentially 
accessible sites between pericentral and periportal hepatocytes upon aging.  
The gray bar indicates altered regions.
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metabolic tasks is also evident in the transcription factors predicted 
based on topic-defining regions. Hnf1a has been reported to affect 
cell lineage differentiation, lipid metabolism, glucose metabolism39 
and E2f is involved in cell cycle progression, but have also been linked 
to glucose metabolism40. On the other hand, Etv5 is involved in fatty 
acid metabolism41. Comparing young to aged hepatocytes, Nrf1 was 
predicted to be enriched in old animals. Interestingly, Nrf1 has been 
shown to be important for protection against oxidative stress42, a 
pathway strongly linked with the aging process (Fig. 3g). Together, the 
data indicated that also on an epigenetic level, hepatocytes are clearly 

separated into pericentral and periportal, which can also be visualized 
on a pseudo-bulk level (Fig. 3h).

Specific Cidea expression in the pericentral zone is driven by 
chromatin architectural changes
How do chromatin alterations connect to the transcriptional program 
to drive age-related phenotypes? To address this question in more 
detail, we went back to the differentially expressed and genes that 
were changed with age and showed a zonated expression. We identi-
fied two members of the Cide gene family (Cidea and Cidec, or Fsp27) 

0

0.5

1.0

1.5

Cidec

0

Young
Old

yo
ung

Old
Young

Old
yo

ung
Old

Young
Old

yo
ung

Old

0.5

1.0

1.5

2.0

Ex
pr

es
si

on
 le

ve
l

Cidea

0

0.5

1.0

1.5

2.0

2.5
Cideb

0 1 2 3 4

H&E Cyp2e1

Yo
un

g
O

ld

1.50 0.5 1.0

Cidea

Yo
un

g
O

ld

a b

c

d

e
Rgs3

Egfl7
Cyp2c67
Ivns1abp

Dmpk

Slco1a1

Kng2

Slc47a1−20

−10

0

10

20

N
um

be
r o

f c
on

ne
ct

io
ns

log fold change
(expression)

Down < −0.5
Down > −0.5
Up < 0.5
Up > 0.5

Genes

B430212C06Rik

0
10
20
30

0
10
20
30

Cidea

Old - H3K27ac

Young - H3K27ac

0

0.4

0.8

Old 1 - ccan

7.3 kb

0

0.4

0.8

Young 1 - ccan

0

0.4

0.8

Young 2 - ccan

Old 2 - ccan
0

0.4

0.8

Young Old
0

5

10

15

2 µm

2 µm

Si
ze

 o
f l

ip
id

s 
(µ

m
)

P < 0.001

Periportal PericentralPeriportal Pericentral Periportal Pericentral

Fig. 4 | Connection between chromatin and transcriptional alterations in the 
aging liver. a, H&E staining of one young (upper panel) and one old (lower panel) 
liver specimen used for spatial transcriptomics and a plot showing the expression 
level of Cidea. Please note that H&E stain and Cyp2e1 plots are identical to  
Fig. 1b and used here for reference only. The color gradient represents 
normalized gene expression. b, Violin plots indicating the expression levels of 
Cidea, Cideb and Cidec across pericentral and periportal regions in young and 
old liver. c, Transmission electron micrograph of LDs of young and old liver 
tissue. Representative images at 3,000×; scale bars, 2 µm. ImageJ quantification 
of the mean LD diameter size (µm) from ten randomly selected photos from 5 
young (LD n = 327, mean = 0.9053) and 4 old (LD n = 407, mean = 2.084) mouse 

specimens. Statistical significance was determined using an unpaired two-
tailed t-test. d, Ccan values based on Cicero47 prediction of co-accessibility 
(upper panel) and the enhancer mark H3K27ac (lower panel) at the Cidea locus 
in young and old mouse liver. Highlighted in gray are potential enhancer and 
promoter regions from Cidea and its associated antisense long non-coding RNA, 
respectively. e, Age-related changes in co-accessibility of loci identified using 
spatial transcriptomics. y axis shows the differences in predicted contact points 
between young and old hepatocytes (shown as connecting lines in d). Color of the 
graphs highlight direction of gene expression change as taken from the spatial 
transcriptomics data between young and old.
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to be upregulated specifically in old pericentral hepatocytes (Fig. 4a,b 
and Extended Data Fig. 7a).

Cideb, on the other hand, was expressed across both ages and 
zones. We used this gene family as a paradigm to understand the 
connection between chromatin, transcription and phenotype as the 
expression showed a very clear distribution. In addition, all three Cide 
proteins have been shown to bind to LDs and to modulate LD dynam-
ics43–45. Overexpression of Cide proteins in hepatocytes was sufficient to 
generate large LDs45,46 and using electron microscopy, we found that the 
mean size of LDs increased 4-fold with age (Fig. 4c), which correlated 
well with the increased pericentral expression of Cidea and Cidec. We 
then turned to our scATAC-seq dataset and probed whether there was 
an underlying alteration in accessibility at the Cidea locus, potentially 
explaining the increase in expression and used co-accessibility analysis. 
Co-accessibility can predict potential interactions between two loci47, 
similar to a Hi-C type approach. Indeed, we observed a specific age-
dependent increase in accessibility at the Cidea locus (Fig. 4d). In addi-
tion, we identified the increased usage of a potential intronic enhancer 
within Cidea as marked by H3K27ac (Fig. 4d), suggestive of stronger 
enhancer-promoter interactions with age. Given the apparent correla-
tion between locus opening, potential enhancer engagement and tran-
scription output at the Cidea locus, we next asked whether changes in 
co-accessibility might be a good predictor for differential gene expres-
sion on a global scale. We used genes differentially expressed between 
young and old. In addition, we calculated the difference in chromatin 
co-accessibility for those genes based on the number of predicted 
interactions (Fig. 4e and Extended Data Fig. 7b). In line with previous 
reports48, we did not detect a general correlation between an increase 
in co-accessibility and transcription, indicating that co-accessibility 
is not a determinant for transcription. Taken together, integration of 
scATAC- with spatial RNA-seq data confirms that alterations in chro-
matin states are linked to gene expression differences. However, on a 
global level, we observed a disconnect between chromatin alterations 
and transcriptional output, suggesting some decoupling of chromatin 
states and transcription with age. This finding supports recent observa-
tions we made on a bulk level in the aging liver11.

Cellular heterogeneity in gene expression increases with age 
in a zonated and ploidy-dependent manner
Finally, we wanted to address the question of transcriptional vari-
ability with age and whether or how it would relate to zonation upon 
aging. To this end, we generated a high-quality scRNA-seq dataset of  
hepatocytes using Smart-seq3 from 2 young (3–5 months) and 2 old 
(18–20 months) male mice. Livers were perfused and viable hepatocytes 
were FACS-sorted based on size (Fig. 5a and Extended Data Fig. 8a,b). 
In addition, we recorded ploidy levels of hepatocytes. We performed 
stringent filtering and initial processing using Seurat49 (Extended Data 
Fig. 8c–e and Supplementary Table 2). We noticed that we purified  
a population of Kupffer cells (macrophages) specifically in the old  
livers (Extended Data Fig. 8f,g), which we removed from any subsequent 
analysis, leaving 545 hepatocytes in total. Projection of the scRNA- 
seq data in a UMAP revealed three clusters. In the larger cluster, cells 
were not separated by age or ploidy status (Fig. 5b). This finding is in 
line with a previous publication that ploidy cannot be distinguished in 
scRNA-seq data without prior knowledge50. However, the data showed 

a clear separation between pericentral and periportal hepatocytes  
(Fig. 5b,c). In addition, we observed two smaller, separate clusters 
containing old diploid hepatocytes, each coming from one old indi-
vidual (Fig. 5b). These two clusters expressed high levels of Cyp2e1 and 
albumin as well as low levels of Cyp2f2, suggesting that they consist of 
pericentral hepatocytes and were characterized by low RNA content 
(Fig. 5c). Importantly, cells in these two clusters represent the majority 
(92.70%) of all old diploid pericentral hepatocytes.

After the initial analysis of the scRNA-seq data, we returned to the 
question of transcriptional variability, which has been described as a 
consequence of aging. We used the coefficient of variation and cell to 
cell Pearson’s correlation (Fig. 5d–f and Extended Data Fig. 9a–c) as 
metrics to compare variability between age, zonal identity and ploidy 
class. We did observe significant increase in expression variability 
upon age (Fig. 5d and Extended Data Fig. 9a). Upon dissecting at zonal  
and ploidy levels it became apparent that the increase in transcrip-
tional variability was largely contributed by the diploid pericentral 
hepatocytes of old individuals (Fig. 5e,f and Extended Data Fig. 9b,c). 
Thus, polyploidy levels seem to protect against transcriptional vari-
ability in line with previous reports51. To identify genes that contrib-
uted to the age-dependent increase in noise, we used a regression 
model implemented within BASiCS52. By this means, we were able to 
compare the differentially expressed and differentially variable genes 
between young and old cells. The differential test obtained 2,535 (1,570 
downregulated and 965 upregulated) and 1,879 (964 down and 915 up) 
genes significantly differentially expressed and dispersed, respec-
tively (Supplementary Table 5). Strikingly, differentially expressed and 
dispersed (variable) genes showed a clear functional separation with 
respect to biological processes affected (Fig. 5g, j). GO enrichment 
analysis showed that an increase in cell-to-cell variability was associ-
ated with genes involved in mRNA processing RNP complex biogenesis, 
indicating that genes involved in gene expression regulation showed 
a particular increase in variability with age. On the other hand, dif-
ferentially expressed genes were enriched for GO terms that deal with 
metabolic processes, translation and mitochondrial organization. 
Finally, we carried out the same analysis with the liver tissue from the 
Tabula Muris senis consortium generated using flow cytometry and 
Smart-seq2 (FACS data) of male individuals at 3 and 18 months of age.

In the TMS data, we saw a much stronger effect on transcriptional 
noise (Extended Data Fig. 9d,e), which might be explained by different 
composition in ploidy levels that were unfortunately not reported 
in the TMS data. Importantly, we observed a similar impact on bio-
logical pathways with respect to differentially expressed and dispersed 
genes (Extended Data Fig. 9f). This analysis of TMS data is in line with 
a recent report that showed a general increase in transcriptional vari-
ability across various tissues based on this dataset53. In summary, we 
observed an increase in cell-to-cell variability within the transcriptome 
over age mainly driven by diploid hepatocytes. Interestingly, differen-
tially expressed and dispersed genes belong to different functional 
categories.

Discussion
The question of how the direct microenvironment of a cell within a  
tissue affects the aging trajectory has not been extensively explored.  
A few studies investigated the role of the microenvironment, 

Fig. 5 | Transcriptional variability in hepatocytes upon aging. a, Experimental 
overview. b, Different features of the individual cells projected in a UMAP plot.  
c, Gene expression levels of hepatocyte and zonation markers projected in a UMAP 
plot. d–f, Transcriptional variability upon aging (d), in pericentral and periportal 
zones (e) and in the differently ploid hepatocytes (f) expressed as coefficient 
of variation of all detected genes. Significance was calculated using Wilcoxon 
test within geom_signif function. The lower and upper hinges of the boxplot 
correspond to the first and third quartiles (25th and 75th percentiles) while the 
middle line is median and the whiskers extend to 1.5 × interquartile range (IQR) 

from both lower and upper hinges. The notches extend 1.58 × IQR/sqrt(n), which 
is roughly 95% confidence intervals (CIs) for comparing medians, g, Biological 
processes (upper panel) and Cellular components (lower panel) for differentially 
expressed genes. h, Examples of overexpressed and i) under-expressed genes as 
feature plot (upper panel) and ridge plot (lower panel). j, Biological processes 
(upper panel) and Cellular components (lower panel) for differentially dispersed 
genes. Gen.: Generation;Neg reg.: negative regulation;med.: mediated;ubi: 
ubiquitin;prot: protein;proc.: process. k, Examples of over-dispersed and l) 
under-dispersed genes as feature plot (upper panel) and ridge plot (lower panel).
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particularly on the fate of tissue-resident stem cells, in which  
age-dependent perturbations of for example the vascular niches trigger 
the loss of functional hematopoietic stem cells and osteoprogenitors54. 
Indeed, general attrition of vascularization has been recently reported 
occurring in multiple organs, including the liver55 indicating that tissue 
microenvironments experience profound alterations with age. This is 
in line with the observation that aging is accompanied by a decline in 
blood flow in the liver56. Given the importance of the vascular system 
in setting up the division of labor of hepatocytes, the liver represents 
an ideal tissue to address the consequences of tissue organization and 
location on one cell type.

Based on spatial transcriptomics, aging is associated with a change 
in metabolic related terms, particularly amino acid and lipid metabo-
lism as well as mitochondrial energy production.

Functional metabolic seahorse assays show that the mito-
chondrial function is indeed altered in line with previous reports57. 
Although pericentral hepatocytes were characterized by an increase 
in SRC, this is strongly diminished in periportal hepatocytes (Fig. 2d). 
Surprisingly, we noticed a significantly lower expression of E-cadherin, 
at the protein and gene expression level in our FACS analysis (Fig. 2c). 
A decreased expression of E-cadherin has been shown to affect HCC 
progression58, linked to periportal fibrosis59 and has been associated 
with decreased mitochondrial membrane potential in tumor micro-
environments60. Further studies on the role of E-cadherin and other 
junction molecules in aging liver could potentially give molecular 
insights into the function of mitochondrial membrane potential in 
age- related metabolic liver diseases. Next to the insights into the 
connection of micronenvironmental changes and metabolic as well 
as epigenomic changes in the aging liver, the data represent a valuable 
resource for researchers interested in liver organization. Although 
the scATAC-seq data will allow the interrogation of chromatin states 
in most liver-resident cell types, the spatial transcriptomics data 
will mostly give insight into hepatic functions as the hepatocyte are 
dominating the transcriptional profiles on the spots. However, manual 
inspection of marker cell types indicates that also the spatial data can 
be used to interrogate non-parenchymal cells, particularly Kupffer, 
endothelial and stellate cells (Extended Data Fig. 2a–c). Finally, the 
scRNA-seq data will allow a detailed dissection of hepatocyte aging 
at high resolution. One limitation of this study is the fact that we pro-
filed only male mice. Given that there are known difference in aging 
between the sexes, for instance in drug metabolism61, a central activity 
of the liver, it is plausible that there will be differences in the pathways 
deregulated at older age.

The most apparent and macroscopic alteration with aging to liver 
physiology is the accumulation of large LDs in a zonated pattern, with 
the bulk of LDs being localized in hepatocytes around the central vein 
of the liver lobule. Using spatial transcriptomics we explored the age-
dependent changes that occur within the central to portal axis of the 
liver lobule. Interestingly, we identified members of the Cide gene 
family to be predominantly upregulated in the central area of the liver 
lobule. Cidea, Cideb and Cidec are important regulators of LD dynamic 
and growth. Indeed, an increase in expression of Cidec has been shown 
to lead to growth of LDs62, suggesting that the increase in Cidea and 
Cidec expression might be one underlying reason for the increase in LD 
size with age. The changes in Cidea expression are also encoded in the 
epigenome. As our scATAC data provided enough resolution to inves-
tigate zonation- and age-dependent differences, we could show that 
the locus encoding for Cidea is remodeled with age and co-accessibility 
is increased. The presence of H3K27ac indicated that during aging, an 
intronic enhancer is associated with the pericentral increase of Cidea 
expression in hepatocytes. Such an increase of expression in Cidea and 
Cidec has also been linked to the development of hepatic steatosis63,64 
and prolonged hepatic lipid storage can lead to metabolic dysfunction 
in the liver, which has been linked to increased cellular senescence and 
inflammation65,66. Ultimately, this development can lead to advanced 

forms of NAFLD67. Thus, it is no surprise that aging is the most common 
cause for the progression of NAFLD.

All omic technologies showed a clear signature of aging in hepato-
cytes. However, the observed transcriptional changes were not always 
in alignment with epigenetic alterations, which was particularly obvi-
ous in the case of ATAC and RNA-seq. These results indicated a global 
decoupling of chromatin and RNA, an observation that we recently 
reported also on the bulk level11. Intriguingly, genes involved in post-
transcriptional processing are among the top-dispersed genes, 
suggesting that this layer of gene expression regulation might be 
deregulated and more stochastic with age. One part of this layer would 
be mRNA splicing and indeed, there have been several reports over 
the last years that the process of splicing is strongly impacted by age 
and might itself contribute to aging68–70. Totally unexplored as of now 
is the role of mRNA stability and storage with age. The decoupling of 
chromatin state and transcription is reminiscent of the decoupling of 
mRNA and protein levels with age71. Together, these data suggest that 
there is a progressive loss of cohesion between the different layers of 
gene expression that might contribute to the aging process.

Methods
Mice
C57BL/6 N male young (3–4 months) and old (18–22 months) mice were 
bred and maintained in the mouse facility of Max Planck Institute for 
Biology of Aging following ethical approval by the local authorities 
(Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-
Westfalen). The lights were controlled by timers and set a photoperiod 
of 12 h of light from 6 am until 6 pm (with a 15-min twilight period). The 
room temperature (RT) was 22 ± 2 °C and the relative humidity 50% ± 5%.  
All mice were fed with a standard diet ssniff M-Haltung, phyt.-arm 
(gamma irradiated).

Immunohistochemistry
Livers were excised postmortem and fixed directly into 4% PFA for 24 h 
at 4 °C, washed twice with 1× PBS, embedded into paraffin blocks and 
cut into 5-µm sections. For O-R-O staining and spatial transcriptomics, 
freshly dissected liver tissues were frozen in Tissue-Tek OCT compound 
(Sakura) and cut into 7-µm and 10-µm cryosections, respectively.

For IHC stainings, sections of paraffin-embedded samples were 
deparaffinized by immersion of the slides into the following buffers; 
20 min in Xylol, 2 min. 100% EtOH, 2 min. 96% EtOH, 75% EtOH and 
1× PBS and washed three times with H2O for 5 min each. Endogenous 
peroxidase was quenched by immersion for 15 min in peroxidase block-
ing buffer (0.04 M NaCitrate pH 6.0, 0.121 M Na2HPO4, 0.03 M NaN3, 
3% H2O2). After three washes with tap water, slides were subjected to 
heat-induced epitope retrieval with 10 mM NaCitrate, 0.05% Tween-20, 
pH 6.0, washed for 5 min with 1× PBS, blocked 60 min with blocking 
buffer + 160 µl ml−1 Avidin D and incubated with primary antibodies 
diluted (1:200 Plin2) in blocking buffer + 160 µl ml−1 biotin overnight at 
4 °C. After three 5-min washes with PBST, the samples were incubated 
with the secondary antibody 1:1000 diluted in blocking buffer for 1 h 
at room temperature, followed by three 5-min washes with PBST and 
incubation for 30 min with 1x PBS + 1:60 Avidin D + 1:60 Biotin. After 
three 5-min washes with PBST the samples were stained with 1 drop 
of DAB chromogen in 1 ml substrate buffer, washed with 1× PBS and 
counterstained with hematoxylin for 4 min, washed with tap water 
and distilled H2O and dehydrated 1 min in each buffer; 75% EtOH, 96% 
EtOH, 100% EtOH and xylol and mounted with Entellan.

H&E staining
Following deparaffinization, slides with tissues washed with distilled 
and tapped water and stained with hematoxylin for 5 min, followed 
by five washes in tapped water and staining with eosin Y for 3 min, 
followed by three washes with tap water, dehydration and mounting 
in Entellan.
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O-R-O and Sirius red staining
O-R-O and Sirius red staining were used to visualize neutral lipids and 
collagen, respectively, and were performed according to standard 
procedures. O-R-O staining was performed on 7-µm-thick frozen liver 
sections that were fixed in 4% paraformaldehyde (PFA) for 10 min, 
followed by staining with 0.3% O-R-O (Sigma) in isopropanol/water 
(60:40 vol/vol) for 15 min. Sirius red was performed on deparaffinized 
liver sections that were incubated for 1 h at RT in Picro Sirius red solu-
tion (ab150681, Abcam), followed by washes in acetic acid and alcohol 
solutions.

RNAscope 2.5 HD Duplex
Liver tissue was placed in a cassette, fixed in 4% PFA dissolved in PBS 
(pH 7.4) for 24 h at 4°, washed twice with 1X PBS, and embedded into 
paraffin blocks. Then, 7-µm-thick sections were processed as described  
below. Detection of Cyp2f2 (Cat No. 451851), Alb (Cat No. 4437691), Cyp2e1  
(Cat No. 402781-C2) and Glul (Cat No. 426231-C2) mRNA was performed 
using a chromogenic in situ hybridization technique (RNAscope 2.5 
HD Duplex Assay, Advanced Cell Diagnostics) according to the manu-
facturer’s instructions. RNAscope 2.5 Duplex positive control probes 
PPIB-C1 and POLR2A-C2 (Cat No. 321651) were processed in parallel 
with the target probes. All incubation steps were performed using 
the ACD HybEz hybridization system (Cat No. 321462). Sections were 
mounted on SuperFrost Plus Gold slides (Thermo Fisher Scientific), 
dried at RT, briefly rinsed in autoclaved Millipore water, air-dried, baked 
at 60 °C for 1 h and deparaffinized. Afterward, slides were treated with 
hydrogen peroxidase for 10 min. and submerged in Target Retrieval 
(Cat No. 322000) at 98.5–99.5 °C for 30 min, followed by two brief 
rinses in autoclaved Millipore water. A hydrophobic barrier was then 
created around the sections using an ImmEdge hydrophobic barrier 
pen (Cat No. 310018). Sections were incubated with Protease Plus  
(Cat No. 322330) for 30 min. The subsequent hybridization, amplifi-
cation and detection steps were performed according to the manu-
facturer’s instructions (2.5 HD Duplex Detection kit, Chromogenic,  
Cat No. 322500). Sections were counterstained with 50% hematoxylin 
staining and mounted with VectaMount permanent mounting medium 
(Cat No. H-5000).

Microscopy
Sirius red, RNAscope and H&E stainings were captured with a Nikon Ti2 
Eclipse microscope, equipped with a Nikon Digital Sight D5-VI1 color 
camera. O-R-O stainings and IHC stainings were taken using a Nikon 
Eclipse Ci microscope, with a color camera or a S360 Hamamatsu 
Slidescanner (CECAD Imaging Facility, Cologne). Color brightfield 
images of HE staining for the spatial transcriptomics experiment were 
captured with a Nikon Ti2 Eclipse microscope, equipped with a Nikon 
Digital Sight D5-VI1 color camera and using a 10×/ 0.3 NA CFI Plan-Flour 
objective. Tilescan image acquisition was carried out using the NIS 
Elements software.

Transmission electron microscopy
Livers were excised postmortem, tissue cubes were cut out (1 × 1 × 1 
mm) and fixed directly into 2%GA, 2%FA in 0.1 M CaCodylate buffer. 
Afterwards, samples were rinsed in 0.1 M cacodylate buffer (pH 7.2) and 
incubated in 1% OsO4 and 1% potassium ferrocyanid in 0.1 M cacodylate 
buffer (pH 7.2) for 3 h at 4 °C.

Liver tissues were dehydrated using ascending ethanol series, 
transferred to propylene oxide and finally embedded in epoxyresin 
for 72 h at 62 °C. Ultrathin sections (70 nm) were cut with a diamond 
knife (Diatome) on an ultramicrotome (EM-UC6, Leica Microsystems) 
and placed on copper grids. Ultrathin sections were contrasted with 
1.5% uranylacetate (Plano GMBH) and lead citrate (Reynolds solution). 
Images were acquired with a transmission electron microscope ( JEOL 
JEM 2100Plus), camera OneView 4 K 16 bit (Gatan), and software Digi-
talMicrograph (Gatan) at 80 kV at room temperature.

Liver perfusion and flow cytometry
Livers were dissociated using the Miltenyi liver perfusion kit (130-128-
030) following the manufacturer’s instructions. For sorting pericentral 
and periportal hepatocytes, the isolated hepatocytes were washed 
two times with staining buffer (1× PBS, 2 mM EDTA, 0.5% BSA) and 
1–7 million hepatocytes were stained with 1:50 FcX, 1:100 PE-anti-E-
cadherin, 1:100 APC-anti-CD73 for 1 h at room temperature. Cells were 
washed two times with staining buffer, cells were filtered through a 100 
µm strainer and dead cells were excluded with DAPI. For the sc-RNA 
sequencing experiment the isolated hepatocytes were washed two 
times with staining buffer (1x PBS, 2 mM EDTA, 0.5%BSA) and 1 million 
hepatocytes were stained with Hoechst (15 µg ml−1) and Reserpine  
(5 µM) for 30 min at 37 °C. Dead cells were excluded with PI staining 
(1 µg ml−1). Cells were sorted using a BD FACSARIA IIIU or Fusion Cytom-
eter and 130um nozzle. The data were analyzed using the BD FACSDiva 
and FlowJo software.

Mitochondrial function measurement
Mitochondrial function was evaluated by measuring the oxygen con-
sumption rate with the Seahorse XFe96 Extracellular Flux Analyzer  
(Agilent). XFe96 cell culture plates were coated with Collagen-I (40 µg ml−1)  
overnight at 4 °C and then washed 2x with 1X DPBS before 6,000 murine 
primary hepatocytes were seeded onto each well. Cells were cultured 
overnight in DMEM + GlutaMAX containing 10% FBS and 1x PenStrep 
under humidified conditions at 37 °C with 5% CO2. Cells were washed 
2x with assay media composed of XF DMEM medium (pH 7.4) supple-
mented with glucose (10 mM), pyruvate (1 mM) and glutamine (2 mM). 
Cells were cultured in assay media and incubated for 1 h at 37 °C in 
a non-CO2 incubator. The Seahorse XF Mito Stress test was used to 
measure the oxygen consumption rate response after the sequential 
injection of oligomycin (1.0 µM), FCCP (1.0 µM) and Rot/AA (0.5 µM), 
according to the manufacturer’s instructions. The data were normal-
ized to cell confluency. Brightfield images were acquired with the 
EVOS FL Auto 2 system (Thermo Fisher Scientific) using a 4×/ 0.13 NA 
Plan Fluorite objective. After calibrating the system for the Seahorse 
multiwell plates, tile scan images of whole wells could be automatically 
captured. Confluency was analyzed by training a supervised machine 
learning network for automatic pixel classification using Ilastik72. After 
classification, subsequent analysis was carried out in FIJI73. Therefore, 
the label masks were cleaned up by two rounds of the binary operation 
‘open’ using the Biovoxxel toolbox plugin (https://doi.org/10.5281/
zenodo.5986130), and the covered areas in each well could be measured 
and normalized to the corresponding well area to get the final percent 
of confluency.

Genomic DNA extraction and qPCR for mitochondrial content
Liver genomic DNA was extracted using the NucleoSpin Tissue XS, 
Micro kit for DNA (Macherey and Nagel, 740901.50). Real-time PCR 
was performed with primers specific to the cyto-b mitochondrial locus 
(forward: 5′-TCCGATATATACACGCAAACG-3′, reverse: 5′-ATAAGCC 
TCGTCCGACATGA-3′) and results were normalized to total genomic 
DNA using primers for actin promoter locus (forward: 5′-TGCCCC 
ATTCAATGTCTCGG-3′, reverse: 5′-ATCCACGTGACATCCACACC-3′).

mRNA extraction and qPCR for Cyp2f2 and Glul expression
To verify the relative abundance of expression of the respective mark-
ers of the sorted cells, CD73+ pericentral and E-cadherin+ periportal 
cells were isolated with flow cytometry (see methods above) from 
4 individual (2 young and 2 old) mice and mRNA was extracted with 
the Dynabeads mRNA DIRECT Purification Kit (61011 Thermo Fisher 
Scientific). Reverse transcription was performed with the Maxima 
H Minus Reverse Transkriptase (EP 0751 Thermo Fisher Scientific) 
and the cDNA was used for qPCR with primers for Cyp2f2 (forward: 
5′-CTTCCTGATACCCAAGGGCAC-3′, reverse: 5′-CTGAGGCGTCTTG 
AACTGGT-3′) and Glul (forward: 5′-CCACCGCTCTGAACACCTT-3′, 
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reverse: 5′-TGGCTTGGACTTTCTCACCC-3′). The results were  
normalized to Actin expression (forward: 5′-ACCGGTGCAGAGACATTGG 
AGTTCAAC-3′, reverse: 5′-GTCGACTCAGATCCCGAGGCAGAGTC-3′).

Lipidomics
Lipid extraction from liver tissue. For the lipidomic analysis of liver 
tissue, 20 mg of snap-frozen tissue samples were homogenized using 
precooled (liquid N2) metal balls (5 mm diameter) in a Qiagen Tissue 
Lyser for 1 min at 25 Hz. The pulverized tissue was resuspended in 1 ml 
pre-cooled (−20 °C) extraction buffer (MTBE (methyl tert-butyl):MeOH 
75:25 [v:v]), containing 0.2 µl EquiSplash Lipidomix as an internal 
standard. The resuspended samples were homogenized for additional 
5 min at 15 Hz in the TissueLyser.

After efficient tissue lysis, the samples were incubated for addi-
tional for 30 min on a thermomixer at 1,500 rpm and at 4 °C. To remove 
precipitated material from the samples, the Metal balls were removed 
and all samples were centrifuged for 10 min at 4 °C and 21.000 g. The 
supernatants were transferred to a new tube and 500 µl H2O:methanol 
3:1 [v:v] were added before further incubating the extracts for addi-
tional 10 min at 1,500 rpm and 15 °C on a thermomixer. After this final 
incubation step the polar and lipid phases were separated in a 10 min 
centrifugation step at 16,000 g and 15 °C. The upper phase, MTBE-phase 
was transferred to a new tube and stored with the obtained insoluble 
pellets at −80 °C for lipidomic analysis and protein extraction and 
quantification (BCA).

Liquid chromatography high-resolution mass spectrometry-based 
analysis of lipids. The stored (−80 °C) lipid extracts were dried in a 
SpeedVac concentrator before analysis and lipid pellets were resus-
pended in 200 µl of a UPLC-grade acetonitrile: isopropanol (70:30 
[v:v]) mixture. Samples were vortexed for 10 s and incubated for 
10 min on a thermomixer at 4 °C. Resuspended samples were centri-
fuged for 5 min at 10,000 g and 4 °C, before transferring the cleared 
supernatant to 2 ml glass vials with 200 µl glass inserts. All samples 
were placed in an Acquity iClass UPLC sample manager at 6 °C. The 
UPLC was connected to a Tribrid Orbitrap HRMS, equipped with a 
heated electrospray ionization ion source (ID-X, Thermo Fischer 
Scientific).

Of each lipid sample, 1 µl was injected onto a 100 ×2.1 mm BEH C8 
UPLC column, packed with 1.7 µm particles. The flow rate of the UPLC 
was set to 400 µl/min and the buffer system consisted of buffer A 
(10 mM ammonium acetate, 0.1% acetic acid in UPLC-grade water) and 
buffer B (10 mM ammonium acetate, 0.1% acetic acid in UPLC-grade 
acetonitrile/isopropanol 7:3 [v/v]). The UPLC gradient was as follows: 
0–1 min 45% A, 1–4 min 45–25% A, 4–12 min 25–11% A, 12–15 min 11-1% A, 
15-18 min 1% A, 20–18.1 min 1–45% A and 18.1–22 min re-equilibrating at 
45% A. This leads to a total runtime of 22 min per sample.

The ID-X mass spectrometer was operating either for the first 
injection in positive ionization mode or for the second injection in 
negative ionization mode. In both cases, the analyzed mass range 
was between m/z 160–1,600. The resolution (R) was set to 120.000, 
leading to approximately 4 scans per second. The RF lens was set 
to 60%, while the AGC target was set to 250%. The maximal ion time 
was set to 100 ms and the heated electrospray ionization source was 
operating with a spray voltage of 3.5 kV in positive ionization mode, 
while 3.2 kV were applied in negative ionization mode. The ion tube 
transfer capillary temperature was 300 °C, the sheath gas flow 60 
arbitrary units (AU), the auxiliary gas flow 20 AU and the sweep gas 
flow was set to 1 AU at 340 °C.

All samples were measured in a randomized run order, and tar-
geted data analysis was performed using the quan module of the Trace-
Finder 4.1 software (Thermo Fischer Scientific) in combination with a 
sample-specific in-house-generated compound database. Peak areas 
of each peak were normalized to the internal standards from the extrac-
tion buffer and to the fresh weight of the tissue.

Spatial transcriptomics
Tissue and library preparation. Liver specimen from 2 young and  
2 old mice were cryopreserved and sections of 8 mm × 8 mm × 10µm 
specimens. Libraries were prepared using the Visium Spatial Gene 
Expression solution from 10x Genomics using 30 min permeabiliza-
tion time. Libraries were prepared according to the manufacturer’s 
instruction and sequenced on an Illumina NovaSeq 6000. Sequenc-
ing data was initially quality controlled and preprocessed using the  
10x Genomics SpaceRanger framework (V. 1.2.2).

Dimensionality reduction and individual analysis of datasets. Young 
and old liver tissue slides were analyzed individually in R (V. 4.0.0) using 
the Seurat package (V. 4.0.4) (ref. 49). Count matrices were normalized 
and scaled using the SCTransform function with standard parameters. 
Relative gene expression visualization of known hepatic pericentral and 
periportal marker genes on the spots of the tissue slides was performed 
with the SpatialFeaturePlot function.

Dataset integration. To assess batch effects between tissue slides, we 
merged the processed slides using the merge function and normalized 
and scaled without any further batch correction. Principal component 
analysis for was performed on the 2,000 most variable features. The 
top 50 genes associated with the first principal PCA component were 
visualized with the VizDimLoadings functions and intersected with 
the hepatocyte specific aging genes list from17. Integration of young 
and old liver tissue slides was performed in a stepwise manner as an 
integration of all datasets together would remove all potential differ-
ences between young and old datasets. First, the preprocessed young 
and old tissue slide datasets were integrated separately per age group 
using canonical correlation analysis described in16. Second, both com-
bined datasets were merged and filtered for spots to have at least 1000 
and at most 7000 genes expressed. Subsequently, the joined count 
matrix was scaled and normalized together using the NormalizeData 
and ScaleData function.

Dimensionality reduction of integrated datasets. We performed 
PCA on the preprocessed data (RunPCA function). The first 10 principal 
components covered most of the dataset’s variance and were consid-
ered a good approximation to the data as assessed by an elbowplot 
(Elbowplot function). The first 10 principal components, therefore, 
served as input to UMAP for further dimension reduction and visuali-
zation. Known canonical liver zonation marker genes were visualized 
with the Featureplot function.

Differential expression testing between young and old liver tissue 
slides. Differential expression testing was done by using the FindMark-
ers function. Genes had to show at least an average log2-fold change of 
±0.25 to be considered for testing. Testing was performed using the 
MAST library (V. 1.19.0) (ref. 18). Bonferroni correction was applied for 
multiple testing adjustments of P values and a significance threshold 
of 0.05 was used for all analyses.

Cytoscape
The Cytoscape (V3.9.1) (ref. 20) app iRegulon (V. 1.3) (ref. 21) was used 
to calculate transcription factor predictions. Differentially expressed 
genes in old (Supplementary Table 3) were used as input for all analysis. 
iRegulon was run using Mus musculus MGI symbols using the following 
motif collection: 10k (9712PWMs). Putative regulatory regions as well as 
motif ranking database were set as 20 kb centered on the transcription 
start site. Normalized enrichment scores for all transcription factors 
reported were > 4.

Liver tissue preparation for scATAC-seq
Liver nuclei (n = 4 per experiment/age group) were prepared from 
frozen tissue specimens by crushing and dounce homogenizing the 
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tissue in 1 ml EZ-buffer (SIGMA) (20 strokes with loose and a tight 
pestle, respectively) and spun 5 min at 300 g. The pellet was incubated 
on ice for 20 min in EZ-buffer supplemented with DNAseI NEB M0303S  
(4 U ml−1) and 1X DNAseI buffer. Equal volume of EZ-buffer was added 
and samples were spun 5 min at 500 g and incubated again 10 min on 
ice in EZ-buffer supplemented with DNAseI NEB M0303S (8 U ml−1) and 
1X DNAseI buffer. Equal volume of EZ-buffer was added, and samples  
were spun 5 min at 500 g, resuspended in NSB (1087.5 µl 1× PBS, 5.5 µl 
2% BSA, 1.5 µl RNase Inhibitor) and filtered three times through a  
0.22-µm strainer.

For scATAC-seq, 100,000 (25,000 from each individual biological 
replicate) nuclei were pooled and resuspended in 50 µl tagmentation 
mix (10X Genomics)).

For ploidy FACS analysis the nuclei were resuspended in staining 
buffer and stained for 15 min with PI (1 µg ml−1) at RT, before running 
them in BD LSRFortessa flow cytometer. Analysis was performed with 
BD FACSDiva and FlowJo softwares.

scATAC-seq library preparation and sequencing
scATAC-seq targeting 4,000 cells per sample and per dataset was  
performed using a Chromium Single Cell ATAC Library and Gel Bead 
kit (10x Genomics, 1000110) according to the manufacturer’s instruc-
tions. Libraries were then pooled and loaded on an Illumina NovaSeq 
sequencer and sequenced to 21,557 median high-quality fragments 
per cell in the first biological replicate and to 27,028 in the second. 
Sequencing data were initially quality controlled and preprocessed 
using the 10x Genomics CellRanger framework (V. 2.1.0).

scATAC-seq analysis of young and old liver tissue
Region accessibility count data were analyzed using the cisTopic library 
(V. 0 3.0) (ref. 34). Cells without any accessible regions were removed and 
we profiled a total of 6,579 nuclei (4,320/2,259) prepared from young 
liver tissue and 5,750 nuclei (3,260/2,490) from old liver tissue. We 
included 166,813/161,102 regions into our analysis that were accessible 
in at least one cell. The latent Dirichlet allocation model was learned by 
the runWarpLDAModels function for topic numbers ranging from 2 to 
50 topics. An appropriate number of topics for our data was selected 
using the selectModel function. This was the case for 32/30 topics, and all 
downstream analyses use the LDA model learned for 32/30 topics. Non-
linear dimensionality reduction by UMAP was performed by applying 
the built-in runUmap function in cisTopic to the topic-distributions of 
all cells. Topic-defining regions were derived via the getRegionsScores- 
and binarizecisTopics-function. GO term and transcription factor motif 
analysis of the topic-defining regions was done using rGREAT (V. 1.26.0) 
and RcisTarget (V. 1.14)38. Transcription factor motifs shown in Fig. 3g 
were downloaded from the JASPAR database (http://jaspar.genereg.net).

To check the robustness of the cisTopic results, we performed a 
complementary analysis of the same data with Signac (V. 1.8.) (ref. 33). 
The cell region count matrix was normalized using the term frequency-
inverse document frequency (TF-IDF) normalization method from the 
Signac library (RunTFIDF). Initial linear dimensionality reduction was 
performed with singular value decomposition (RunSVD). As recorded in 
the Signac workflow, the first component of the singular value decom-
position was excluded from all downstream analyses as it was highly 
correlated with the sequencing depth. Nonlinear dimensionality reduc-
tion (UMAP) for Extended Data Fig. 3 was generated via the RunUMAP 
function. The dimensions 2 to 30 were used as input for the algorithm.

Differential accessibility testing. We used the FindMarkers function 
in the logistic regression framework of74 to test for regions that were 
differentially accessible between young and old hepatocytes, respec-
tively, between periportal and pericentral hepatocytes. We considered 
only regions detected in at least 5% of the cells for testing. P-values were 
Bonferroni adjusted to account for multiple testing. If not otherwise 
stated a significance threshold of 0.05 was used for all analyses.

Cell type annotation. Our cell type annotation is based on the imputed 
gene activity of known liver cell marker genes from CellAtlas75. To 
calculate the imputed gene activities, fragments mapping to gene 
bodies or promoter regions of genes (up to 2 kb upstream of a gene) 
were summed up using the GeneActivity function and subsequently 
normalized via the NormalizeData function from Signac. Periportal 
and pericentral cell populations were annotated based on the gene 
activity of Cyp2e1 and Cyp2f2 genes.

Construction of cis-regulatory networks. Co-accessibility scores 
for the interaction network of the Cidea locus were predicted with the 
Cicero library (V. 1.3.8) (ref. 47). Reduced dimension coordinates of cells 
were based on the UMAP projection from cisTopic. Connections of co-
accessible loci were inferred for young and old hepatocytes separately.

Bulk RNA-seq data processing and analysis
The TMS bulk RNA-seq data were analyzed by directly using the count 
matrix provided (https://doi.org/10.6084/m9.figshare.8286230.v1). 
We only used the data from male mice of the age 3 and 18 months. 
First, genes were filtered using the ‘filterByExpr’ function of edgeR 
(3.28.1) (ref. 76) with the min.count = 3. The differential gene expression 
analysis between young (3 months) and old (18 months) was carried out 
using DEseq2 (1.26.0) (ref. 77) at the adjusted P value of 0.1. Obtained 
sets of genes were further used for GO Biological Processes enrichment 
using the ‘enrichGO’ function from clusterProfiler (3.14.3) R package78. 
To remove the redundancy of enriched terms, we used the ‘simplify’ 
function from clusterProfiler with the default parameters.

scRNA-seq library preparation and sequencing
scRNA-seq libraries were generated using an early version of the 
Smart-seq3xpress protocol79. Reaction conditions were identical to 
the published final protocol deposited on protocols.io (https://www.
protocols.io/view/smart-seq3xpress-yxmvmk1yng3p/v2). Briefly, cells 
were sorted into 300 nl lysis buffer containing 0.5 µM oligo-dT primer 
overlayed with 3 µl Silicon Oil (100 cSt; Sigma-Aldrich). Next, reverse 
transcription was carried out in 400 nl using 0.75 µM Smart-seq3 TSO. 
Preamplification of cDNA was performed in 1 µl using SeqAmp polymer-
ase (Takara Bio) for 15 cycles. Subsequently, amplified cDNA was diluted 
with 9 µl H2O and we used 1 µl for downstream tagmentation using 
0.002 µl TDE1 enzyme per cell. Final, indexed libraries were pooled 
per 384-well plate, cleaned and equimolarly pooled before sequenc-
ing. For high-throughput sequencing, linear dsDNA library pool was 
converted to circular ssDNA using the MGIEasy Library Conversion Kit 
(App-A; MGI Tech). Next, we used 60 fmol ssCircDNA for generation of 
DNA nanoballs (DNBs). DNBs were loaded onto a lane of a FCL flow-cell 
and sequenced PE100 on the G400RS platform (MGI Tech).

scRNA-seq data processing and analysis
We processed raw fastq reads using zUMIs (V. 2.9.7)80 to obtain raw 
count tables. Within zUMIs, the data was mapped to the mouse 
genome mm10 using Ensembl annotation version 99 using STAR  
(V. 2.7.1a). The count matrix was further filtered for genes expressed in 
at least 3 cells, cells containing minimum 200 genes and 1000 counts. 
The filtered count matrix was processed using Seurat (V. 4.1.1)49 with 
default parameters as per suggested pipeline using ‘SCTransform’, 
‘RunPCA’, ‘RunUMAP’, ‘FindNeighbors’ and ‘FindClusters’ functions. 
The feature and PCA/UMAP plots generated in this manuscript are 
through Seurat plotting functions. Cell type annotation was per-
formed using known marker genes for hepatocytes and macrophages. 
Periportal and pericentral cell populations were annotated based on 
the expression of Cyp2e1 and Cyp2f2 genes. The differential expres-
sion analysis for the distinct old diploid pericentral hepatocytes 
against other hepatocytes was performed using the ‘FindMarkers’  
function within Seurat and further filtered for absolute log2FC of  
1.5 and adjusted P value below 0.05.
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Preliminary processing of TMS data. We downloaded metadata and 
raw count tables from Tabula Muris Senis consortium for liver FACS 
and droplets methods. The TMS FACS and droplets data was filtered 
for genes expressed in at least three cells, cells containing minimum 
250 genes and 2,500 counts for droplets whereas 500 genes and 5,000 
UMIs for the FACS data. The filtered count matrix was processed using 
Seurat (4.1.4)49 with default parameters as per suggested pipeline using 
‘SCTransform’, ‘RunPCA’, ‘RunUMAP’, ‘FindNeighbors’ and ‘FindClus-
ters’ functions. The feature and PCA/UMAP plots generated in this 
manuscript are through Seurat plotting functions.

Differential expression and dispersion analysis. The differential 
analysis was performed using the BASiCS (V. 2.8.0) package52. Posterior 
estimates were computed using a Markov chain Monte Carlo (MCMC) 
simulation with 20,000 iterations and burn-in period 10,000 with a 
regression model. We used BASiCS to detect differentially expressed 
and differentially variable genes between old and young hepatocytes. 
For changes in mean expression between ages, we use the ‘BASiCS_
TestDE’ function with EFDR cutoff 0.1. Only genes with no change in 
mean expression were considered for interpreting changes in vari-
ability. We filtered genes with the detection rate of 0.05 in each age 
and mean overall expression of 1.

Obtained sets of genes from each differentially expressed and 
variability were further subjected to GO Biological Processes and Cel-
lular Components enrichment analysis using the ‘enrichGO’ function 
from clusterProfiler (V. 3.14.3) R package78. To remove the redundancy 
of enriched terms, we used the ‘simplify’ function from clusterProfiler 
(V. 3.14.3) with the default parameters. The pathway enrichment was 
performed using the ‘enrichPathway’ function from the ReactomePA 
R package (V. 1.36.0) (ref. 81).

Statistics and reproducibility
Sample sizes were chosen based on previously reported publications 
(lipidomics, scATAC, metabolic assays)27,79,82. The only pre-established 
exclusion criterion was for replicates that were found to be technically 
flawed or determined by statistical tests to contain a legitimate outlier 
data point. When any of the above occurred, the entire replicate was 
omitted and the whole experiment was repeated, when feasible. Taking 
into consideration the above exclusion criterion, all experiments were 
successfully reproduced at least twice (RNAScope and IHC staining 
(representative images and sections shown), scRNA-seq and scATAC-
seq), whereas all other experiments were performed using at least 
three independent biological replicates. Experimental groups were 
based on age. Data collection and analysis were not performed blind 
to the conditions of the experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All sequencing data generated for this study is available at Array 
Express with following accession numbers: spatial transcriptomics 
from young and old liver: E-MTAB-12809. scATAC-seq of young and 
old livers: E-MTAB-12706 and E-MTAB-12560; and SMART-seq3xpress 
data on young and old hepatocytes: E-MTAB-12579. H3K27ac for young 
and old mice was downloaded from BioProject PRJNA281127. Tabula 
Muris senis single cell data are available at Gene Expression Omnibus 
GSE149590. Tabula Muris senis bulk RNA-seq data are available at Gene 
Expression Omnibus GSE132040 (ref. 9). All other data will be provided 
by the corresponding author upon reasonable request.

Code availability
All scripts used to analyze data are available on Github: https://github.
com/ptessarz/aging_liver.
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Extended Data Fig. 1 | Lipid Remodeling in the ageing mouse liver. a) PCA 
projection of bulk RNA-seq data11 derived from young and old mouse livers.  
b) Differentially enriched Gene Ontology Biological Processes in the aged liver 
tissue derived from A (Supplementary Table 1). The colour scale represents 
the number of genes in each term and Adjusted p-value (Benjamini Hochberg) 
on x-axis is derived with over representation test using enrichGO function of 
clusterProfiler R package. c) Representative images from H&E (upper panel) 
and Sirius Red (lower panel) stainings on liver sections from a young and an old 

mouse. Scale bar = 100µm. d) Representative images of PP (periportal) and CV 
(central vein areas) of Oil-red-O (O-R-O, upper panel) and Plin2 immunostainings 
(lower panel) on liver sections from young and old mice. Scale bar = 100 µm.  
e) Spatial transcriptomics slides of the second biological replicate. f) PCA plot of 
the spatial data after integration of the four datasets using canonical correlation 
analysis. Different colours represent the different samples. g) PC plot showing 
the top 50 genes that separate the ageing groups in Supplementary Fig. 1e.
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Extended Data Fig. 3 | Lipids and sorting of hepatocytes based on zones. 
a) PCA of lipidomic data coloured by age. b) Gating strategy for isolation of 
pericentral and periportal hepatocytes. c) qRT-PCR to validate the enrichment 
for pericentral and periportal hepatocytes based on expression ratios of Glul 
and Cyp2f2 levels. Shown are individual replicates for young and old mice (as 

indicated). d) Mitochondrial content of livers was measured using primers 
against genomic copies of mt-Cytb and b-actin. Individual values are given as 
dots. Error bars represent SEM. Statistical significance was determined using a 
two-tailed unpaired t-test.
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Extended Data Fig. 4 | Initial analysis of the individual scATAC-seq samples 
using Signac. a) UMAP projection of scATAC-seq nuclei from young and old 
livers of biological replicate 1 generated with 10X scATAC v2 chemistry. Colour-
coded are the different age groups identified using Signac. b) Same as in a). 
Colour coded are the different cell types, assigned by using marker genes from 

CellMarker. c) UMAP projection of scATAC-seq nuclei from young and old  
livers of biological replicate 2 generated with 10X scATAC v3 chemistry.  
Colour-coded are the different age groups identified using Signac. d) Same as in  
b). Colour coded are the different cell types, assigned by using marker genes 
from CellMarker.
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Extended Data Fig. 5 | Second scATAC replicate. a–b) UMAP projection of 
scATAC-seq data of mouse liver nuclei (2nd biological replicate) a) Different 
colours represent liver cells from young and old age groups identified using 
cisTopic. b) Different colours represent different cell types based on imputed 
marker gene activity (see also Supplementary Fig. 3c). c) Heatmap showing 

the accessibility of indicated marker gene promoters used to call cell types. 
d) Examples of hepatic marker genes and the respective accessibility at their 
promoters. e) Examples of topics as identified by CisTopic - for details see text. 
Colour code of the UMAPs is according to the normalised topic score for each 
cell. f) GO term analysis of the highlighted topics.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Integration of scATAC with spatial transcriptomics. 
a) Violin plots indicating the expression levels of Cidea, Cideb and Cidec 
across pericentral and periportal regions in young and old liver - divided by 
the two biological replicates. b) Age-related changes in co-accessibility of loci 
identified using spatial transcriptomics (as calculated for a second biological 

scATAC-seq replicate). Y-axis shows the differences in predicted contact points 
between young and old hepatocytes. Colour of the graphs highlight direction 
of gene expression change as taken from the spatial transcriptomics data 
(Supplementary Table 3) between young and old.
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Extended Data Fig. 8 | Integration of scATAC with spatial transcriptomics. 
a,b) Sorting strategy to isolate hepatocytes with different ploidy levels for 
SMART-seq3 from young (a) and old (b) livers. c) Initial filtering based on number 
of reads and percentage of exons detected per cell for all sequenced cells. Only 
cells that fell into the upper right quadrant were taken for further processing. 
d) Plotting the number of genes/UMI for cells that passed / not passed the initial 
filter to highlight successful separation of good / bad quality cells using the 
method described in (c). The lower and upper hinges of the boxplot correspond 
to the first and third quartiles (25th and 75th percentiles) while the middle line is 

median and the whiskers extend to 1.5 × interquartile range (IQR) from both lower 
and upper hinges. The notches extend 1.58 × IQR/sqrt(n), which is roughly 95% 
confidence intervals (CIs) for comparing medians e) Feature plots representing 
the described characteristics of the dataset. f) Expression level of hepatic and 
Kupffer cell markers in the indicated Seurat clusters. g) Based on the expression 
data, cell type identity was projected onto the individual clusters. The Kupffer 
cell cluster (cluster #1) was removed from any further analysis, but is still present 
in the uploaded count matrix available under E-MATB-12579.
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Extended Data Fig. 9 | Transcriptional Variability. a–c) Transcriptional 
variability upon ageing (a), in pericentral and periportal zones (b) and in the 
differently ploid hepatocytes (c) expressed as Pearson Coefficient of all detected 
genes. d) Violin plots for differential dispersed and expressed genes in the Tabula 
Muris senis dataset. Dispersion and expression was calculated using BASiCS. 
Significance for the figures a-d was calculated using Wilcoxon test within geom_
signif function. The lower and upper hinges of the boxplot correspond to the first 

and third quartiles (25th and 75th percentiles) while the middle line is median and 
the whiskers extend to 1.5 × interquartile range (IQR) from both lower and upper 
hinges. The notches extend 1.58 × IQR/sqrt(n), which is roughly 95% confidence 
intervals (CIs) for comparing medians e) Volcano plot for differentially dispersed 
genes as found in Tabula Muris senis data of flow sorted liver cells. f) Biological 
processes (upper panel) and Cellular components (lower panel) for differentially 
expressed and dispersed genes.
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