Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Female aging: when translational models don’t translate

A Publisher Correction to this article was published on 04 January 2024

This article has been updated

Abstract

For many pathologies associated with aging, female patients present with higher morbidity and more frequent adverse events from treatments compared to male patients. While preclinical models are the foundation of our mechanistic understanding of age-related diseases, the most common models fail to recapitulate archetypical female aging trajectories. For example, while over 70% of the top age-related diseases are influenced by the systemic effects of reproductive senescence, we found that preclinical studies that include menopausal phenotypes modeling those seen in humans make up <1% of published aging biology research. The long-term impacts of pregnancy, birthing and breastfeeding are also typically omitted from preclinical work. In this Perspective, we summarize limitations in the most commonly used aging models, and we provide recommendations for better incorporating menopause, pregnancy and other considerations of sex in vivo and in vitro. Lastly, we outline action items for aging biology researchers, journals, funding agencies and animal providers to address this gap.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Menopause is associated with the majority of age-related diseases, but few preclinical studies incorporated a menopausal phenotype.

Similar content being viewed by others

Change history

References

  1. Beauvoir, S. D. The Second Sex (A. A. Knopf, 1968).

  2. Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging research: implications for human aging and age-related diseases. Annu. Rev. Anim. Biosci. 3, 283–303 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Green, C.L., Lamming, D.W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Conboy, M. J., Conboy, I. M. & Rando, T. A. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 12, 525–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alpantaki, K. et al. Gender and age differences in hip fracture types among elderly: a retrospective cohort study. Maedica 15, 185–190 (2020).

    PubMed  PubMed Central  Google Scholar 

  8. Sophocleous, A. & Idris, A. I. Rodent models of osteoporosis. Bonekey Rep. 3, 614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurose, S. et al. Prevalence and risk factors of sarcopenia in community-dwelling older adults visiting regional medical institutions from the Kadoma Sarcopenia Study. Sci. Rep. 10, 19129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clemens, Z. et al. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. Elife https://doi.org/10.7554/eLife.61138 (2021).

  11. Fisher, D. W., Bennett, D. A. & Dong, H. Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiol. Aging 70, 308–324 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beam, C. R. et al. Differences between women and men in incidence rates of dementia and Alzheimer’s disease. J. Alzheimers Dis. 64, 1077–1083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bao, J. et al. Sex differences in the cognitive and hippocampal effects of streptozotocin in an animal model of sporadic AD. Front. Aging Neurosci. 9, 347 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mifflin, M. A. et al. Sex differences in the IntelliCage and the Morris water maze in the APP/PS1 mouse model of amyloidosis. Neurobiol. Aging 101, 130–140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tschon, M., Contartese, D., Pagani, S., Borsari, V. & Fini, M. Gender and sex are key determinants in osteoarthritis not only confounding variables. a systematic review of clinical data. J. Clin. Med. https://doi.org/10.3390/jcm10143178 (2021).

  16. Iijima, H. et al. Age-related matrix stiffening epigenetically regulates alpha-Klotho expression and compromises chondrocyte integrity. Nat. Commun. 14, 18 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carmody, C., Duesing, C. G., Kane, A. E. & Mitchell, S. J. Is sex as a biological variable still being ignored in preclinical aging research? J. Gerontol. A Biol. Sci. Med. Sci. 77, 2177–2180 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boerma, T., Hosseinpoor, A. R., Verdes, E. & Chatterji, S. A global assessment of the gender gap in self-reported health with survey data from 59 countries. BMC Public Health 16, 675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crimmins, E. M., Kim, J. K. & Sole-Auro, A. Gender differences in health: results from SHARE, ELSA and HRS. Eur. J. Public Health 21, 81–91 (2011).

    Article  PubMed  Google Scholar 

  20. Singh-Manoux, A. et al. Gender differences in the association between morbidity and mortality among middle-aged men and women. Am. J. Public Health 98, 2251–2257 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wong, C. W. et al. Misdiagnosis of heart failure: a systematic review of the literature. J. Card. Fail. 27, 925–933 (2021).

    Article  PubMed  Google Scholar 

  22. Newman-Toker, D. E., Moy, E., Valente, E., Coffey, R. & Hines, A. L. Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample. Diagnosis 1, 155–166 (2014).

    Article  PubMed  Google Scholar 

  23. Tom Harkin, O. J. S., Barbara A. M., Henry A. Waxman. Drug safety: most drugs withdrawn in recent years had greater health risks for women https://www.gao.gov/new.items/d01286r.pdf (2001; accessed 23 February 2023).

  24. Zucker, I. & Prendergast, B. J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex. Differ. 11, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Franconi, F., Brunelleschi, S., Steardo, L. & Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 55, 81–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bates, N. et al. Measuring Sex, Gender Identity, and Sexual Orientation (The National Academies Press, 2022).

  27. Diaz Brinton, R. Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology 153, 3571–3578 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Neiger, R. Long-term effects of pregnancy complications on maternal health: a review. J. Clin. Med. https://doi.org/10.3390/jcm6080076 (2017).

  29. Lambe, M. et al. Parity, age at first and last birth, and risk of breast cancer: a population-based study in Sweden. Breast Cancer Res. Treat. 38, 305–311 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Lobo, R. A. & Gompel, A. Management of menopause: a view towards prevention. Lancet Diabetes Endocrinol. 10, 457–470 (2022).

    Article  PubMed  Google Scholar 

  31. Harlow, S. D. et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Menopause 19, 387–395 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Davis, S. R., Pinkerton, J., Santoro, N. & Simoncini, T. Menopause—biology, consequences, supportive care, and therapeutic options. Cell 19, 4038–4058 (2023).

    Article  Google Scholar 

  33. Sato, J., Nasu, M. & Tsuchitani, M. Comparative histopathology of the estrous or menstrual cycle in laboratory animals. J. Toxicol. Pathol. 29, 155–162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ajayi, A. F. & Akhigbe, R. E. Staging of the estrous cycle and induction of estrus in experimental rodents: an update. Fertil. Res. Pract. 6, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Koebele, S. V. & Bimonte-Nelson, H. A. Modeling menopause: the utility of rodents in translational behavioral endocrinology research. Maturitas 87, 5–17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brooks, H. L., Pollow, D. P. & Hoyer, P. B. The VCD mouse model of menopause and perimenopause for the study of sex differences in cardiovascular disease and the metabolic syndrome. Physiology 31, 250–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Felicio, L. S., Nelson, J. F. & Finch, C. E. Longitudinal studies of estrous cyclicity in aging C57BL/6J mice: II. Cessation of cyclicity and the duration of persistent vaginal cornification. Biol Reprod. 31, 446–53 (1984).

    Article  CAS  PubMed  Google Scholar 

  39. Nelson, J. F., Felicio, L.S., Randall, P. K., Sims, C., & Finch, C. E. A longitudinal study of estrous cyclicity in aging C57BL/6J mice: II. Cessation of cyclicity and the duration of persistent vaginal cornification. Biol Reprod. 27, 327–39 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Walker, M. L. & Herndon, J. G. Menopause in nonhuman primates? Biol. Reprod. 79, 398–406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herndon, J. G. et al. Menopause occurs late in life in the captive chimpanzee (Pan troglodytes). Age 34, 1145–1156 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Wood, B. M. et al. Demographic and hormonal evidence for menopause in wild chimpanzees. Science 382, 368–369 (2023).

    Article  Google Scholar 

  43. Bellofiore, N., George, E., Vollenhoven, B. & Temple-Smith, P. Reproductive aging and menopause-like transition in the menstruating spiny mouse (Acomys cahirinus). Hum. Reprod. 36, 3083–3094 (2021).

    Article  PubMed  Google Scholar 

  44. Winkler, I. & Goncalves, A. Do mammals have menopause? Cell 186, 4729–4733 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Johnstone, R. A. & Cant, M. A. The evolution of menopause in cetaceans and humans: the role of demography. Proc. Biol. Sci. 277, 3765–3771 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Diseases, G. B. D. & Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  47. The Hormone Therapy Position Statement of The North American Menopause Society’ Advisory, Panel. The 2022 hormone therapy position statement of The North American Menopause Society. Menopause 29, 767–794, (2022).

  48. Livingston, G. They’re waiting longer, but US women today more likely to have children than a decade ago. Pew Research Center http://www.pewsocialtrends.org/2018/01/18/theyre-waiting-longer-but-u-s-women-today-more-likely-to-have-children-than-a-decade-ago/ (2018; accessed 19 April 2023).

  49. Lord, S. J. et al. Breast cancer risk and hormone receptor status in older women by parity, age of first birth, and breastfeeding: a case–control study. Cancer Epidemiol. Biomark. Prev. 17, 1723–1730 (2008).

    Article  CAS  Google Scholar 

  50. Nechuta, S., Paneth, N. & Velie, E. M. Pregnancy characteristics and maternal breast cancer risk: a review of the epidemiologic literature. Cancer Causes Control 21, 967–989 (2010).

    Article  PubMed  Google Scholar 

  51. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360, 187–195 (2002).

    Article  Google Scholar 

  52. Babic, A. et al. Association between breastfeeding and ovarian cancer risk. JAMA Oncol. 6, e200421 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Morris, A. Risk factors: breastfeeding reduces risk of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 14, 128 (2018).

    Article  PubMed  Google Scholar 

  54. Park, S. & Choi, N.-K. Breastfeeding and maternal hypertension, Am. J. Hypertension 31, 615–621 (2018).

    Article  Google Scholar 

  55. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masopust, D., Sivula, C. P. & Jameson, S. C. Of mice, dirty mice, and men: using mice to understand human immunology. J. Immunol. 199, 383–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Santoro, N. Perimenopause: from research to practice. J. Womens Health 25, 332–339 (2016).

    Article  Google Scholar 

  58. Lelovas, P. & Dontas, I. Concerns on modeling postmenopausal osteoporosis on young female rats. J. Orthop. Surg. Res 14, 450 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. The NAMS 2017 Hormone Therapy Position Statement Advisory Panel. The 2017 hormone therapy position statement of The North American Menopause Society. Menopause 24, 728–753, (2017).

  60. Hendrix, S. L. Bilateral oophorectomy and premature menopause. Am. J. Med. 118, 131–135 (2005).

    Article  PubMed  Google Scholar 

  61. Kappeler, C. J. & Hoyer, P. B. 4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity. Syst. Biol. Reprod. Med. 58, 57–62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wright, L. E. et al. Comparison of skeletal effects of ovariectomy versus chemically induced ovarian failure in mice. J. Bone Miner. Res. 23, 1296–1303 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gilmer, G. et al. A network medicine approach to elucidate mechanisms underlying menopause-induced knee osteoarthritis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.02.530756 (2023).

  64. Muhammad, F. S. et al. Effects of 4-vinylcyclohexene diepoxide on peripubertal and adult Sprague–Dawley rats: ovarian, clinical, and pathologic outcomes. Comp. Med. 59, 46–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Witmer, G. W. et al. Compromised fertility in free feeding of wild-caught norway rats (Rattus norvegicus) with a liquid bait containing 4-vinylcyclohexene diepoxide and triptolide. J. Zoo. Wildl. Med. 48, 80–90 (2017).

    Article  PubMed  Google Scholar 

  66. Patel, J., Chen, S., Katzmeyer, T., Pei, Y. A. & Pei, M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol. Sex. Differ. 14, 17 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gilmer, G. et al. Uncovering the ‘riddle of femininity’ in osteoarthritis: a systematic review and meta-analysis of menopausal animal models and mathematical modeling of estrogen treatment. Osteoarthr. Cartil. 31, 447–457 (2023).

    Article  CAS  Google Scholar 

  68. Bellofiore, N. et al. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am. J. Obstet. Gynecol. 216, 40.e1–40.e11 (2017).

    Article  PubMed  Google Scholar 

  69. Seifert, A. W. et al. Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489, 561–565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nilsson, M. E. et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology 156, 2492–2502 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. McLean, A. C., Valenzuela, N., Fai, S. & Bennett, S. A. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp. https://doi.org/10.3791/4389 (2012).

  72. Acosta, J. I. et al. Transitional versus surgical menopause in a rodent model: etiology of ovarian hormone loss impacts memory and the acetylcholine system. Endocrinology 150, 4248–4259 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Evans, J. S., Varney, R. F. & Koch, F. C. The mouse uterine weight method for the assay of estrogens. Endocrinology 28, 747–752 (1941).

    Article  CAS  Google Scholar 

  74. Falick Michaeli, T. et al. The rejuvenating effect of pregnancy on muscle regeneration. Aging Cell 14, 698–700 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lesteberg, K. E., Fader, D. S. & Beckham, J. Pregnancy alters innate and adaptive immune responses to Zika virus infection in the reproductive tract. J. Immunol. 205, 3107–3121 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Hoekzema, E., van Steenbergen, H. & Straathof, M. et al. Mapping the effects of pregnancy on resting state brain activity, white matter microstructure, neural metabolite concentrations and grey matter architecture. Nat. Commun. 13, 6931 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Faas, M. M. et al. Microbiota induced changes in the immune response in pregnant mice. Front. Immunol. 10, 2976 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Lippert, R. N. et al. Maternal high-fat diet during lactation reprograms the dopaminergic circuitry in mice. J. Clin. Invest. 130, 3761–3776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnegard, M. E., Whitten, L. A., Hunter, C. & Clayton, J. A. Sex as a biological variable: a 5-year progress report and call to action. J. Women’s Health 29, 858–864 (2020).

    Article  Google Scholar 

  80. Kim, J. Y., Min, K., Paik, H. Y. & Lee, S. K. Sex omission and male bias are still widespread in cell experiments. Am. J. Physiol. Cell Physiol. 320, C742–C749 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Royall, L. N. & Jessberger, S. How stem cells remember their past. Curr. Opin. Cell Biol. 69, 17–22 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Shah, K., McCormack, C. E. & Bradbury, N. A. Do you know the sex of your cells? Am. J. Physiol. Cell Physiol. 306, C3–C18 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Arodin Selenius, L., Wallenberg Lundgren, M., Jawad, R., Danielsson, O. & Bjornstedt, M. The cell culture medium affects growth, phenotype expression and the response to selenium cytotoxicity in A549 and HepG2 cells. Antioxidants https://doi.org/10.3390/antiox8050130 (2019).

  84. Berthois, Y., Katzenellenbogen, J. A. & Katzenellenbogen, B. S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl Acad. Sci. USA 83, 2496–2500 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Milo, G. E., Malarkey, W. B., Powell, J. E., Blakeslee, J. R. & Yohn, D. S. Effects of steroid hormones in fetal bovine serum on plating and cloning of human cells in vitro. In Vitro 12, 23–30 (1976).

    Article  CAS  PubMed  Google Scholar 

  86. Liang, Z. R., Qu, L. H. & Ma, L. M. Differential impacts of charcoal-stripped fetal bovine serum on c-Myc among distinct subtypes of breast cancer cell lines. Biochem. Biophys. Res. Commun. 526, 267–272 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Reus, T. L., Brohem, C. A., Schuck, D. C. & Lorencini, M. Revisiting the effects of menopause on the skin: functional changes, clinical studies, in vitro models and therapeutic alternatives. Mech. Ageing Dev. 185, 111193 (2020).

    Article  CAS  PubMed  Google Scholar 

  88. Remoue, N. et al. Development of an in vitro model of menopause using primary human dermal fibroblasts. Int. J. Cosmet. Sci. 35, 546–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Arnold, A. P. & Chen, X. What does the ‘four core genotypes’ mouse model tell us about sex differences in the brain and other tissues? Front. Neuroendocrinol. 30, 1–9 (2009).

    Article  PubMed  Google Scholar 

  90. Davis, E. J., Lobach, I. & Dubal, D. B. Female XX sex chromosomes increase survival and extend lifespan in aging mice. Aging Cell 18, e12871 (2019).

    Article  PubMed  Google Scholar 

  91. Davis, E. J. et al. A second X chromosome contributes to resilience in a mouse model of Alzheimer’s disease. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz5677 (2020).

  92. Wijchers, P. J. & Festenstein, R. J. Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends Genet. 27, 132–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Blencowe, M. et al. Relative contributions of sex hormones, sex chromosomes, and gonads to sex differences in tissue gene regulation. Genome Res. 32, 807–824 (2022).

    PubMed  PubMed Central  Google Scholar 

  94. Majdic, G. & Tobet, S. Cooperation of sex chromosomal genes and endocrine influences for hypothalamic sexual differentiation. Front. Neuroendocrinol. 32, 137–145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, L. R. et al. Considering sex as a biological variable in preclinical research. FASEB J. 31, 29–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Mazure, C. M. & Jones, D. P. Twenty years and still counting: including women as participants and studying sex and gender in biomedical research. BMC Women’s Health 15, 94 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Sandberg, K., Umans, J. G. & Georgetown Consensus Conference Work Group. Recommendations concerning the new U.S. National Institutes of Health initiative to balance the sex of cells and animals in preclinical research. FASEB J. 29, 1646–1652, (2015).

  98. Heidari, S., Babor, T. F., De Castro, P., Tort, S. & Curno, M. Sex and Gender Equity in Research: rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 1, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bergmann for assistance in the literature search as well as the members of the laboratory of F.A. for reviewing and editing this Perspective. The authors also gratefully acknowledge the funding sources that supported this work including the National Institute on Aging (NIA; R01 AG061005, to F.A.), NIA R01 AG052978 (to F.A.), NIA R01 AG066198 (to F.A.), NIH T32AG021885-19 (to G.G.), NIH T32GM008208 (to G.G.) and NIH T32AG021885-19 (to Z.R.H.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions in the following areas: (1) conception and design of the study, acquisition of data, analysis and interpretation of data, drafting of the article; (2) final approval of the article version to be submitted; and (3) agreement to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy are appropriately investigated, resolved and the resolution documented in the literature. The specific contributions of the authors are as follows: Conceptualization: G.G., Z.R.H. and F.A. Writing—original draft: G.G., Z.R.H. and F.A. Writing—review and editing: G.G., Z.R.H., Y.T.-W., E.S., J.K.S., R.C.T., D.A.L. and F.A.

Corresponding author

Correspondence to Fabrisia Ambrosio.

Ethics declarations

Competing interests

R.C.T. is a consultant and advisor for Astellas Pharma, a consultant for Bayer and on the medical advisory board at Hello Therapeutics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Bérénice Benayoun and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmer, G., Hettinger, Z.R., Tuakli-Wosornu, Y. et al. Female aging: when translational models don’t translate. Nat Aging 3, 1500–1508 (2023). https://doi.org/10.1038/s43587-023-00509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00509-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing