Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Navigating and diagnosing cognitive frailty in research and clinical domains

Abstract

While physical frailty has been recognized as a clinical entity for some time, the concept of cognitive frailty (CF) is now gaining increasing attention in the geriatrics research community. CF refers to the co-occurrence of physical frailty and cognitive impairment in older adults, which has been suggested as a potential precursor to both dementia and adverse physical outcomes. However, this condition represents a challenge for researchers and clinicians, as there remains a lack of consensus regarding the definition and diagnostic criteria for CF, which has limited its utility. Here, using insights from both the physical frailty literature and cognitive science research, we describe emerging research on CF. We highlight areas of agreement as well as areas of confusion and remaining knowledge gaps, and provide our perspective on fine-tuning the current construct, aiming to stimulate further discussion in this developing field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the interplay of biological mechanisms, biomarkers and risk factors in CF.
Fig. 2: Integrating CF concepts for clarity as a complex, multidimensional geriatric syndrome resulting from the complex interplay of biological, environmental, and psychosocial factors.
Fig. 3: Schematic of CF categories.

Similar content being viewed by others

References

  1. Godin, J., Armstrong, J. J., Rockwood, K. & Andrew, M. K. Dynamics of frailty and cognition after age 50: why it matters that cognitive decline is mostly seen in old age. J. Alzheimers Dis. 58, 231–242 (2017).

    Article  PubMed  Google Scholar 

  2. Avila-Funes, J. A. et al. Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: the three-city study. J. Am. Geriatr. Soc. 57, 453–461 (2009).

    Article  PubMed  Google Scholar 

  3. Robertson, D. A., Savva, G. M. & Kenny, R. A. Frailty and cognitive impairment—a review of the evidence and causal mechanisms. Ageing Res. Rev. 12, 840–851 (2013).

    Article  PubMed  Google Scholar 

  4. Brigola, A. G. et al. Relationship between cognition and frailty in elderly: a systematic review. Dement. Neuropsychol. 9, 110–119 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fried, L. P. et al. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 1, 36–46 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boyd, C. M., Xue, Q. -L., Simpson, C. F., Guralnik, J. M. & Fried, L. P. Frailty, hospitalization, and progression of disability in a cohort of disabled older women. Am. J. Med. 118, 1225–1231 (2005).

    Article  PubMed  Google Scholar 

  7. Kulmala, J., Nykänen, I., Mänty, M. & Hartikainen, S. Association between frailty and dementia: a population-based study. Gerontology 60, 16–21 (2014).

    Article  PubMed  Google Scholar 

  8. Bandeen-Roche, K. et al. Phenotype of frailty: characterization in the women’s health and aging studies. J. Gerontol. A Biol. Sci. Med. Sci. 61, 262–266 (2006).

    Article  PubMed  Google Scholar 

  9. Delrieu, J. et al. Neuropsychological profile of ‘cognitive frailty’ subjects in MAPT study. J. Prev. Alzheimers Dis. 3, 151–159 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grande, G. et al. Co-occurrence of cognitive impairment and physical frailty, and incidence of dementia: systematic review and meta-analysis. Neurosci. Biobehav. Rev. 107, 96–103 (2019).

    Article  PubMed  Google Scholar 

  11. Buchman, A. S., Boyle, P. A., Wilson, R. S., Tang, Y. & Bennett, D. A. Frailty is associated with incident Alzheimer’s disease and cognitive decline in the elderly. Psychosom. Med. 69, 483–489 (2007).

    Article  PubMed  Google Scholar 

  12. Boyle, P. A., Buchman, A. S., Wilson, R. S., Leurgans, S. E. & Bennett, D. A. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J. Am. Geriatr. Soc. 58, 248–255 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Samper-Ternent, R., Al Snih, S., Raji, M. A., Markides, K. S. & Ottenbacher, K. J. Relationship between frailty and cognitive decline in older Mexican Americans. J. Am. Geriatr. Soc. 56, 1845–1852 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Auyeung, T. W., Lee, J. S. W., Kwok, T. & Woo, J. Physical frailty predicts future cognitive decline—a four-year prospective study in 2737 cognitively normal older adults. J. Nutr. Health Aging 15, 690–694 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Jacobs, J. M., Cohen, A., Ein-Mor, E., Maaravi, Y. & Stessman, J. Frailty, cognitive impairment and mortality among the oldest old. J. Nutr. Health Aging 15, 678–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Gray, S. L. et al. Frailty and incident dementia. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1083–1090 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mitnitski, A., Fallah, N., Rockwood, M. R. H. & Rockwood, K. Transitions in cognitive status in relation to frailty in older adults: a comparison of three frailty measures. J. Nutr. Health Aging 15, 863–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Yassuda, M. S. et al. Frailty criteria and cognitive performance are related: data from the FIBRA study in Ermelino Matarazzo, São Paulo, Brazil. J. Nutr. Health Aging 16, 55–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Sternäng, O. et al. Grip strength and cognitive abilities: associations in old age. J. Gerontol. B Psychol. Sci. Soc. Sci. 71, 841–848 (2016).

    Article  PubMed  Google Scholar 

  20. Lorenzo-López, L. et al. Clinical and neuropsychological correlates of prefrailty syndrome. Front. Med. https://www.frontiersin.org/articles/10.3389/fmed.2020.609359 (2020).

  21. Bunce, D., Batterham, P. J. & Mackinnon, A. J. Long-term associations between physical frailty and performance in specific cognitive domains. J. Gerontol. B Psychol. Sci. Soc. Sci. 74, 919–926 (2019).

    Article  PubMed  Google Scholar 

  22. Kelaiditi, E. et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J. Nutr. Health Aging 17, 726–734 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ruan, Q. et al. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res. Rev. 20, 1–10 (2015).

    Article  PubMed  Google Scholar 

  24. Arvanitakis, Z. et al. Memory complaints, dementia, and neuropathology in older blacks and whites. Ann. Neurol. 83, 718–729 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Verghese, J. et al. Motoric Cognitive Risk syndrome: multicenter incidence study. Neurology 83, 2278–2284 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tian, Q. et al. Dual cognitive and mobility impairments and future dementia—setting a research agenda. Alzheimers Dement. https://doi.org/10.1002/alz.12905 (2023).

  27. Tian, Q. et al. Association of dual decline in memory and gait speed with risk for dementia among adults older than 60 years: a multicohort individual-level meta-analysis. JAMA Netw. Open. 3, e1921636 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buchman, A. S. et al. Correlated decline of cognitive and motor phenotypes and ADRD pathologies in old age. Alzheimers Dement. https://doi.org/10.1002/alz.13347 (2023).

  29. Chen, L.-K. & Arai, H. Physio-cognitive decline as the accelerated aging phenotype. Arch. Gerontol. Geriatr. 88, 104051 (2020).

    Article  PubMed  Google Scholar 

  30. Cesari, M., Sloane, P. D. & Zimmerman, S. The controversial condition of cognitive frailty: what it is, what it should be. J. Am. Med. Dir. Assoc. 21, 146–148 (2020).

    Article  PubMed  Google Scholar 

  31. Mantovani, E. et al. Towards a redefinition of cognitive frailty. J. Alzheimers Dis. 76, 831–843 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Solfrizzi, V. et al. Reversible cognitive frailty, dementia, and all-cause mortality. The Italian longitudinal study on aging.J. Am. Med. Dir. Assoc. 18, 89.e1–89.e8 (2017).

    Article  PubMed  Google Scholar 

  33. Solfrizzi, V. et al. Additive role of a potentially reversible cognitive frailty model and inflammatory state on the risk of disability: the Italian longitudinal study on aging. Am. J. Geriatr. Psychiatry 25, 1236–1248 (2017).

    Article  PubMed  Google Scholar 

  34. Lee, W. -J., Peng, L. -N., Liang, C. -K., Loh, C. -H. & Chen, L. -K. Cognitive frailty predicting all-cause mortality among community-living older adults in Taiwan: a 4-year nationwide population-based cohort study. PLoS ONE 13, e0200447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. John, P. D., Tyas, S. L., Griffith, L. E. & Menec, V. The cumulative effect of frailty and cognition on mortality—results of a prospective cohort study. Int. Psychogeriatr. 29, 535–543 (2017).

    Article  Google Scholar 

  36. Han, E. S., Lee, Y. & Kim, J. Association of cognitive impairment with frailty in community-dwelling older adults. Int. Psychogeriatr. 26, 155–163 (2014).

    Article  PubMed  Google Scholar 

  37. Borges, M. K., Canevelli, M., Cesari, M. & Aprahamian, I. Frailty as a predictor of cognitive disorders: a systematic review and meta-analysis. Front. Med. 6, 26 (2019).

    Article  Google Scholar 

  38. Chen, S. et al. Physical frailty is associated with longitudinal decline in global cognitive function in non-demented older adults: a prospective study. J. Nutr. Health Aging 22, 82–88 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Yu, R. et al. The effects of combinations of cognitive impairment and pre-frailty on adverse outcomes from a prospective community-based cohort study of older chinese people. Front. Med. https://www.frontiersin.org/article/10.3389/fmed.2018.00050 (2022).

  40. Chu, N. M. et al. Hierarchical development of frailty and cognitive impairment: clues into etiological pathways. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1761–1770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Buchman, A. S., Schneider, J. A., Leurgans, S. & Bennett, D. A. Physical frailty in older persons is associated with Alzheimer disease pathology. Neurology 71, 499–504 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wallace, L. M. K. et al. Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: a cross-sectional analysis of data from the Rush Memory and Aging Project. Lancet Neurol. 18, 177–184 (2019).

    Article  PubMed  Google Scholar 

  43. Mackin, R. S. & Areán, P. A. Incidence and documentation of cognitive impairment among older adults with severe mental illness in a community mental health setting. Am. J. Geriatr. Psychiatry 17, 75–82 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mitchell, A. J., Meader, N. & Pentzek, M. Clinical recognition of dementia and cognitive impairment in primary care: a meta-analysis of physician accuracy. Acta Psychiatr. Scand. 124, 165–183 (2011).

    Article  PubMed  Google Scholar 

  45. Ólafsdóttir, M., Skoog, I. & Marcusson, J. Detection of dementia in primary care: the Linköping study. Dement. Geriatr. Cogn. Disord. 11, 223–229 (2000).

    Article  PubMed  Google Scholar 

  46. Sugimoto, T. et al. Epidemiological and clinical significance of cognitive frailty: a mini review. Ageing Res. Rev. 44, 1–7 (2018).

    Article  PubMed  Google Scholar 

  47. Panza, F. et al. Different cognitive frailty models and health- and cognitive-related outcomes in older age: from epidemiology to prevention. J. Alzheimers Dis. 62, 993–1012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shimada, H. et al. Combined prevalence of frailty and mild cognitive impairment in a population of elderly Japanese people. J. Am. Med. Dir. Assoc. 14, 518–524 (2013).

    Article  PubMed  Google Scholar 

  49. Mitnitski, A. B., Mogilner, A. J. & Rockwood, K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal 1, 323–336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walston, J., Buta, B. & Xue, Q. -L. Frailty screening and interventions: considerations for clinical practice. Clin. Geriatr. Med. 34, 25–38 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Walston, J. et al. Moving frailty toward clinical practice: nia intramural frailty science symposium summary. J. Am. Geriatr. Soc. 67, 1559–1564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Apostolo, J. et al. Mild cognitive decline. a position statement of the cognitive decline group of the european innovation partnership for active and healthy ageing (EIPAHA). Maturitas 83, 83–93 (2016).

    Article  PubMed  Google Scholar 

  53. Won, C. W. et al. Modified criteria for diagnosing ‘cognitive frailty’. Psychiatry Investig. 15, 839–842 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fabrício, D., de, M., Chagas, M. H. N. & Diniz, B. S. Frailty and cognitive decline. Transl. Res. 221, 58–64 (2020).

    Article  PubMed  Google Scholar 

  55. Rivan, N. F. M. et al. Cognitive frailty among Malaysian older adults: baseline findings from the LRGS TUA cohort study. Clin. Interv. Aging 14, 1343–1352 (2019).

    Article  Google Scholar 

  56. Das, S. Cognitive frailty among community-dwelling rural elderly population of West Bengal in India. Asian J. Psychiatry 70, 103025 (2022).

    Article  Google Scholar 

  57. Wongtrakulruang, P. et al. The prevalence of cognitive frailty and pre-frailty among older people in Bangkok metropolitan area: a multicenter study of hospital-based outpatient clinics. J. Frailty Sarcopenia Falls 05, 62–71 (2020).

    Article  Google Scholar 

  58. Navarro-Pardo, E., Facal, D., Campos-Magdaleno, M., Pereiro, A. X. & Juncos-Rabadán, O. Prevalence of cognitive frailty, do psychosocial-related factors matter? Brain Sci. 10, 968 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sartori, A. C., Vance, D. E., Slater, L. Z. & Crowe, M. The impact of inflammation on cognitive function in older adults: implications for health care practice and research. J. Neurosci. Nurs. 44, 206–217 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Godbout, J. P. & Johnson, R. W. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol. Clin. 24, 521–538 (2006).

    Article  PubMed  Google Scholar 

  61. Leonoudakis, D. et al. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells: implications for Parkinson’s disease. Mediators Inflamm. 2017, 8302636 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sikora, E. et al. Cellular senescence in brain aging. Front. Aging Neurosci. 13, 646924 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sargent, L. et al. Shared mechanisms for cognitive impairment and physical frailty: a model for complex systems. Alzheimers Dement. 6, e12027 (2020).

    Article  Google Scholar 

  64. Betteridge, D. J. What is oxidative stress? Metabolism 49, 3–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Pahwa, R., Goyal, A. & Jialal I. Chronic inflammation. StatPearls http://www.ncbi.nlm.nih.gov/books/NBK493173/ (accessed 28 December 2022).

  66. Mulero, J., Zafrilla, P. & Martinez-Cacha, A. Oxidative stress, frailty and cognitive decline. J. Nutr. Health Aging 15, 756–760 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Sargent, L. et al. Shared biological pathways for frailty and cognitive impairment: a systematic review. Ageing Res. Rev. 47, 149–158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ma, L. & Chan, P. Understanding the physiological links between physical frailty and cognitive decline. Aging Dis. 11, 405–418 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stephens, M. A. C. & Wand, G. Stress and the HPA axis. Alcohol Res. 34, 468–483 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Lee, B. K. et al. Associations of salivary cortisol with cognitive function in the Baltimore memory study. Arch. Gen. Psychiatry 64, 810–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Echouffo-Tcheugui, J. B. et al. Circulating cortisol and cognitive and structural brain measures: the Framingham Heart Study. Neurology 91, e1961–e1970 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maggio, M. et al. The hormonal pathway to cognitive impairment in older men. J. Nutr. Health Aging 16, 40–54 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Leng, S. X. et al. Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin. Exp. Res. 16, 153–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Sanz, B. et al. Serum adiponectin is associated with body composition and cognitive and psychological status in older adults living in long-term nursing homes. Exp. Gerontol. 121, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Nagasawa, M. et al. High plasma adiponectin levels are associated with frailty in a general old-old population: the septuagenarians, octogenarians, nonagenarians investigation with centenarians study. Geriatr. Gerontol. Int. 18, 839–846 (2018).

    Article  PubMed  Google Scholar 

  76. Hsiung, G. -Y. R., Sadovnick, A. D. & Feldman, H. Apolipoprotein E ε4 genotype as a risk factor for cognitive decline and dementia: data from the canadian study of health and aging. CMAJ 171, 863–867 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Buchman, A. S. et al. Apolipoprotein E ε4 allele is associated with more rapid motor decline in older persons. Alzheimer Dis. Assoc. Disord. 23, 63–69 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mourtzi, N. et al. Apolipoprotein ε4 allele is associated with frailty syndrome: results from the hellenic longitudinal investigation of ageing and diet study. Age Ageing 48, 917–921 (2019).

    Article  PubMed  Google Scholar 

  79. Liu, Z. et al. Effect of 24-month physical activity on cognitive frailty and the role of inflammation: the LIFE randomized clinical trial. BMC Med. 16, 185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lauretani, F. et al. Comprehensive model for physical and cognitive frailty: current organization and unmet needs. Front. Psychol. https://doi.org/10.3389/fpsyg.2020.569629 (2020).

  81. Griffiths, J., Seesen, M., Sirikul, W. & Siviroj, P. Malnutrition, depression, poor sleep quality, and difficulty falling asleep at night are associated with a higher risk of cognitive frailty in older adults during the COVID-19 restrictions. Nutrients 15, 2849 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hajek, A., Riedel-Heller, S. G. & König, H. -H. Perceived social isolation and cognitive functioning. Longitudinal findings based on the German Ageing Survey. Int. J. Geriatr. Psychiatry 35, 276–281 (2020).

    Article  PubMed  Google Scholar 

  83. Murukesu, R. R., Singh, D. K. A., Shahar, S., Subramaniam, P. A multi-domain intervention protocol for the potential reversal of cognitive frailty: ‘WE-RISE’ randomized controlled trial. Front. Public Health https://www.frontiersin.org/articles/10.3389/fpubh.2020.00471 (2022).

  84. Gallucci, M. et al. ‘Camminando e leggendo… ricordo’ (walking and reading… I remember): prevention of frailty through the promotion of physical activity and reading in people with mild cognitive impairment. Results from the TREDEM registry. J. Alzheimers Dis. 77, 689–699 (2020).

    Article  PubMed  Google Scholar 

  85. Romera-Liebana, L. et al. Effects of a primary care-based multifactorial intervention on physical and cognitive function in frail, elderly individuals: a randomized controlled trial. J. Gerontol. A Biol. Sci. Med Sci. 73, 1688–1674 (2018).

    Article  PubMed  Google Scholar 

  86. Dominguez, L. J. & Barbagallo, M. The relevance of nutrition for the concept of cognitive frailty. Curr. Opin. Clin. Nutr. Metab. Care 20, 61–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Rezola-Pardo, C. et al. Comparison between multicomponent and simultaneous dual-task exercise interventions in long-term nursing home residents: the Ageing-ONDUAL-TASK randomized controlled study. Age Ageing 48, 817–823 (2019).

    Article  PubMed  Google Scholar 

  88. Xu, W. et al. Education and risk of dementia: dose-response meta-analysis of prospective cohort studies. Mol. Neurobiol. 53, 3113–3123 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Fratiglioni, L., Marseglia, A. & Dekhtyar, S. Ageing without dementia: can stimulating psychosocial and lifestyle experiences make a difference. Lancet Neurol. 19, 533–543 (2020).

    Article  PubMed  Google Scholar 

  90. Gale, C., Ritchie, S. J., Starr, J. M. & Deary, I. J. Physical frailty and decline in general and specific cognitive abilities: the Lothian Birth Cohort 1936. J. Epidemiol. Community Health 74, 108–113 (2020).

    Article  PubMed  Google Scholar 

  91. Feng, L. et al. Physical frailty, cognitive impairment, and the risk of neurocognitive disorder in the Singapore longitudinal ageing studies. J. Gerontol. A Biol. Sci. Med. Sci. 72, 369–375 (2017).

    PubMed  Google Scholar 

  92. Rami, L. et al. The subjective cognitive decline questionnaire (SCD-Q): a validation study. J. Alzheimers Dis. 41, 453–466 (2014).

    Article  PubMed  Google Scholar 

  93. Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bright Focus Foundation Research Award (to P.M.A.); and the Johns Hopkins University Claude D. Pepper Older Americans Independence Center, which is funded by the National Institute on Aging of the National Institutes of Health under award number P30AG021334. The funding source had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. We gratefully acknowledge J. E. Fairman from The Johns Hopkins Department of Arts as Applied to Medicine for contributing to the creation of figures.

Author information

Authors and Affiliations

Authors

Contributions

M.M.N. and C.C. led the initial drafting of the manuscript. All authors, including E.M., H.W., Q.-L.X., F.G., E.O., L.F., D.A.B., J.D.W., C.G. and P.M.A. contributed to manuscript writing and the development of the suggested model based on their respective areas of expertise. All authors reviewed and approved the final manuscript. M.M.N. and C.C. contributed equally.

Corresponding author

Correspondence to Peter M. Abadir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Madia Lozupone, Sandrine Sourdet, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nader, M.M., Cosarderelioglu, C., Miao, E. et al. Navigating and diagnosing cognitive frailty in research and clinical domains. Nat Aging 3, 1325–1333 (2023). https://doi.org/10.1038/s43587-023-00504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00504-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing