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Animals rely on chemosensory cues to survive in pathogen-rich
environments. In Caenorhabditis elegans, pathogenic bacteria trigger

aversive behaviors through neuronal perception and activate molecular
defenses throughout the animal. This suggests that neurons can coordinate
the activation of organism-wide defensive responses upon pathogen
perception. In this study, we found that exposure to volatile pathogen-
associated compounds induces activation of the endoplasmic reticulum
unfolded protein response (UPR™) in peripheral tissues after xbp-1 splicing
in neurons. This odorant-induced UPR™ activation is dependent upon
DAF-7/transforming growth factor beta (TGF-f3) signaling and leads to
extended lifespan and enhanced clearance of toxic proteins. Notably, rescue
of the DAF-1 TGF-f receptor in RIM/RIC interneurons is sufficient to
significantly recover UPR™ activation upon 1-undecene exposure. Our data
suggest that the cell non-autonomous UPR®™ rewires organismal
proteostasis in response to pathogen detection, pre-empting proteotoxic
stress. Thus, chemosensation of particular odors may be aroute to
manipulation of stress responses and longevity.

To adapt and survive, organisms must be able to detect and respond
to environmental changes. In animals, this is mediated by the sensory
nervous system, which activates defensive responses upon identifi-
cation of hazards, such as reduced oxygen availability, temperature
increase or food shortage'. Inaddition, the detection of stress within
cellsactivates cellular stress responses, such as the unfolded protein
response of the endoplasmic reticulum (UPR™), which respond to
homeostaticimbalance by activating mechanisms that restore homeo-
stasis®. As animals age, they lose this ability to recognize and respond
tostress, resultinginincreased mortality and age-related disease’*>.
In particular, reduced activity of the IRE-1/XBP-1signaling branch
of the UPR® has been linked to brain aging and neurodegeneration,
whereas genetic activation of XBP-1 can protect animals against pro-
teotoxic insults®®.

Recent evidence suggests that neurons can trigger the cell non-
autonomous activation of cellular stress responses in peripheral tis-
sues, leading to coordinated increases in organismal resilience and

lifespan. Consistent with this, genetic activation of the UPR®™ ina subset
of neuronal or glial cells can extend lifespanin Caenorhabditis elegans
via neuronal signaling mechanisms that result in UPR®™ activation in
distal tissues”®. However, whether specific environmental situations
or exogenous molecules can trigger the activation of the cell non-
autonomous UPR™ in wild-type animals remains unknown. We there-
fore decided to identify physiologically relevant cues that drive cell
non-autonomous UPR® activationin C. elegans.

Results

Pathogen-associated odorants can activate the UPR®™®
Olfactory perception of bacteria alters gene expression in inverte-
brates’, and the immune response to Pseudomonas spp is associated
with UPR®™ activation in C. elegans®'°. The smell of pathogenic bac-
teria can also sensitize the heat shock response in worms”, suggest-
ing a possible link between olfaction and proteostasis. We therefore
asked whether pathogen-associated odor could activate the cell
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non-autonomous UPR® in C. elegans. We exposed animals to a vari-
ety of odorant molecules secreted by pathogenic bacteria, including
Pseudomonas aeruginosa and Staphylococcus aureus”, and monitored
the expression of hsp-4p::GFP, a transcriptional reporter of UPR™
activation. Notably, because the volatile molecules and the worms
were placed on different plates, there was no direct contact between
them (Fig. 1a). We observed that the UPR could be activated in the
intestine by exposureto three odorant molecules:1-undecene, pyrrole
and 2-nonanone (Fig. 1b,c and Extended Data Fig. 1a). Curiously, all
three compounds have previously been linked to aversive behavioral
responses in worms'*" (Extended Data Fig. 1b). We decided to focus
on 1-undecene in subsequent experiments. As previously observed
by others®, exposure to higher concentrations of 2-nonanone caused
lethal toxicity in a majority of the population; however, exposure to
1-undecene did not cause any overt alteration in the physiology of
exposed animals, such as changes to brood size (Extended Data Fig. 1c).

We found that mutation of the UPR®™® regulators ire-1 or xbp-1
abolished UPR™ activation by 1-undecene odor, indicating that the
IRE-1/XBP-1 signaling pathway is essential for activation of the UPR®®
by thiscompound (Fig.1d,e). Consistent with this, an XBP-1s::GFP splic-
ing reporter that expresses XBP-1s::GFP from an xbp-1p::xbp-1::GFP
transgene only whenxbp-1 mRNA is spliced by IRE-1(ref. 8) revealed an
increase in XBP-1s::GFP within the intestinal cells of animals exposed to
1-undecene (Fig. 1f-h). Furthermore, we observed asignificantincrease
intranscriptlevels of spliced xbp-I and two XBP-1s target genes (hsp-4
and Y41C4A.11), confirming activation of the IRE-1/XBP-1 pathway by
1-undecene (Fig. 1i). Interestingly, we were unable to detect activation
of other cellular stress response pathways, including nuclear DAF-16
localizationand hsp-16.2 (heat shock response) or Asp-6 (mitochondrial
UPR) upregulation, suggesting that the UPR™ is specifically activated
by pathogen-associated odor (Extended Data Fig. 2a-c). Finally, a
recent study found that the C. elegans immune system can also be
activated by olfactory perception of 1-undecene'. However, odor-
induced UPR®™ activationis unlikely to be adownstream consequence
of immune response activation, as animals with mutations in the key
immunity transcription factor zip-2, or in the immunity-associated
kinases pmk-1 and kgb-1, still showed UPR™ activation in response to
1-undecene (Extended Data Fig. 3a-c).

Previous work from our group and others demonstrated that
neuronal signaling can activate the UPR™ in peripheral tissues, such
as the intestine®”. We wondered whether signals produced by the
nervous system were also responsible for odor-induced UPR® activa-
tion. We observed that animals exposed to pathogen-associated odor
showed asignificantincrease in the number and fluorescence intensity
of XBP-1s::GFP" cells surrounding the pharynx (Fig. 2a), including
neurons such as RIM and RIC (Extended Data Fig. 3d). To establish
whether UPR®™ activation arising from 1-undecene exposure was cell
non-autonomousinnature, we tested the dependency of this effect on
the neuronal signaling regulators unc-31 and unc-13—mutationsin the
former blocking release of neuropeptides from dense core vesicles and
in the latter preventing the release of a range of signaling molecules,

including small-molecule neurotransmitters*’. We observed that the
hsp-4p::GFP reporter was activated in the intestine of unc-31(e928)
mutant animals (Fig. 2b), whereas the unc-13(e450) mutation entirely
inhibited activation of the UPR®™in the periphery (Fig. 2c), suggesting
thatanon-neuropeptide neuronal signalisinvolvedin cell non-autono-
mous UPR® activation by exposure to1-undecene. Notably, mutation of
unc-13does not prevent animals from responding to cell-autonomous
ER stress, as hsp-4p::GFP s still activated in animals exposed to RNA
interference (RNAI) against pdi-2 (Extended Data Fig. 3e)*s.

TGF-p signaling is required for odorant-induced UPR®™®
activation

The Ga protein ODR-3 was previously shown to be required for acti-
vation of the immune response by 1-undecene'. We therefore asked
whether ODR-3 is also required for 1-undecene-induced UPR® activa-
tion. To do this, we used CRISPR to generate an odr-3 deletion muta-
tioninthe hsp-4p::GFPbackground and confirmed that this mutation
abolished the aversive behavioral response to 1-undecene (Extended
DataFig.4a). However, we observed a full Asp-4p::GFPresponsein this
odr-3 null background, suggesting that this gene is not required for
UPR™ activation by 1-undecene (Extended Data Fig. 4b). The immune
response to1-undecene also requires the AWB sensory neurons'®. How-
ever, a lim-4 mutation, which results in dysfunction of AWB neurons,
also failed to abolish1-undecene-induced UPR™ activation (Extended
DataFig. 4c). This suggests that the neuronal circuitry involved in the
immune and UPR® activation responses to 1-undecene are different.
In addition, tyramine synthesis is necessary for cell non-autonomous
UPR®Ractivation in strains constitutively expressing neuronal xbp-1s®.
Unexpectedly, we found that tdc-1, a gene essential for the synthesis
of tyramine, was not required for activation of hsp-4p::GFP in strains
exposed tol-undecene (Extended Data Fig. 4d). We also ruled out the
possibility that the CEPsh gliaare involved in this response, as animals
inwhich these cells were genetically ablated still displayed increased
hsp-4p::GFPlevels after 1-undecene exposure (Extended Data Fig. 4e)’.
We then tested mutants that fail to synthesize a variety of neurotrans-
mitters, including dopamine, serotonin, GABA, glutamate, choline and
betaine, for their ability to activate the UPR® inresponse to 1-undecene
exposure, but we did not identify a role for any of these molecules
(Fig. 2d and Extended Data Fig. 5).

Worms avoid food containing pathogenic bacteria through
aversive olfactory learning”. The same aversive behavior is seenin
animals exposed to pathogen-associated molecules®**. One signal-
ing molecule that plays a key role in the neuronal circuits that gov-
ern these behaviors is transforming growth factor-beta (TGF-)***.
DAF-7, a worm homolog of TGF-, is necessary for the avoidance of
2-nonanone”, amolecule whose odor induced UPR® activation in our
initial odorant screen (Fig. 1b). We observed that DAF-7 is also neces-
sary for behavioral avoidance of 1-undecene (Extended Data Fig. 6a).
We therefore asked whether DAF-7/TGF-B is required for UPR® activa-
tionby1-undecene. Strikingly, we found that daf~7wasindeed necessary
for UPR®™ activation after 1-undecene exposure (Fig. 3a). In addition,

Fig.1|Pathogen-associated odor activates the IRE-1/XBP-1branch of the
UPR®. a, Schematic showing the experimental setup for the odorant exposure
assay. In brief, young adult worms were sealed for 12 hin NGM plates together
withanother NGM plate containing four spots of 3 pl of odorant. b, Fluorescence
intensity of hsp-4p::GFP after odorant exposure. Quantification of hsp-4p::GFP
expression was performed inImageJ, and data were normalized to untreated
hsp-4p::GFPanimals. This assay was independently performed three times
(n=39,42,17,15,21, 60,16 and 27 animals). Graphs show mean + s.d. ****P < 0.0001
(one-way ANOVA with Dunnett’s multiple comparison test). ¢, Representative
fluorescence microscopy images of worms untreated or exposed to 1-undecene,
2-nonanone (diluted 10x) and pyrrole for 12 h. This assay was independently
performed three times. Scale bars, 200 pm. d,e, Representative fluorescence
microscopy images and quantification of hsp-4p::GFPfluorescence in ire-1(zc14)

(d) and xbp-1(zc12) (e) worms with or without exposure to 1-undecene odor for
12 h. These experiments were repeated four times (n = 26 and 21 animals for d
and n=25and 16 animals for e). Scale bars, 200 um. Graphs show mean + s.d. NS,
notsignificant (two-tailed unpaired Student’s ¢-test). f, Representative image.

g, Quantification of fluorescence. h, Number of GFP* nucleiin the intestine of
worms expressing an xbp-Ip::xbp-1::GFPtransgene with or without exposure
tol-undecene for 8 h. This experiment was repeated three times (n=7and 10
animals for gand n=10 and 10 animals for h). Scale bars, 200 pm. Graphs show
mean +s.d. ***P<0.0001and **P < 0.01 (two-tailed unpaired Student’s ¢-test).

i, mRNA levels of xbp-Is, hsp-4 and Y41C4A.11 were measured by qRT-PCRin
animals exposed to 1-undecene for 8 hrelative to untreated worms (n=7and 8
biological replicates). Graphs show mean + s.d. ***P < 0.0001and **P < 0.001
(two-tailed unpaired Student’s t-test). Precise Pvalues are provided in Source Data.
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amutation in a specific DAF-7 receptor, daf-1, completely inhibited
1-undecene-induced UPR® activation (Fig. 3b). Notably, DAF-1 is
expressedinthe RIM/RIC interneurons, and our previous work showed
that UPR®™ activation in these neuronsis sufficient to drive inter-tissue
intestinal UPR™ activation®*°. We found that rescue of DAF-1in these
interneurons alone was sufficient to partially restore UPR™ activation
indaf-1(m40) mutants (Fig. 3c). DAF-7 is primarily expressed in the ASI

b

chemosensory neurons, and animals exposed to P. aeruginosa exhibit
increased expression of daf-7 (ref. 20). We therefore asked whether
daf-7 expression was elevated by chemosensation of 1-undecene.
Indeed, daf”mRNA levels were upregulated upon1-undecene exposure
(Fig.3d). To confirm this, we also employed a daf-7p::Venus fluorescent
reporter transgene and observed an increase in expression of daf-7
only in the ASI neurons upon treatment with 1-undecene (Fig. 3e and
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Fig. 2| Neuronal signaling is required for downstream UPR™ activation by n=23and 30 animals for c). Scale bars, 200 pm. Graphs show mean +s.d. NS,
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These experiments were repeated three times (n =24 and 23 animals for band areprovidedin Source Data.
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Fig. 3| DAF-7/TGF-B signaling is required for odor-induced UPR™ activation.
a-c, Representative fluorescence microscopy images and quantification of
hsp-4p::GFPfluorescencein daf-7(e1372) (a), daf-1(m40) (b) and daf-1(m40);
ftEx205[tdc-1p::daf-1:gfp] (c) strains with or without exposure to 1-undecene
for12 h. Each experiment was repeated four times (n =38 and 42 animalsin a,
n=34and28animalsinbandn=34and42animalsinc).Scale bars,200 pm.
Graphs show mean + s.d. NS, not significant (two-tailed unpaired Student’s
t-test) or **P < 0.01 (two-tailed unpaired Student’s ¢-test with Welch’s correction).
d, mRNA levels of daf-7 were measured by qRT-PCR in animals exposed to
1-undecene for 8 hrelative to untreated worms (n =7 and 8 biological replicates).
Graph shows mean *s.d. *P < 0.05 (two-way ANOVA with Tukey’s multiple
comparisons test). e, Representative fluorescence microscopy images and
quantification of daf-7p::Venus fluorescence in ASI neurons after worms were

exposed or not exposed to 1-undecene odor for 12 h. This experiment was
repeated three times (n = 42 and 32 animals). Scale bars, 7 um. Graph shows
mean +s.d. *P < 0.01 (two-tailed unpaired Student’s t-test). f, Representative
fluorescence microscopy images and quantification of hsp-4p::GFPfluorescence
inan ASl-ablated strain (0y/s84[gpa-4p::TU#813 + gcy-27p::TU#814 + gcy-27p::GFP +
unc-122p::DsRed]). This experiment was repeated three times (n =48 and 33
animals). Graph shows mean = s.d. NS, not significant (two-tailed unpaired
Student’s t-test). Scale bars, 200 pm g, mRNA levels of xbp-Is and Y41C4A.11

were measured by qRT-PCR in animals exposed to 1-undecene for 8 h relative

to untreated worms (n = 5 biological replicates). Graphs show mean + s.d. NS,
notsignificant and *P < 0.05 (two-way ANOVA with Tukey’s multiple comparison
test). Precise Pvalues are provided in Source Data.

Extended DataFig. 6b).In addition, genetic ablation of the ASIneurons
prevented UPR®™ activation by 1-undecene exposure (Fig. 3f). This sug-
gests thatan ASI-RIM/RIC neuronal circuit plays arole in the regulation
of UPR® activation after odorant exposure.

Expression levels of daf-7 have been linked to activation of the
guanylate cyclase DAF-11in ASI neurons during starvation®*. We there-
fore asked whether DAF-11is also required for UPR™ activation upon
1-undecene exposure and observed that DAF-11 was indeed necessary
fortranscriptional upregulation of xbp-Isandits target gene Y41C4A.11

(Fig.3g). This suggests that DAF-11is involved in the neuronal percep-
tion of 1-undecene odor and subsequent UPR®™ activation. Thus, our
dataimplicate a TGF-p signaling circuit in connecting the recognition
of pathogen-related odorants to inter-tissue regulation of the UPR®,

Chemosensory perception can extend lifespan and enhance
proteostasis

Activation of cellular stress responsesis associated withincreased lifes-
panandimproved resistance to disease-associated toxic proteins®**°,
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Fig.4|1-undecene odor increases C. eleganslifespan and reduces polyQ
accumulation. a-d, Lifespan analysis of N2 wild-type (a), xbp-1(zc12)

(b), daf-7(e1372) (c) and daf-1(m40) (d) animals with or without exposure to
1-undecene for 24 hat day 1 of adulthood. Graphs are plotted as Kaplan-Meier
survival curves. n=100-120 animals in each group in each of three biological
replicates (a,b) and n = 50-100 in two biological replicates (c,d). *P < 0.05
(Mantel-Cox log-rank test). e, Animals expressing polyQ::YFP repeats in
neurons, intestine or body wall muscle exposed to 1-undecene for12 hat day 1
of adulthood and imaged 72 h after treatment. YFP levels were quantified using

ImageJ and normalized to untreated animals. This experiment was repeated
three times (n =31and 65 animals (neuronal); n =21 and 20 animals (muscle);
n=44and 39 animals (intestine)). Graphs show mean + s.d. ***P < 0.0001 and
*P<0.05 (two-tailed unpaired Student’s t-test). f, daf-7(e1372) animals expressing
polyQ::YFP repeats in body wall muscle exposed to 1-undecene for 12 hat day 1 of
adulthood and imaged 72 h after treatment, asin e. This experiment was repeated
three times with at least 15 worms per group. Graphs show mean + s.d. NS, not
significant (two-tailed unpaired Student’s ¢-test). Precise Pvalues are provided
inSource Data.

This prompted us to ask whether 1-undecene exposure on the first day
of adulthood couldimpact organismal lifespan and proteostasis. Excit-
ingly, 1-undecene-exposed animals consistently had significantly longer
lifespans than untreated animals (Fig. 4a and Supplementary Table1).
This increase in survival was dependent upon xbp-I (Fig. 4b and Sup-
plementary Table 1), suggesting that 1-undecene odor extends lifespan
through the activation of the UPR™. Furthermore, 1-undecene-induced
lifespan extension was also dependent upon daf-7 and daf-1, confirm-
ing the importance of UPR®™ activation via TGF-p signaling down-
stream of 1-undecene exposure (Fig. 4c,d and Supplementary Table1).
Treatment with the UPR®™-inducing odorant pyrrole (Fig. 1b) also
extended lifespan (Extended Data Fig. 7aand Supplementary Table1).
However, this extension of longevity was less consistent and was not
dependentuponxbp-1(ExtendedDataFig.7bandSupplementaryTablel),
suggesting the involvement of additional mechanisms.

To examine the impact of pathogen-related odor on a C. elegans
model of neurodegeneration-associated proteotoxicity, we meas-
ured levels of YFP-tagged polyglutamine (polyQ) repeats in different
tissues of the animal after 1-undecene exposure at day 1 of adult-
hood. Remarkably, 1-undecene induced a consistent decrease in lev-
els of polyQ in all tissues examined (intestine, muscle and neurons)
(Fig. 4e). It also decreased the number of polyQ aggregates observed
in muscle cells (Extended Data Fig. 7c) and ameliorated motility
decline in worms expressing neuronal polyQ (Extended Data Fig. 7d).
This suggests that 1-undecene-induced UPR™ activation enhances
clearance of toxic proteins across the animal. Decreased polyQ levels
upon 1-undecene exposure were also dependent upon daf-7 (Fig. 4f).

These results therefore suggest amodelin which the neuronal percep-
tion of a pathogen-associated odorant molecule enhances organismal
proteostasis and lifespan through TGF-p signaling and UPR® activation
(Extended DataFig. 8).

Discussion

Previous studies reported the cell non-autonomous activation of
the UPR™ by signals from neurons and glia. In each case, however,
transgenes driving xbp-1s were used to achieve this activation, and
the evolutionary logic for the development of such systems has been
unclear. Here we demonstrate that C. elegans can trigger a cell non-
autonomous UPR™ without such transgenes, in response to patho-
gen-associated odorant molecules thatinduce an aversive behavioral
response. We reason that the cell non-autonomous UPR®™ may have
evolved to enable animals to enhance defensive mechanismsin antici-
pation of theincreased translation associated with animmune response
or the direct proteostatic challenge of the pathogen itself. Animals
that constitutively activate a PMK-1-driven immune response require
xbp-1to survive the demands imposed by an activeimmune system',
suggesting that UPR™ capacity is of critical importance in conditions
thatrequire animmune response.

Although the action of 1-undecene on C. elegans is likely a spe-
cific interaction informed by the complex evolutionary relationship
between pathogen and host, existing evidence supports the idea that
the broader principle underlying cell non-autonomous UPR™ activa-
tion may be conserved. In mice, sensory perception of food activates
pro-opiomelanocortin (POMC)-expressing neurons, resulting in
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hepaticxbp-1splicing as a predictive physiological response in antici-
pation of food consumption®. Inaddition, driving xbp-Is genetically in
murine POMC neuronsis sufficient toincrease hepatic xbp-Islevels via
acellnon-autonomous mechanism”. There are significant similarities
between the roles of ASI neurons in the worm and the hypothalamus
and POMC neurons in mice”®, ASI neurons regulate food intake and
food-seeking behavior through the action of DAF-7/TGF-B*. Similarly,
POMCis expressed insubsets of cells, including neuronsin the arcuate
nucleus of the hypothalamus®®, and POMC neurons also regulate food
intake and energy expenditure via locomotion in some contexts™.
Furthermore, expression of the TGF-f3 antagonist Smad7 in POMC neu-
ronsregulates peripheral glucose metabolism, suggesting that TGF-f3
signalingis alsoimportant for POMC neurons to achieve anticipatory,
cell non-autonomous effects in the periphery®. These mammalian
studies suggest that major interactions in the pathway we describe
here are likely to be conserved in mammals.

Although earlier work showed that food-associated odor can pre-
vent lifespan extension induced by caloric restriction®**, the present
study s, toour knowledge, the first demonstration that the perception
ofaspecificodorant molecule canincrease thelifespan of an animal. It
was noted recently® that agreat many mechanisms that regulate aging
inmodel organismsinclude cell non-autonomous protective pathways
thatare subject to neuronal control, often by sensory neurons. Dietary
restriction-mediated longevity requires the UPR™ (refs. 36,37) as well
as functional ASI neurons expressing daf-7 (refs. 38,39) and is regu-
lated by olfactory perception*’. Furthermore, cell non-autonomous
regulation of the mitochondrial UPR*, heat shock response*?, AMP-
activated protein kinase (AMPK)* and target of rapamycin complex
1(TORC1)*, as well as lifespan regulation by temperature® and the
hypoxia response*’, are all similarly orchestrated, with signals origi-
nating in sensory neurons leading via cell non-autonomous routes to
regulation of pro-longevity pathways. Here we show that direct stimu-
lation of chemosensory neurons can extend lifespan. We therefore
speculate that directly manipulating the activity of sensory neurons
viatheir sensoryinputs and/or corresponding receptors may be away
to activate these pro-longevity pathways.

Finally, mounting evidence suggests that Irel/Xbp1 activity is
highly correlated with the pathophysiology observed in neurodegen-
erative disordersinanimal models, including Alzheimer’s, Parkinson’s
and Huntington’s diseases, and age-associated declinein the activation
of this pathway may be associated with disease progression**. Activa-
tion of the UPR™ through stimulation of sensory pathways by olfactory
compounds may therefore represent a promising strategy to prevent
the disease-related proteostasis collapse associated with aging.

Methods

C. elegans strains and maintenance

Strains were made in the course of this study, provided by the Caeno-
rhabditis Genetics Center (CGC) or kindly gifted by other laboratories.
Alist of strains usedin this work canbe found in Supplementary Table 2.
The CGCBristol N2 hermaphrodite stock was used as wild-type. Worms
were maintained at 20 °C on nematode growth medium (NGM) plates
seeded with Escherichia coli OP50 using standard techniques®. For
RNAi by feeding®’, NGM plates were supplemented with1 mMIPTG and
100 pg ml™ carbenicillinand then seeded with HT115 bacteria harbor-
ing L4440 empty vector or the RNAi of interest. AllRNAi used are from
the Ahringer RNAi library (Source BioScience) and were confirmed
by sequencing.

Transgenic strain construction

The odr-3(rms31) mutant was generated by CRISPR using a dual crRNA
dpy-10 co-CRISPR strategy and a custom protocol based on previ-
ous methods™* and optimization for our laboratory. In brief, 1 ul of
320 pM solution of each CRISPR RNA (crRNA) and 0.5 pl of dpy-10
crRNA (50 uM) was annealed to 0.4 pl of 100 uM trans-acting CRISPR

RNA (tracrRNA) (Integrated DNA Technologies) by heating to 95 °C
in a PCR machine and cooling to 4 °Cat 0.1°Cs™. Then, 0.5 pl of Cas9
protein (Invitrogen) was added, and the mixture was incubated for
10 min at 37 °C. Next, 0.5 pl of 100 puM stock of each repair template
(target and dpy-10) was added, and the solution was made up to 20 pl
with DPEC water. This mix was centrifuged for 30 min at 20,000g at
4 °Cbeforeinjection. Oligonucleotides used in this study are provided
inSupplementary Tables 3 and 4.

Brood size measurement
Brood size was determined by counting the number of eggs laid per
worm during their fertile period (from day 1to day 4 of adulthood).

Treatment with1-undecene

To expose animals to the odor of 1-undecene (Sigma-Aldrich, 242527),
worms were placed on NGM plates with a diameter of 60 mm, which
were sealed with another 60 mm NGM plate on which was pipetted
4 x 3-uldrops of 1-undecene.

Epifluorescence microscopy

Toinvestigate the effect of 1-undecene on reporter transgene expres-
sion (for example, hsp-4p::gfp), worms were exposed to 1-undecene
odor for12 hinplates sealed with Parafilm M and thenimmobilized with
20 mM sodium azide (Sigma-Aldrich) and imaged using a Leica M205
FAmicroscope. Toimage worms expressing polyQ::YFP, animals were
exposed to 1-undecene for 12 h on day 1 of adulthood and imaged on
day4 ofadulthood. For DAF-16::GFP analysis, worms were scored based
on the subcellular localization of GFP in intestinal cells, as described
previously®*. Worms were randomly selected from a synchronized
population beforeimaging. Fluorescence values (meanintensity) were
obtained by analyzing microscope images on Image]J or Fiji.

Confocal microscopy

Worms expressing daf-7p::Venus or xbp-1p::xbp-1::GFPtransgenes were
treated with 1-undecene for 8 h. They were then immobilized with
20 mM sodium azide (Sigma-Aldrich) and mounted on a 2% agarose
pad. Animals were imaged on an LSM 710 confocal microscope using
the x40 and x63 oilimmersion objectives and on an Andor Revolution
spinning disk microscope using the x20 and x60 water immersion
objectives. Allimages were acquired using Leica LAS X (version 5.1.0)
and analyzed using Image]J (version1.53e).

RNA extraction and qRT-PCR

Approximately 300 young adult animals were collected with M9 after
being exposed or not to 1-undecene for 8 h. TRIzol was added to sam-
ples, whichwere immediately frozenin liquid nitrogen. RNAisolation
was carried out using the Direct-zol RNA MiniPrep Kit (Zymo Research)
following the manufacturer’sinstructions. RNA was quantified by Nan-
oDrop. One microgram of RNA was used for cDNA synthesis with the
QuantiTect Reverse Transcription Kit (Qiagen). Samples were diluted
2.5x after cDNA synthesis, and SYBR Select Master Mix (Applied Biosys-
tems) was used for qRT-PCR on a Vii7 Real-Time PCR machine (Thermo
Fisher Scientific) to quantify alterations in the transcript level of genes
of interest. Data were analyzed using the comparative 2*““method. A
list of primers used in this work is provided in Supplementary Table 3.

Chemotaxis assay

For odorant chemotaxis assays, chemotaxis was performed in a two-
plate setup. Onthe lower plate, 1-undecene (test) or water (control) was
placed approximately 2 cm fromthe center of the plate. Worms at day
lofadulthood were placed onthe center of the upper plate, and a test
zone and a controlzone were designated opposite the odorant, with the
remaining space scored as the center zone'. Water mixed with sodium
azide (1:1) was placed in the center of each the control and test zone.
After 30 min, the number of worms in each zone was quantified, and
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the chemotaxis index was calculated by the formula: Cl = (number of
WOrms,., — number of worms,,...,) / (total number of worms).

Thrashing assay

Animals expressing neuronal polyQ were exposed to1-undecene on day
1of adulthood for 16 h. At day 2 or day 5 of adulthood, these animals
were transferred to M9 solution, and the number of body bends per
30 swas quantified.

Survival assays

Approximately 100 worms were exposed or not exposed to 1-undecene
odor for 24 h at day 1 of adulthood. Worms were then placed on NGM
plates containing 100 pg ml™ FUDR and seeded with E. coli OP50 and
werekeptat20 °C. Animals were monitored as alive or dead every sec-
onddaybyablindedinvestigator,and data were analyzed on GraphPad
Prism 8.4.2 software.

Statistics and reproducibility

Statistical analysis was performed using GraphPad Prism 8.4.2 soft-
ware. All bar graphs show the mean with error bars representing s.d.
Appropriate tests for each experiment were chosen and are described
(including tests for multiple comparisons) in the figure legends. With
the exception of lifespan assays, data collection and analysis were
not performed blinded to the conditions of the experiments. Unless
specified otherwise in the figure legend, aminimum of three individual
experiments were conducted for each assay. All replication efforts
consistently yielded similar results. No animals were excluded from the
analysis; however, for QRT-PCR experiments, samples that did not meet
the predetermined quality control standards were excluded. Where
used, nisimmediately defined. Information regarding the number of
repeats, number of animals per repeat and the results of the statistical
tests performed are givenin the figure legends. No statistical methods
were used to pre-determine sample sizes, but our sample sizes are
similar to those reported in previous publications from our group®.
Datadistribution was assumed to be normal, but this was not formally
tested. Animals were randomly selected based upon developmental
stage and not screened in any way before analysis.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alldatareportedin this paper will be shared by the lead contact upon
reasonable request. Any additional information required to re-analyze
thedatareportedinthis paperisavailable from the lead contact upon
reasonable request. This paper does not report original code. Source
dataare provided with this paper.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Non-aversive odorants do notinduce UPR®™ activation repeats per group, 60 animals per replicate. Graph represents mean Cl £ s.d. Ns,
and 1-undecene does not affect brood size. a, Representative images from notsignificant (two-tailed unpaired Student’s t test). ¢, Number of eggs laid per
the hsp-4p::GFP odorant screen. Experiments were repeated three times with worm in animals exposed to 1-undecene odor for 12 hours at day 1 of adulthood.
atleast 10 worms per group. Scale bars, 200 pm. b, Chemotaxis index (CI) of N2 n=8worms per group. Graphs show mean + s.d. Ns, not significant (two-tailed

and SJ4005 (zcls4 [hsp-4p::GFP]) worms exposed to 1-undecene. N = 15 biological unpaired Student’s t test). Source Data contains precise P values.
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Extended Data Fig. 2 |1-undecene exposure does not activate other stress
response pathways. a,b, Representative fluorescence microscopy images

and quantification of a, hsp-16.2p::GFP and b, hsp-6p::GFP fluorescence. These
experiments were repeated three times.n=18,17 animalsinaandn=32,36
animalsinb. Scale bars, 200 pm. Graphs show mean + s.d. Ns, not significant
(two-tailed unpaired Student’s t test). ¢, Representative fluorescence microscopy

images and quantification of the subcellular localization of DAF-16::GFP in
worms expressing a daf-16p::DAF-16::GFPtransgene. Worms were scored based
onthe number of intestinal cells that presented nuclear GFP localization,1=0
cells (cytosolic GFP only), 2 = 2-4 cells, 3 = 5-8 cells, 4 = more than 8 cells. This
experiment was repeated three times. n =13,17 animals. Scale bars, 200 pm.
Source Data contains precise Pvalues.
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Extended Data Fig. 3 | See next page for caption.
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Extended DataFig. 3| Activation of the UPR™ in by 1-undecene odor does not
require immune response regulators and occurs in RIM/RIC interneurons.
a, b, ¢, Representative fluorescence microscopy images and quantification of
hsp-4p::GFPfluorescencein a, zip-2(0k3730), b, pmk-1(k25) and ¢, kgb-1(um3)
animals with or without exposure to 1-undecene odor for 12 hours. Experiments
were repeated three times.n =50, 58 animalsina, n=23,18 animalsinband
n=>54,48animalsin c. Scale bars, 200 um. Graphs show mean *s.d. ***P < 0.001
inaand ***P<0.0001inb and c (two-tailed unpaired Student’s t test).

d, Representative image of worms expressing a tdc-Ip::mKate; xbp-1p::xbp-1::GFP

transgene exposed to 8 hours of 1-undecene odor. Scale bars, 10 pm. Experiment
repeated one time. Scale bars, 10 pm. e, Representative fluorescence microscopy
images and quantification of hsp-4p::GFPfluorescence in hsp-4p::GFP animals
with or without an unc-13(e450) mutant background grown from L1 larval stage
on NGM plates containing bacteria harboring empty vector (L4440) or pdi-2
RNAI. Data were normalized by samples treated with vector only. The experiment
was repeated twice.n =11,13,11,10. Scale bars, 200 pm. Graphs show mean + s.d.
**P<0.01,***P< 0.0001 (two-tailed unpaired Student’s t test). Source Data
contains precise Pvalues.
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Extended Data Fig. 4 | ODR-3, LIM-4, tyramine synthesis, and CEPsh glia
are not required for UPR™ activation by 1-undecene odor. a, Chemotaxis
index of N2 and odr-3(rms31) animals following exposure to 1-undecene.n =15
biological repeats per group, 60 animals per replicate (N2 data displayed is
the same as Extended Data Fig. S1b as they were performed at the same time).

Graphs show mean Cl £ s.d. ***P < 0.0001 (two-tailed unpaired Student’s t test).

b, ¢, d, e Representative fluorescence microscopy images and quantification

of hsp-4p::GFP fluorescence in animals with b, odr-3(rms31), ¢, lim-4(ky403)

d, tdc-1(n3419), and e, nsIs180[hlh-17p::recCaspase-3, unc-122p::GFP] backgrounds
with or without exposure to 1-undecene for 12 hours. Experiments were repeated
three (b, ¢, e) or four (d) times.n=30,32 animalsinb, n=42,37 animalsin
¢,n=32,18animalsind, n=11,10 animalsin e. Scale bars, 200 pm. Graphs show
mean +s.d.*P<0.05,**P < 0.01, ***P < 0.0001 (two-tailed unpaired Student’s t
test). Source Data contains precise Pvalues.
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