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The concept of aging is complex, including many related phenotypes such

as healthspan, lifespan, extreme longevity, frailty and epigenetic aging,
suggesting shared biological underpinnings; however, aging-related
endpoints have been primarily assessed individually. Using data from these
traits and multivariate genome-wide association study methods, we modeled
their underlying genetic factor (‘mvAge’). mvAge (effective n = -1.9 million
participants of European ancestry) identified 52 independent variantsin

38 genomic loci. Twenty variants were novel (not reported in input genome-
wide association studies). Transcriptomic imputation identified age-relevant
genes, including VEGFA and PHBI. Drug-target Mendelian randomization
with metformin target genes showed a beneficialimpact on mvAge

(Pvalue =8.41 x107). Similarly, genetically proxied thiazolidinediones
(Pvalue =3.50 x107'9), proprotein convertase subtilisin/kexin 9 inhibition
(Pvalue =1.62 x107°), angiopoietin-like protein 4, beta blockers and calcium
channel blockers also had beneficial Mendelian randomization estimates.
Extending the drug-target Mendelian randomization framework to 3,947
protein-coding genes prioritized 122 targets. Together, these findings will
inform future studies aimed atimproving healthy aging.

While human aging is a multifaceted process influenced by many fac-
tors"? and characterized by reduced maintenance of homeostatic
mechanisms, age-related diseases and death’, there exists substantial
variability in how humans age®. Some individuals may be subject to
chronic health problems and disease and die early while others may
reach old age relatively healthy’. Understanding the factors underly-
ing this variation is important for the development of public health
interventions and therapeutics to improve healthy aging®.

Genome-wide association studies (GWASs) have begun to identify
aging-related loci using single-phenotype approaches®”, including
extreme longevity®, healthspan® and parental lifespan’. However, these
single-endpoint approaches fail to account for the shared genetics
among these traits or other aging-related traits, such as epigenetic age
acceleration (EAA)' and frailty", which would provide further insight
into the broad genetic architecture underlying how humans age and
informthe shifting focus in geroscience from studying survival toward
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Generation of multivariate GWAS ('mvAge') modeling the shared genetic
architecture of aging-related univariate GWAS summary statistics from
population-based cohorts of European ancestry

Fig.1|Study overview. An overview of this study’s data sources, analytical flow
and methodology. Created with BioRender.com. The univariate input GWASs
of frailty and EAA were reverse coded to align their effects to have positive
relationships with healthspan, lifespan and extreme longevity. GWAS, genome-
wide association study; EAA, epigenetic age acceleration; CELLECT, CELL-type

Additional analyses of mvAge investigating genetic risk across multiple genomic levels (from
individual variants to genome-wide architecture), corresponding gene associations, pathways

enrichment, phenotype characterization and drug targets

Expression-specific integration for Complex Traits; IVW, inverse variance
weighted; MR LASSO, MR Least Absolute Shrinkage and Selection Operator;
HbAIc, glycated hemoglobin; LDL-C, low-density lipoprotein cholesterol; HDL-C,
high-density lipoprotein cholesterol.

incorporating complementary measures of age-related outcomes® to
improve healthy aging—defined as the maintenance of well-being in old
age that includes both the absence of disease and the presence of hap-
piness, satisfaction and fulfillment”. Further, EAA may be reversible™,
underscoring the potential value of elucidating mechanisms and discov-
ering targets that slow aging'®. Recent advances in multivariate GWAS
approachesincorporate univariate GWAS summary statistics to facilitate
discovery of the genetic architecture underlying related phenotypes™. In
contrast tosingle-phenotype GWAS methods, multivariate approaches
enhance discovery of novel biological correlates by boosting statistical
power through increased effective sample sizes'* and have beenrecently
applied to identify genomic loci shared across neuropsychiatric disor-
ders™, alcohol consumption behaviors® and externalizing behaviors'®.

We apply genomic structural equation modeling (genomic SEM)™*
to summary-level GWASs on healthspan’, parental lifespan’, extreme
longevity®, frailty" and epigenetic aging'® to construct a multivariate
aging-related GWAS (here termed ‘mvAge’) to identify novel genetic
variants that broadly impact healthy aging processes. We perform
bioannotation—including fine mapping, a transcriptome-wide asso-
ciation study (TWAS) and cell-type enrichment. We also use several
applications of Mendelian randomization (MR)" aimed at identify-
ing modifiable risk factors and biomarkers to support healthy aging
initiatives. Further, given the importance and interestin repurposing
and developing therapeutics to improve healthy aging (for example,
ongoing clinical trials evaluating the potential of metformin’®), and
because genetic evidence supporting candidate compounds enter-
ing clinical trials increases the probability of clinical success, we use
drug-target MR" to investigate potential therapeutic repurposing
opportunities among gene targets of metformin, 6 other antidiabetic
classes, 15 lipid-lowering therapies and 5 classes of antihypertensive
drugs. We also leverage drug-target MR to perform screens of protein-
coding genes that will inform future studies investigating potential
therapeutic targets to improve healthy aging.

Results
Astudy overview is presented in Fig. 1.

Structural equation modeling

Linkage disequilibrium (LD) score regression indicated that the five
univariate input GWASs, representing the genetic aging-related liabili-
ties of healthspan, frailty, exceptional longevity, parental lifespan and
EAA, were positively correlated (frailty and EAA were reverse coded)
(Fig.2and Supplementary Tables 1and 2). We performed SEM in prepa-
ration for the multivariate GWAS. The common factor model fit of
the implied genetic covariance matrix between the five input GWASs
with the empirical covariance matrix was good (comparative fitindex
(CFI) = 0.97, standardized root mean square residual (SRMR) = 0.069)
(Fig. 2 and Supplementary Tables 3 and 4), suggesting evidence for a
shared genetic factor mvAge.

Multivariate GWAS meta-analysis

Expanding the SEM model toincorporateindividual variants, we gener-
ated amultivariate GWAS estimating 6,793,898 associations at single
nucleotide polymorphism (SNP) level (Supplementary Table 5) for our
shared aging factor mvAge. Mean x* and A (genomic control) were
estimated at 1.43 and 1.52, respectively, and the LD score intercept,
0.997 (s.e.=0.0098), suggesting inflation due to polygenic heritabil-
ity signals rather than population stratification bias (Supplementary
Fig.1)'“*°. Effective sample size was calculated at 1,958,774 using mvAge
summary statistics restricted to minor allele frequency (MAF) limits
of10% and 40% to produce stabler estimates'. We identified 52 lead
SNPs in 38 genomic loci (Pvalue < 5 x1078) (Fig. 2 and Supplementary
Table 6). Twenty of the 52 SNPs were novel compared to lociidentified
in the five input GWASs underlying mvAge (Supplementary Tables 6
and 7 and Supplementary Figs. 2-21), highlighting the increased power
of genomic SEM. Novel mvAge lead SNPs were generally enriched for
traits, that s, systolic blood pressure (SBP), body mass index (BMI),
brain morphology and type 2 diabetes (T2D). For 11 of the 20 novel
SNPs, the lead SNP was identified in a previous GWAS from the GWAS
Catalog, while the other previous associations were from variantsin LD
with thelead SNPs; 4 of the 11 novel variants (rs12769128, rs17499404,
rs2643826 and rs9277988) were linked with aging-related traits (that
is, previous GWASs of specific aging phenotypes like lifespan in the
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Fig.2|Multivariate aging GWAS modeled with genomic SEM. a, Genetic
correlations for SEM with genomic SEM, displaying pairwise LD score genetic
correlation estimates for the five univariate phenotypes. b, Path diagram of
the common factor model estimated with genomic SEM, with standardized
factor loadings (standard error in parentheses). ¢, Manhattan plot showing SNP
associations (-log,,(P value)) with mvAge, ordered by chromosome. The red
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dashed lineindicates the threshold for conventional genome-wide significance
(Pvalue =5x107%). Pvalues are derived from two-sided Wald tests for each SNP
onmvAge. *indicates that summary statistics for frailty and PhenoAge (the
epigenetic clock variable) were reversed to align with the other longevity-related
endpoints. ureflects the residual variance in the genetic indicators for the input
univariate age-related GWASs not explained by the mvAge common factor.

AncestryDNA cohort*), while another four (rs114298671, rs1689046,
rs78438918 and rs6062322) were not linked with specific aging pheno-
types; however, they were associated withimportant factors that may
influence healthy aging (for example, cognition, BMland hypertension)
(Table1and Supplementary Tables 8 and 9).

Fine mapping

Fine-mapping analysis identified strong associations with several loci,
including on chromosomes1(rs1230666, intronic variantin MAGI3); 6
(rs12203592 and rs9277988); 8 (rs268, an exonic variant within LPL);
19 (rs7412inthe APOElocus); and 20 (rs1737896). Regional plots show
clear peaks at these loci with other credible set variants showing evi-
dence of association (Supplementary Figs. 22-33 and Supplementary
Table 10).

Qs heterogeneity

Evaluating whether the multivariate SNP associations are appropriately
modeled through a multivariate framework®’, 9 of the 52 lead SNPs
generated Qg Pvalues < 9.62 x 107, the Bonferroni-adjusted threshold,
suggesting these SNPsimpact the input aging-related GWAS endpoint
by pathways other than mvAge?. However, none of the 20 novel SNPs
had Qsyp Pvalues < 9.62 x 10~* (Supplementary Table 6).

Transcriptomicimputation

Next, we performed a TWAS using FUSION? to identify gene-level
associations with the mvAge genetic signature. We found 57 genes
surpassing correction for multiple comparisons (Extended Data Fig.1
and Supplementary Table 11). We took these genes forward for fur-
ther testing, including colocalization** and FOCUS fine mapping for
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Table 1| Novel lead SNPs identified in mvAge

SNP Location EA/OA MAF Beta(SE) Pvalue Nearest mapped SNPQ Previous GWAS associations (P value<5x107)
(chr,pos) gene (SNP function) Pvalue
rs114298671  4,3281869 G/A 012 0.0089 1.57x107® MSANTD1 0.77 Adult body size, BMI
(0.0016) (intergenic)
512769128 10,21883430 C/T 0.32 0.006 456x10® MLLT10 0.60 Adult body size, AncestryDNA cohort parental
(0.001M) (intronic) lifespan, BMI, body fat, breast cancer, brain
structure, education, ovarian cancer, hypertension,
gallstone disease, dietary behavior, GRD, insomnia,
lung function, chronic pain, physical activity,
smoking behavior, sodium excretion, albumin-to-
creatine ratio
13141210 4,67891641 C/T 050 -0.0058 1.46x10® RNU6-699P 0.55 Adult body size, cognitive performance, education,
(0.001) (intergenic) household income, lung cancer
rs1689406 12,89754726  A/G 0.20 0.0069 4.95x10® RP11-1109F11.3 0.24 ADHD
(0.0013) (intergenic)
rs17499404  4,38385479 G/A 0.46 -0.0057 3.57x10°® RP11-83C7.1 0.006 Aging traits, SBP, DBP, use of diuretics, PP
(0.001)
rs2613508 1,72833582 C/T 018 0.0077 777x107° RPL31P12 0.60 Adult body size, aging traits, BMI, CVD, childhood BMI
(0.0013) (intergenic) and obesity, GRD, heart rate response to exercise,
insomnia, life satisfaction, neuroticism, extreme
obesity, smoking initiation, triglycerides, T2D, waist-
to-hip ratio
rs2643826 3,27562988 C/T 0.45 0.0063 9.66x10™  AC137675.1 0.42 Aging traits, CVD, DBP, DBPxalcohol interaction,
(0.001) (intergenic) hypertension, mean arterial pressurexalcohol
interaction, antihypertensive use, PP, SBP,
SBPxalcohol interaction
rs268 8,19813529 A/G 0.014 0.024 3.38x1078 LPL (exonic) 0.87 Apolipoprotein A1, apolipoprotein B, HDL-C,
(0.0044) reticulocyte volume and width, statin use, metabolic
syndrome, triglycerides
rs28637671 4,67780392 T/G 0.29 0.0063 1.95x107®8 RNU6-699P 0.24 None
(0.001) (intergenic)
rs36072649 4140939110 T/A 0.37 -0.006 2.01x10® MAML3 0.74 Adult body size, age of first birth, first sexual
(0.0011) (intronic) intercourse age, BMI, personality disorder, CRP,
depression, smoking behavior, education, anti-
inflammatory medication use, chronic pain, visceral
adipose content, T2D, walking pace, waist-to-hip ratio
rs3768321 1,40035928 G/T 0.19 0.0079 6.46x107°  PABPC4,RP11-69E11 0.02 Apolipoprotein A1, BMI, brain structure, CRP,
(0.0013) (ncRNA-intronic) calcium levels, COPD, DBP, HbA1c, HDL-C, HDL-C/
environment interactions, MAP, hemoglobin biology,
T2D, T2D medication, liver function enzymes, SHBG,
testosterone levels, triglycerides, triglycerides/
environment interaction, walking pace, waist-to-
hip ratio
rsb5686423 12,49963534 A/T 0.09 -0.010 3.45x107® PRPF40B 0.53 Cognitive performance, smoking, PP, cognitive
(intronic) resilience, SBP
rs6062322 20,62441599 A/T 0.19 -0.0071 3.30x10®  ZBTB46,RP4- 0.38 Birth weight, mean corpuscular volume,
(0.0013) 583P15.11 antihypertensive use
(ncRNA-intronic)
rs6907508 6,34592090 A/G 0.10 0.010 1.90x107° C60rf106 0.095 Apolipoprotein A1, apolipoprotein B, basophil
(intronic) count, body fat, BMI, brain structure, CVD, eczema,
HDL-C, HDL-C/environment interactions, height,
hip circumference, LDL-C, LDL-C/environment
interactions, liver enzyme levels, lung function,
metabolic syndrome, white blood cell count, chronic
pain, baldness, waist-to-hip ratio
rs7174250 15,81018587 C/T 0.46 0.0056 4.82x10°® ABHD17C 0.89 Atrial fibrillation, BMI, CVD, DBP, antihypertensive use,
(0.001) (intronic) PP, SBP
rs7742789 6,43345803 C/T 0.35 0.006 3.30x10®  ZNF318 0.41 Age-related hearing loss, stroke, chronotype, DBP,
(0.001M) (intergenic) heel bone density, height, hip circumference,
hypertension, testosterone levels, MAP,
antihypertensive use, platelets, PP, SBP, uric acid
level, waist-to-hip ratio
rs78438918  2,100630115 A/G 017 -0.0078 1.07x10® AFF3 0.81 Cognitive performance, household income
(0.0014) (intronic)
rs9277988 6,33306235 T/C 020 0.007 3.59x10® MYL8P 0.24 Adult body size, BMI, circadian rhythm disruption,
(0.0013) (upstream) education, AncestryDNA cohort parental lifespan,

visceral adipose tissue, smoking, walking pace
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Table 1(continued) | Novel lead SNPs identified in mvAge

SNP Location EA/OA MAF Beta (SE) Pvalue Nearest mapped SNPQ Previous GWAS associations (P value<5x107%)
(chr,pos) gene (SNP function) Pvalue
rs940088 17,47145848 T/C 0.29 -0.0063 2.27x10® IGF2BP1 0.86 Adult body size, AUD, BMI, brain volumes, CVD,
(0.001) (intergenic) cognitive performance, insomnia, AncestryDNA
cohort parental lifespan, visceral adipose tissue,
walking pace
rs980183 2,59311536 G/A 0.38 -0.0063 176x10°° LINCO1122 0.56 Adult body size, BMI, CRP, HDL-C, visceral adipose
(0.0011) (intergenic) tissue, PP, smoking, SBP, triglycerides, T2D, urate

levels, waist-to-hip ratio

Lead SNPs were defined as novel if they were >1Mb from previously identified loci in the univariate aging-related GWASs comprising the mvAge. Qq» heterogeneity statistics (P value of Q)
evaluated whether the multivariate SNP associations are appropriately modeled through a multivariate framework™. Because the null hypothesis of the Qgyp test is that the SNP associations
on the univariate GWASs are statistically mediated by the resultant multivariate GWAS, significant Qg tests in the multivariate GWAS summary statistics suggest that the SNP impacts the
univariate GWASs by pathways other than mvAge (see Methods and Supplementary Methods for additional information). Previous associations of the variants were assessed using the GWAS
Catalog and were included if the lead variant, or variants with LD R?>0.6, had P values <5x10°%. Gene names for the nearest mapped genes are italicized. SNP Cochran’s P values for Q were
derived from two-sided x2 test. P values for SNP effects were derived from two-sided Wald tests. ADHD, attention deficit/hyperactivity disorder; AUD, alcohol use disorder; chr, chromosome;
COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; CVD, cardiovascular disease; DBP, diastolic blood pressure; EA, effect allele; GRD, gastroesophageal reflux disease;
HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MAP, mean arterial pressure; ncRNA, non-coding ribonucleic acid;
OA, other allele; pos, genomic position; PP, pulse pressure; SE, standard error of the beta; SHBG, sex hormone binding globulin.

TWAS?. Of the 57 TWAS-significant genes, 18 represented colocalized
and potentially causal signals with mvAge. These ‘high-confidence’
gene-level associations included CDKN2A, PTPN22, PHB1, and VEGFA.
TWAS Zscores for CDKN2A and VEGFA were both >0, indicating that
predicted gene expression positively associated with mvAge, suggest-
ingupregulation of the genes may be associated withincreased mvAge.
By contrast, with TWAS Zscores <0, results suggest downregulation of
PTPN22 and PHBI associated with increased mvAge.

Exploratory two-factor analysis

Genomic SEM’s exploratory factor analysis (EFA) was used to guide the
specification of a more nuanced two-factor model (Supplementary
Table 3). Based onthe EFA, we ran afollow-up confirmatory factor analy-
sis. A two-factor solution provided good fit to the data (CFI = 0.996,
SRMR = 0.035) (Supplementary Table 4), with factor loadings sug-
gesting one latent factor comprised life-expectancy-related GWASs
(parental lifespan, extreme longevity and PhenoAge EAA) and the
other comprised the healthy-aging-related GWASs (healthspan and
frailty). Astrong genetic correlation between the two factors (r,= 0.76,
Pvalue = 2.4 x10™*®) suggests shared but distinct components of life
expectancy/lifespan and healthy aging, both captured by mvAge.

Pathway, cell-type and Mendelian-disease-gene enrichment
Multimarker analysis of genomic annotation (MAGMA)* gene-based
mapping found 164 genes (Supplementary Table 12) that we used to per-
formour gene-set analysis, which were enriched for gene ontology and
REACTOME terms (Supplementary Table 13); many of the gene sets were
related tolipids (thatis, plasmalipoprotein assembly, triglyceride (TG)
and very low-density lipoprotein clearance, TG metabolic processes,
protein-lipid complex assembly and components of chylomicrons).
Cell-type enrichment showed six cell types surpassing correction for
multiple comparisons (Supplementary Table 14). The top two cell types
were the lymphoid and granulocyte/monocyte progenitor cells. mvAge
was enriched primarily inimmune cells/immune cell progenitors, with
8 of 13 cell types with Pvalues < 0.05 related to immune cells. Tests
for enrichment of mvAge in Mendelian disease genes and associated
pathways showed six Mendelian diseases, including primary ciliary
dyskinesia (Supplementary Table 15), and 21 phenotypic abnormali-
ties, including several gene sets related to respiratory system function
(Supplementary Table 16).

MR with modifiable risk factors and biomarkers

We used MR to assess possible causal relationships of 73 genetically pre-
dicted biomarkers and risk factors on mvAge (Supplementary Table17).
Twenty-five of 73 risk factors and biomarkers generated MR estimates
surpassing the Bonferroni correction. MR estimates were consistent

across complementary MR methods used as sensitivity analyses for
the primary inverse variance weighted (IVW) estimate. In addition,
MR Lap estimates were consistent with the IVW estimates, suggest-
ing minimal bias due to sample overlap?. (Full results are described
inSupplementary Results.)

Metformin target genesimpact mvAge

Results are oriented to mimic pharmacological modulation of the drug
target, namely, alowering of HbAlc (s.d. decrease (mmol mol™)) (Fig.3
and Supplementary Table 18). (Supporting its validity as a genetic
proxy for metformin, the primary instrument was associated with
reduced risk for T2D (odds ratio = 0.40, P value = 2.5 x 107*).) Lower-
ing HbAlc via the metformin target genes linked beneficially with
mvAge, which beneficial relationship remained after removing SNPs
nominally associated with T2D from the primary instrument as well
as in analyses using a second instrument from a recent MR study
evaluating the impact of metformin on dementia®®. Analyses of the
univariate aging-related input GWASs suggested beneficial relation-
ships of metformin target genes with healthspan, epigenetic aging
and longevity. Finally, MR distinguishing individual metformin gene
targets showed relationships of the mitochondrial complex1and the
GDF15 targets with mvAge.

Geneticimpact of targets for cardiometabolic drug classes

Given theroles of HbAlc, circulating lipid levels, and SBP in our poly-
genic MR, we performed drug-target MR evaluating the potential of
genetically proxied antidiabetics (proxying lower HbAlc levels) and
blood-pressure-lowering therapies on mvAge. Results are oriented
to mimic the pharmacological modulation of the drug target, anti-
diabetics/HbAlclowering, PCSK9 inhibition/low-density lipoprotein
cholesterol (LDL-C) lowering (per s.d., mmol I"), LPL enhancement/TG
lowering (per s.d.,mmol ™), increase in high-density lipoprotein cho-
lesterol (HDL-C) (pers.d., mmol ™), lowering of SBP (per s.d., mmHg)
(Fig.4 and Supplementary Tables 19 and 20). Among the antidiabetic
targets, we observed beneficial relationships with mvAge for thiazoli-
dinediones. MR estimates for sulfonylureas were also protective but
less precise (Pvalue < 0.05). Among LDL-C-lowering targets, PCSK9 and
ABCGS5/8 were eachrelated beneficially to mvAge; HMGCR had a simi-
lar but less precise estimate. Among TG-lowering targets, ANGPTL4
inhibition and LPL enhancement were related beneficially to mvAge;
aswasincreasing HDL-C via CETP inhibition. The protective estimates
of PCSK9 inhibition, ABCG5/8 inhibition, LPL enhancement, CETP
inhibition and LPA inhibition on mvAge each replicated in genetic
instruments derived from independent GWAS from the Global Lipid
Genetics Consortium (GLGC). (While several MR estimates showed
evidence of heterogeneity, all were robust to removal of pleiotropic
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variants.) Similarly, we observed differences in the associations among
the different classes of antihypertensive targets; forexample, among
genes in the renin-angiotensin-aldosterone pathway, genetically
proxied angiotensinogen (AGT) inhibition was more strongly related
to mvAge than genetically proxied angiotensin-converting-enzyme
(ACE) inhibition.

Cis-instrument MR prioritizes potential mvAge targets
Leveraging biomarker data and cis-instrument MR?’, we performed
ascreen of several thousand protein-coding genes located near the
genomic loci of the biomarkers, that is, HbAlc, HDL-C, LDL-C, TG and
SBP, corresponding to the physiological responses to glucose-lowering,
lipid-modulation and antihypertensive therapies. In the first stage,
523 of 6,718 genes across the 5 biomarkers demonstrated evidence of
colocalization (PP.H4 > 0.6) (Supplementary Tables 21-25). We were
able to cis-instrument and analyze 354 of the 523 genes on mvAge.
Across the biomarkers, 158 genes (121 unique genes) evinced genetic
relationships with mvAge, 122 with beneficial MR estimates direction-
ally consistent with the conventional physiological response to phar-
macological modulation of the biomarkers, thatis, lowered HbAlc,
LDL-C, triglycerides and SBP, and increased HDL-C (Supplementary
Tables 26-32). Twenty-five genes located near HbAlc evinced ben-
eficial relationships with mvAge, including FADS1, previously linked
with glucose intolerance®, and also 23 near LDL-C, including replica-
tion of the PCSK9results, and FGF21, animportant regulator of several
metabolic pathways™ (Fig. 5). Twenty-three genes near HDL-C, 26 near
TGs and 25 near SBP similarly showed beneficial relationships with
mvAge (Extended Data Fig. 2). Several genes (for example, ATXN2) were
related to mvAge in more than one biomarker. Thirty-two are consid-
ered ‘druggable,” and we observed drug-geneinteractions, including
aninteraction of FADS2 with oleic acid (Supplementary Tables 33 and
34 and Extended DataFig. 3). Regarding replication, 36 of the 41 genes
available forinstrumentationinindependent biomarker datareplicated
at Pvalue < 0.05 and had directionally consistent MR estimates with
the primary MR analyses (Supplementary Table 32). Cis-instrument/
drug-target MR results of the 68 circulating proteins derived from
approximately 30,000 participants in the SCALLOP OLINK data® are
presented in Supplementary Results, Supplementary Tables 35and 36
and Extended Data Fig. 4.

Discussion

Using new GWAS methods leveraging genetic correlations among cor-
related univariate aging-related traits, we performed a multivariate
GWAS with aresultant effective sample size 0of 1.9 million participants
andidentified 20 variants not previously associated with aging, includ-
ing rs268, an exonic SNP in the LPL locus, and rs2863761, an intronic
variant not previously associated withany GWAS in the GWAS catalog.
However, because no other age-related variantisin LD withrs2863761,
replication will be necessary to test the robustness of this association.
Next, we used fine mapping to prioritize several strongly associated
variants (such as rs268), and transcriptomic imputation followed by
gene-level colocalization and transcriptomic imputation-based fine
mapping to identify high-confidence genes associated with mvAge,
including several with evidence of involvement in aging processes
(VEGFA® and PHBI (ref. 34)).

The genetic signature of mvAge was enriched for gene sets linked
with aging-related areas, including neural functioning, growth and
development, and lipid metabolism. In line with the lipid-related
enrichment, we used the MR framework to both identify adverse causal
roles for lipid levels in aging and show that genetically modeled modu-
lation of lipid-lowering gene targets, such as PCSK9, ANGPTL4 and LPL,
have beneficial relationships with healthy aging, suggesting potential
therapeutic targets for future investigation. The association of rs268
in the LPL locus with mvAge, its inclusion in a 95% credible set, and
the MR evidence forarole of circulating triglycerides—using both the

polygenic, genome-wide instrument and instrument variants within
the LPL locus—indicate a potential pathway through which rs268 may
impact healthy aging. The results of our drug-target MR analyses proxy-
ing pharmacological lipid-lowering and antihypertensives support
the hypothesis that therapeutic management of circulating lipids and
blood pressure impact healthy aging in the general population not
selected for cardiovascular diseases®?*°. Overall, the gene-set enrich-
mentand MR findings between several mvAge lociand cardiovascular
healthareinline with cardiovascular disease being the leading global
cause of death”. They also likely reflect the composition cohorts under-
lying the input GWAS studies. For example, healthspan was defined as
theincidence of the eight most common diseases in the study sample®,
and thus is dependent on UK Biobank (UKB) selection protocols. The
UKB cohort is comprised of adults between 40 and 69 years, and is
enriched in cardiovascular disease and cancer, but has relatively few
cases of Alzheimer’s disease. This composition may explain, in part,
the strongassociations observed with cardiovascular health, and also
suggeststhat other key aging signals may be missed. Therefore, future
multitrait studies with different cohort composition are warranted to
further our understanding of aging.

Our additional exploratory and confirmatory factor analyses
aiming to further examine the relationship of the genetics of life
expectancy (lifespan and longevity) and healthspan suggested that
inatwo-factor model, lifespan and longevity load on one factor while
healthspan, frailty and EAA load on the other factor. The two factors
are correlated, suggesting that there may be shared yet distinct com-
ponents of life expectancy/lifespan and healthspan/frailty/epigenetic
aging captured by mvAge. Because one of the major goals currently in
geroscience isreducing thelife expectancy-healthspan gap®, our find-
ings suggest that analyzing mvAge and related shared factorsin future
studies, inadditional populations, willimprove our understanding of
the genetics linking life expectancy and healthspan.

We focused downstream analyses on identifying modifiable risk
factors that may facilitate public health intervention and prevention
strategies, as well as extensive drug-target MR to investigate the impact
of existing therapies and also identify targets for future work focused
on healthy aging. There remain substantial challenges to running
randomized controlled trials testing aging-related therapeutics (that
is, long study duration, large sample sizes, patient selection)*’. Espe-
cially relevant to the development of anti-aging therapeutics will be
the continued investigation of the relationship between aging and
age-related diseases*®. Many diseases are due, in part, to age-related
biological dysregulation*, and studies incorporating aspects of both
agingand age-related diseases may identify drug targets and facilitate
development of therapeutics that both improve healthy aging and
reduce disease burden.

To the point, we found several of the novel variants not previously
linked directly with aging-specific GWASs were indeed associated with
important aging factors and processes, for example, rs78438918 associ-
ated with cognition, rs114298671 associated with BMI, and rs6062322
associated with blood pressure and antihypertensive medication use
(Table1). Hundreds of variants have been identified in GWASs of BMI*,
cognition*, blood pressure**, etc., and while these are important aging
factorsand processes, not all of theidentified variants may be directly
linked with healthy aging. Because the mvAge signature represents the
shared genetics of the five specific aging phenotypes, finding that a
subset of variants previously implicated inaging factors and processes
comprise, in part, the mvAge signature highlights potential pathways
linking the aging factors and processes with healthy aging, and suggest-
ing potentially important loci for future characterization, especially in
studies linking these factors/processes with healthy aging.

Our metformin targets analysis complements previous studies
showing that metformin s beneficial for healthy aging®. Given the early
stages of the ongoing clinical studies (MILES (Metforminin Longevity
Study) and TAME (Targeting Aging with Metformin)'®*®) investigating
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Metformin targets

Target Estimate (95% ClI) P value
Metformin—main instrument HlH 0.065 (0.033, 0.098) 8.41x 107
Metformin—T2D SNPs removed —l- 0.052 (0.018, 0.087) 0.003
Metformin—alternative instrument il 0.065 (0.021, 0.087) 0.001
MCI genes i 0.065 (0.009, 0.098) 0.019
AMPK —— 0.065 (-0.033, 0.148) 0.216
GDF15 0O 0.065 (0.011, 0.152) 0.023
GLP1 L ) 0.065 (-0.101, 0.392) 0.247
MG3 R B 0.065 (0.009, 0.098) 0.098
,0{%0'0«%09{%309%09«%0&0&0&0@;0{&0@%
MR estimate (95% Cl) per unit decrease in
HbA1c levels
Antidiabetic targets
Drug class Target(s) Estimate (95% Cl) P value
DPP-1V inhibitors DPP4 — 0.19 (-0.010, 0.38) 0.060
GLP-1R agonists GLPIR [ —— | { 0.067 (-0.044, 0.18) 0.236
Insulin analogs INSR b = | -0.051(-0.167, 0.064)  0.385
Thiazolidinediones PPARG - 0.107 (0.074, 0.141)  3.50x107°
SGLT2 inhibitors SGLT2 - -0.03(-0.105, 0.044)  0.424
Sulfonylureas AGCC8 & KCNJ11 @ 0.072 (0.007, 0.137) 0.031
,0"\«%05{%;&% 6%)-0%0&0&0&0%0{&;&6&

MR estimate (95% ClI) per unit decrease in

HbA1c levels

Fig.3|Drug-target MR results assessing proxying metformin and other
antidiabetics targets with mvAge. Data presented are MR effect estimates
(betas) for the IVW MR method (the primary MR method) and the corresponding
95% confidence intervals (Cls) aligned to proxy the pharmacological effect of
metformin and antidiabetic genes (HbAlc GWAS n = 344,182) (1s.d. lowering

of HbAlc levels) on mvAge (n =1,958,774). The vertical line in the center of

the forest plotsis 0, corresponding to no change in the IVW estimate of the
drugtargets on mvAge. Full results are presented in Supplementary Tables
15and16. Metformin results plotted show the MR estimates for the primary
metformin instrument (top row), which comprised variants within genes for

five metformin targets (AMPK, GSD15, MCI, MG3 and GLPI), for the estimates

of the alternative metformin instruments used as sensitivity analyses, and the
metformin targets separated into individual instruments. See Methods and
Supplementary Methods sections for additional details. For the analyses of the
antidiabetic classes notincluding the metformin targets, the *indicates that
the thiazolidinedione MR estimate surpasses the Bonferroni-adjusted P-value
threshold = 0.002, corrected for the 25 antidiabetic, lipid-modulating and
antihypertensive drug targets compared. Pvalues are derived from two-sided
Wald tests. Gene names for the nearest mapped genes are italicized.

the aging benefits of metformin, it will be several years before the
studies will be concluded. Our results constitute preliminary genetic
evidence and provide triangulating evidence strengthening inference
for metformin’s role in aging. Preliminary analysis of the MILES data
indicates that metformin induces transcriptional changes related
to reduced aging*, and we showed that metformin had a beneficial
impact on slowing epigenetic aging, together suggesting another
biological mechanism that corresponds with clinical trial data from
the first human study designed to reverse biological hallmarks of
aging, including EAAinapopulation of healthy middle-aged men*s. We
found that the metformin instrument may be driven by its mitochon-
drial-related targets, MCI, MG3 and GDF15. Mitochondrial function is
impaired in disease states and aging® and it has been suggested that
metformin may regulate mitochondrial functioning by mitophagy
and removing damaged mitochondria*’, which could improve aging.
GDF15has become animportant targetin the aging field with previous
studies linking it with all-cause mortality®’; showing thatamong 1,301
proteins, it was the most strongly associated with age’’; and finding
high expression among frail older individuals compared to healthy

controls®. GDF15is akey molecule in the human stress response™, and
recent work found that patients with primary mitochondrial oxida-
tive phosphorylation defects demonstrate increased resting energy
expenditure, elevated stress responses (including elevated GDF15
levels) and accelerated biological aging™. Given theimpact of glucose
homeostasis on energy®, our results showing that HbAlc lowering via
metformin’s mitochondrial targets further support evidence linking
mitochondrial function and energy expenditure with accelerated
aging. We note that our metformin targets were derived from data
proxying their anti-hyperglycemic effects, and while it has been sug-
gested that the main anti-aging role of metformin is mediated via its
actiononglucose metabolism*, metformin andits targetsimpact many
pathways, including ones that have yet to be elucidated®. Therefore,
these results should not be interpreted as complete proxies of met-
formin use or its mechanisms via other pathways.

The PCSK9 and other lipid-lowering findings extend work show-
ing that life expectancy in familial hypercholesterolemic patients is
shortened by 20-30 years relative to the general population®®. While a
recent meta-analysis of 38 randomized controlled trials did not find an
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Lipid-modulating targets

Lipid subfraction Target(s) Estimate (95% Cl) P value
LDL-C PCSK9 rlT 0.42 (0.0237, 0.057) 2.79x107

HMGCR —— 0.039 (-0.001, 0.079) 0.056

NPCILT i 0.028 (-0.075, 0.131) 0.592

ACLY L = 1 0.044 (-0.132, 0.220) 0.623
ABCG5/8 - 0.048 (0.033, 0.062) 1.79x107°

TG ANGPTL3 | -0.003 (-0.01, 0.003) 0.336
ANGPTL4 ._.: 0.065 (0.031, 0.010) 2.36x107

ANGPTL8 L ! 0.061 (-0.029, 0.150) 0.185

APOC3 HEH 0.017 (0.005, 0.030) 0.006

PPARA k = i 0.088 (-0.025, 0.201) 0.128
LPL . 0.037(0.031, 0.043) 113 %1073
HDL-C CETP = 0.014 (0.010,0.017) 6.29 x 107"

APOA1 HEH 0.027 (0.009, 0.045) 0.003
Lp(a) LPA % 0.011 (0.008, 0.014) 4.09x10™

MR estimate (95% Cl) per s.d. change in
lipid level
Antihypertensive targets

Antihypertensive class Target(s) Estimate (95% Cl) P value

ACE inhibitors ACE +——@— -0.001(-0.163, 0.161) 0.993
Beta blockers ADRB1 r—l*—i 0.132 (0.058, 0.206) 4.64x107
AGT inhibitors AGT ' -* ! 0.249 (0.140, 0.358) 7.98x107°
CACNAID —I*—< 0.212 (0.093, 0.330) 4.51x107
Calcium channel blockers * 14

(individual genes) CACNAB2 HEH 0.116 (0.086, 0.147) 4.70 x10

CACNB3 o i 0.016 (-0.159, 0.191) 0.859
e st iy 0.137 (0108, 0.167) 5.27 %10

QQ%Q‘;%JO'0«2,30-Qréjo-oféaoééo{éabéo&&&o{;;@%

MR estimate (95% Cl) per s.d. change in
systolic blood pressure

Fig.4 | Drug-target MR results assessing the impact of lipid-modulating

and antihypertensive gene targets on mvAge. Data presented are MR effect
estimates (betas) for the IVW MR method (the primary MR method) and the
corresponding 95% Cls aligned to proxy the pharmacological effect of modulated
lipidlevels (1s.d. lower LDL-C (n = 440,546),1s.d. lower TG (n = 441,016),and 1s.d.
higher HDL-C (n =403,943)) and SBP (n = 436,419) (antihypertensive gene targets
(1s.d.lower SBP) on mvAge (n =1,958,774)). The vertical line in the center of the

forest plots is O, corresponding to no change in the IVW estimate of the
drugtargets on mvAge. Full results are presented in Supplementary Table 17.
*indicates a Pvalue surpassing the Bonferroni-adjusted P-value threshold = 0.002,
corrected for the 25 antidiabetic, lipid-modulating and antihypertensive drug
targets compared. Pvalues are derived from two-sided Wald tests. Gene names
for the nearest mapped genes are italicized. Lp(a), lipoprotein a.

impact of PCSK9 inhibition on all-cause mortality among study partici-
pantsselected for cardiovascular diseases”, the studiesincluded in the
meta-analysis were potentially not long enough in duration to detect
arole of PCSK9 inhibition on aging (-36.4 weeks)*’. Ultimately, causal
inference requires triangulating study designs®, highlighting the need
for additional studies investigating the relationship of PCSK9 expres-
sion, PCSK9 inhibition, and aging. Similarly, our blood pressure and
antihypertensive target findings align with and extend previous work
showing that intensive blood pressure reduction in older adults with

hypertension extends life expectancy, highlighting the importance
of blood pressure control to prolong patient health and well-being™.
Ourresults showing that ADRBI—the beta-blockers target—beneficially
impacts aging extend prior genetics-based analyses finding ADRB1
beneficial in human longevity®°.

In addition to validating important loci (for example, the ATXN2
in mvAge findings aligns with previous genetics work implicating
ATXN2 in human longevity® and showing that therapeutic modula-
tion of ATXN2 increases lifespan in mice®), our analyses extending
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Fig. 5| Cis-instrument MR results assessing the impact of protein-coding
genes on mvAge through their associations with HbAlcand LDL-C. a, Volcano
plot of the Zscores (versus the negative log,,(Pvalue)) of the MR estimates
(beta/se) for the inverse variance weighted MR method aligned to proxy the
pharmacological effect of lowered HbAlc levels. b, Volcano plot of the Zscores
(versus the negative log,,(Pvalue)) of the MR estimates (beta/se) for the inverse
variance weighted MR method aligned to proxy the pharmacological effect of
lowered LDL-Clevels. Dotted lines indicate the Bonferroni-corrected P-value
threshold (1.92 x 107%). Labeled genes are those with beneficial estimates on

loci for HbA1c, LDL-C,
HDL-C, TG and SBP

523 protein coding
genes with PP.H4 > 0.6

169 protein coding
genes without variants
for cis-instrumentation

354 protein coding
with
cis-instruments

122 protein coding
genes with P values <
1.92x107 and
beneficial MR estimate
on mvAge

mvAge that surpass the Bonferroni-corrected P-value threshold and align with
lowered HbAlc and lower LDL-C. ¢, The STITCH protein-protein and protein-
chemicalinteractions for the 30 protein-coding genes in HbAlc. Stronger
associations are annotated with thicker lines. Protein-protein interactions are
represented by gray lines, protein-chemical interactions are represented by
greenlines, and chemical-chemical interactions are represented by red lines.
d, Flowchart outlining the cis-instrument analysis pipeline (see Supplementary
Methods for more details). Pvalues are derived from two-sided Wald tests.

the drug-target/cis-instrument MR framework using GWAS data for
biomarkerstoinvestigate possible protein-coding genes that may influ-
encemvAge viatheir downstreambiomarker (thatis, HbAlc, circulating
lipids, SBP) also identified several notable targets. For example, FADS1
and FADS2 areimportant genes in the biosynthesis of unsaturated fatty

acids®, and protein-chemical interaction analysis showed FADS2 has
interactions with oleic acid, the main fatty acid in olive oil, a major
Mediterranean diet component®, linked with increased lifespan and
reduced age-related diseases®’. We also found that reduced LDL-C levels
by variants within the FGF2I locus increased mvAge. FGF21 encodes
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fibroblast growth factor 21, a metabolichormoneimportant for regu-
lation of systems related to energy homeostasis, including lipids™,
and increased FGF21 expression extends lifespan in mice®*. Interest-
ingly, early studies of FGF21 analogs in individuals with T2D found
they alleviated dyslipidemia but did not impact glycemic control®,
and a new long-acting therapeutic compound, LLF580, was found to
lower circulating LDL-C and reduce hepatic fat content in a phase 1
clinical trial of 64 obese adults (clinical trialidentifier, NCT03466203)
(ref. 65). LLF580 also showed minimal side-effects for the 12-week study
with the exception of increased reporting of mild-to-moderate gastro-
intestinal distress®. Our FGF21 results provide triangulating support
for arole of FGF21 in cardiometabolic diseases®® and longevity®*, and
also highlight the potential value of the recently developed extension
of the drug-target MR paradigm to identifying and prioritizing novel
targets for future study®’.

The exploratory MR based on protein quantitative traitloci (pQTL)
should also motivate future researchinto therapies toimprove healthy
aging because most approved pharmacotherapies target proteins”. We
identified and replicated inindependent pQTL datasets three circulat-
ing proteins, CSF-1, MMP-1and IL-6RA. Increased circulating levels of
CSF-1and MMP-1 adversely impacted mvAge. In the Supplementary
Discussion we highlight reported relationships of CSF-1, MMP-1 and
IL-6RA, biomarkers and risk factors with a range of physical health
diseases that further support their role in healthy aging.

The drug-target MR has limitations, including its inability to mimic
certain mechanisms of action for the therapeutics. For example, the
genetic estimates for PCSK9 inhibition derived from circulating LDL-C
levels may not fully approximate the impact of specific drug classes,
such as inclisiran, a novel small interfering RNA inhibitor of hepatic
PCSK9 expression with a liver-specific mechanism of action®®. Simi-
larly, our antidiabetic and antihypertensive instruments may not cap-
ture pathways beyond the HbAlc and SBP biomarkers. For example,
Liu et al.*’ also showed that verapamil promoted autophagy and
increased levels of calcineurin activity in C. elegans®, offering addi-
tional life-extending mechanisms through which calcium channel
blockers (CCBs) may impact healthy aging; however, our SBP-derived
CCB instrument precludes direct investigation of these non-blood-
pressure-mediated pathways. Our formulation of the metformin
targets instrument is a novel application developed in recent drug-
target MR work® and we underscore that the estimates reflect the
metformin target-specific effects. Our metformin targets findings
should be viewed in the context of triangulating study designs find-
ing beneficial a relationship between metformin and aging. We also
emphasize the results do not suggest these therapeutic targets be
viewed as panaceas for improved aging and should not be considered
replacements related to healthy lifestyle choices that are important
for healthy aging’®. More broadly, the MR analyses may be subject to
collider bias™, which occurs when a third, collider variable caused by
both the exposure and outcome variables in an MR distorts the true
underlying association’. Here, potential colliders include chronic
diseases or their causal risk factors that may impact analyses with out-
comes related to exceptional longevity. For example, while we found
that metformin target genes reduced epigenetic aging and increased
exceptional longevity, it has been hypothesized that targeting frailty
ortherapeutics aimed at chronic diseases will not increase the limit of
human lifespan’, suggesting that these drug target findings may be
primarily driven by their impact on their indicated disease(s), which,
while not directly extending the limit of human lifespan, may still have
importantimplications forimproving healthy aging, including reduc-
ing the life expectancy-healthspan gap.

We note additional study limitations. First, genomic SEM provides
a composite phenotype representing the joint genetic structure of
broad liability across complex traits. Therefore, resulting multivari-
ate GWASs, including mvAge, do not have conventional units™. This
hasimplications for our MR analyses; however, because MR estimates

reflect lifelong estimates, clinical interpretation of numerical estimates
is challenging in all MR studies'". (Further discussion regarding the
contextualizing of mvAge estimates, especially as it relates to MR,
with a focus on the metformin target estimates is presented in the
Supplementary Discussion). Genomic SEM, like most GWAS studies,
assumes an additive model for genetic variants™, which may not cap-
ture theimpact of recessive variants that may have large adverse effects
on aging>”. Correlation among genes used as input for our gene-set
enrichment analysis may increase the potential for type 1 errors’; how-
ever, at least for the lipid-related pathways, concurrent MR evidence
linking both circulating lipids and lipid-lowering therapeutic gene
targets strengthens the evidence for involvement of lipids in healthy
aging. mvAge and downstream analyses were limited to participants
of Europeanancestry. Therefore, we underscore the limited generaliz-
ability of study findings to populations of other ethnicities/ancestries,
highlighting the need for follow-up studies validating these findings
inother populations when the GWAS data becomes available. Finally,
limitations may derive from the univariate GWAS data (input for the
multivariate GWAS analysis); for example, the parental lifespan GWAS
may reflect the common causes of death in the UK from several decades
ago, which have changed over time’®, and may not fully capture current
demographic characteristics.

Conclusions

Weleveraged recently developed multivariate GWAS methods to eluci-
date the genetic underpinnings of the broad predisposition of healthy
aging. Theidentified locireflecting this underlying aging-related trait
align with the current shiftin geroscience toward a systems-level focus
aimed atimproving healthy aging and slowing aging processes’. Bio-
annotation and MR characterized putatively causal genes, cell types,
biomarkers and modifiable risk factors. Drug-target MR of approved
and proposed antidiabetic, lipid-modulating and antihypertensive
targets highlighted important repurposing opportunities, while our
extended cis-instrument MR screen of protein-coding genes finding
more than 120 candidates will inform the prioritization of therapies
for healthy aging.

Methods

Data sources

The univariate input GWAS data from participants of European ances-
try comprising our multivariate GWAS on human aging was derived
from five GWASs encompassing related aspects of human longevity,
including healthspan’, parental lifespan’, exceptional longevity®, EAA™
and frailty™. All input GWASs have existing ethical permissions from
their respective institutional review boards and include participant
informed consent with rigorous quality control.

The healthspan GWAS endpoint (n=300,477,54.2% female, in the
UKB) was defined as the incidence of the eight most common diseases
in the study sample’, and the study employed Cox-Gompertz survival
models with clinical events in seven disease categories (that is, can-
cer, myocardial infarction, chronic obstructive plumonary disease,
diabetes, stroke and dementia) to determine length of healthspan.
Participants having one or more of these events were considered to
have completed healthspans; 84,949 participants experienced an
event, completing their healthspans’. Our frailty data was derived from
a meta-analysis of participants in the UKB (n =164,610, 51.3% female,
between the ages of 60 and 70) and TwinGene (n =10,616, 52.5% female)
cohorts". The UKB frailty index was based upon an accumulation-of-
deficits model” using 49 self-reported UKB variables from a range
of physical and mental health endpoints, symptoms, disabilities and
diagnosed diseases". The frailty index in the TwinGene cohort was
also constructed using self-reported questionnaire data (44 deficits)".

We used summary statistics from arecent parental lifespan GWAS
representing 512,047 and 500,196 maternal and paternal lifespans’.
Across cohorts, Cox survival models for mothers and fathers had been
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fitted and Martingale residuals of corresponding survival models were
regressed against subject gene dosages to generate the GWAS. We used
summary statistics from Deelen et al. assessing the genetic underpin-
nings of exceptional old age using 11,262 unrelated participants reach-
ing 290th survival percentile and performing a GWAS comparing this
extreme longevity group with 25,483 participants whose age at death
was <60th survival percentile (n = 36,745, 58.0% female)®. Survival
percentiles were based upon country-specific cohort life tables (for
example, the 90th survival percentile for the United States 1920 birth
cohortis 89 years of age formen and 95 years of age for women and the
60th percentile is 75 and 83, respectively)®.

Our EAA GWAS data came from a meta-analysis in 29 cohorts
(n=36,112, 58.8% female) of four separate epigenetic clocks™. After
using cross-trait LD score regression® to test the genetic correlation
among each epigenetic clock and the other longevity-related univariate
GWAS included in the study, we used the second-generation epige-
netic clock PhenoAge, which demonstrated genetic correlations with
extreme longevity, healthspan, parental lifespan and frailty, and strong
genomic characterization (Supplementary Table 1). We reversed the
frailty and PhenoAge coding to generate positive correlations with the
other aging-related traits.

Sample overlap

At least 571,260 unique genomes are represented in our analysis
(Supplementary Table 1), accounting for maximum potential overlap
between the study cohorts contributing to the five aging GWAS study
cohortsincludedinthe multivariate GWAS analysis, as well as the poten-
tial overlap of UKB and other non-UKB UK cohorts, and the overlap of
genomes underlying the parental lifespans cohorts.

Genomic SEM

We used genomic SEM implemented in the GenomicSEM R package
v.0.0.5 to perform the multivariate GWAS analysis of healthspan,
exceptional longevity, parental lifespan, frailty and PhenoAge, inves-
tigating a broad genetic liability underlying these aging-related traits.
Genomic SEM is a recently developed multivariate method enabling
investigation of multiple potential multivariate models of the under-
lying architecture of the traits of interest™. (Full technical details of
genomic SEM methods are described in Supplementary Methods.)
Genomic SEMis not biased by sample overlap, that is, UKB participants
in multiple input GWASs, or imbalanced sample size'*. Genomic SEM
alsofacilitatesidentification of variants only influencing some but not
all of the complex traits, and which therefore do not represent abroad
cross-trait liability™.

Genomic SEM proceeds intwo stages. Stage 1 estimates the empiri-
calgenetic covariance matrix and corresponding sampling covariance
matrix. We prepared the aging-related GWAS summary statistics for
stage 1 and used the multivariate extension of cross-trait LD score
regression'?° to generate the empirical genetic covariance matrix
between the five traits as input for the SEM common factor model*
(Supplementary Table 3). Stage 2 specifies an SEM that minimizes
the hypothesized covariance matrix and the empirical covariance
matrix calculated in stage 1 (ref. 14). Here, our primary study aim was
toidentify agenetic signature underlying the five aging-related traits;
we therefore tested a one-factor model. Model fit was assessed using
the SRMR, model y?, the Akaike information criterion and the CFI (Sup-
plementary Table 4)7%,

Preparing the multivariate summary statistics for multivariate
GWAS, we used the recommended default parameters implementing
LD scoreregression, including removing SNPs with MAF >0.01 (linkage
disequilibrium score regression inflates standard errors of estimates
with low MAF) and information scores <0.9, and filtering SNPs to Hap-
Map3, using the 1000 Genomes Phase 3 EUR panel (Supplementary
Table 5). The summary statistics are restricted to HapMap3 SNPs only
for estimating genetic covariance and sampling covariance matrixin LD

scoreregression. We use all autosomal SNPs from the five input aging-
related GWASs passing recommended default quality control filters for
the multivariate GWAS analysis, filtering to the 1000 Genomes Phase 3
EUR panel, removing SNPs with MAF <0.01 (prone to error due to fewer
samples within the genotype cluster and LD score regression standard
errors for these SNPs tend to be high), SNPs with effect values estimated
to be exactly equal zero (so as to avoid compromising matrix inver-
sion necessary for genomic SEM), SNPs not matched with the refer-
ence panel, and SNPs with mismatched alleles. After quality control,
6,793,898 SNPs common to allinput GWASs remainin the multivariate
summary statistics taken forward to run the multivariate GWAS. Apply-
ing the appropriate common factor SEM specification, the individual
autosomal SNP associations are incorporated into the genetic and
associated sample covariance matrices to generate the multivariate
genome-wide analysis (mvAge) of the shared covariance across the
five input aging-related GWASs™.

Qs heterogeneity

To evaluate whether the mvAge SNP associations are appropriately
modeled within a multivariate SEM framework, Qq\, heterogeneity
statistics are calculated™. The null hypothesis of the Qqyp test is that
the SNP associations on the single-phenotype GWASs are statistically
mediated by mvAge'. Therefore, significant Qg tests in mvAge would
suggest that the SNPimpacts the single-phenotype GWASs by pathways
other than the shared genetics of aging modeled by mvAge'*. We used
aBonferroni-corrected P-value threshold 0of 9.62 x 107, correcting for
52 lead SNPs, to evaluate Qg heterogeneity.

Exploratory two-factor model analysis

Increases in life expectancy have outpaced improvements in health-
span resulting in an approximately nine-year life expectancy-health-
span gap’’. This relationship between life expectancy and healthspan
hasimportantimplications for public health intervention/prevention
strategies and drug discovery and repurposing endeavors®. Given that
our input aging-related GWAS data encompass aspects of life expec-
tancy (parental lifespan and extreme longevity), biological aging (EAA)
and healthy aging (healthspan and frailty), as sensitivity analyses, we
constructed a two-factor genomic SEM model assessing the relation-
ship between healthspan and longevity, and investigated whether our
shared aging factor—-mvAge—encompasses aspects of life expectancy
and healthy aging.

Defining genomic loci and determining novel variants

We used ‘functional mapping and annotation of genetic associa-
tions’implemented in functional mapping and annotation of genetic
associations (FUMA)®° v.1.3.5e to identify genomic loci, and lead/
sentinel SNPsin LD (R? < 0.1) associated with mvAge at genome-wide
significance (P value <5 x107®). A locus was defined by lead SNPs
within a 250 kb range and all SNPs in high LD (R?*> 0.6) with at least
oneindependent SNP. First, we extracted the summary statistics for
these lead mvAge SNPs from the input univariate GWASs to assess
the strength of their associations. We also compared lead SNPs and
loci with the original univariate GWAS and defined loci to be novel
if they were >1 Mb from loci identified in the univariate GWAS data.
To determine whether any of the 52 lead SNPs in mvAge showed
evidence of pleiotropic associations, we also performed a look-up
of published GWAS-significant associations (Pvalue <5 x107%) inthe
GWAS Catalog®.

Fine mapping and transcriptomicimputation

We used SuSIE®*>®* and FINEMAP®**implemented in the R package, echo-
locatoR*v.2.0.3 to identify the most plausible causal variants associ-
ated withmvAge. We used a250 kb window around the lead SNPin the
38 genomic loci and a probability threshold of 0.95 to define credible
sets of potentially causal variants. echolocatoR defines a ‘consensus
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SNP’ as a variant included in both SuSIE and FINEMAP®, calculates an
average posterior probability and determines an average credibility set
(setto1whenthe mean SNP-wise posterior probability across SuSIE and
FINEMAP exceed 0.95 and O otherwise®). Next, we performed a TWAS
to prioritize genes associated withmvAge. We used the TWAS FUSION
method® and used TWAS weights for 37,920 precomputed expression
quantitative trait loci features (that is, gene/tissue pairs) from GTEx
v.8 (ref. 86). Our mvAge had sufficient variants to analyze 36,149 of
the 37,920 features. We took forward TWAS genes associated with
mvAge surpassing Bonferroni correction for multiple comparisons
(Pvalue <1.38 x 10°°) for additional analysis, including colocaliza-
tion?* and fine mapping using the FOCUS method designed for TWAS
studies®. We prioritized ‘high-confidence’ mvAge genes identified by
FUSION based upon additional evidence for colocalization and fine
mapping. Following previous work®, we considered TWAS-significant
genes associated with mvAge that also colocalized (PP.H4 >0.6) and
are likely to be causal (FOCUS posterior inclusion probability >0.5).
See Supplementary Methods for additional information about fine
mapping and transcriptomic imputation.

Gene-set and disease ontology enrichment

We used MAGMA?® with data from GTEx (v.8) to perform gene-based
and gene-set analyses and investigated the potential relationships of
mvAge with Mendelian disease genes and associated pathways with
MendelVar®. See Supplementary Methods for further details.

Cell-type enrichment

To identify etiological cell types associated with mvAge, we inte-
grated single-cell RNA sequencing (scRNA-seq) data using cell-type
expression-specific integration for complex traits (CELLECT)®’. We
used scRNA-seq data from Tabula Muris’°, a database containing
transcriptomic data from 100,000 cells and 20 organs and tissues of
Mus musculus. We prepared the Tabula Muris scRNA-seq data using
CELLEX¥, calculating expression specificity likelihood scores for each
gene following normalization and preprocessing®. Using CELLECT’s
default settings, we performed the cell-type enrichment with MAGMA.
InCELLECT, MAGMA measures the extent to which genetic associations
with a phenotype increase as a function of gene expression specific-
ity for a given cell type®’. We categorized our cell types following the
nomenclature used in the original Tabula Muris study’® and used a false
discovery rate (FDR) threshold of 0.05.

Mendelian randomization

All MR analyses have been reported in accordance with the STROBE-
MR guidelines” (Supplementary Checklist). We implemented MR
using MendelianRandomization R package v.0.7.0 and TwoSampleMR
package v.0.5.6.

Polygenic MR

Extended Data Fig. 5 presents a graphical overview of the analyses.
To investigate whether mvAge was causally influenced by lifestyle
factors and circulating biomarkers, we performed MR with 73 risk
factors and biomarkers derived from GWAS with participants of Euro-
pean ancestry (Supplementary Table 37). Because the focus of our
downstream analyses is the identification of targets for interven-
tion, prevention and therapeutic strategies for improved aging, we
selected modifiable risk factors that would inform public health ini-
tiatives®. Reliable causal biomarkers to identify the consequences of
agingalso are needed”. Therefore, we curated arange of biomarkers
(for example, lipids, blood pressure, markers of inflammation).
Given mvAge and many of the exposures included in the MR analyses
are derived from the UKB, sample overlap may introduce bias®*. We
thus applied the MR Lap method, which accounts for sample overlap
(evenwhen the exact overlap percentage is unknown) and also assesses
weak instrument bias and winner’s curse”, as an additional sensitivity

test for these MR analyses. We used a Bonferroni-corrected threshold
Pvalue = 6.85 x 10 adjusting for 73 comparisons. See Supplementary
Methods for more detail regarding motivation, instrumentation and
MR assumptions.

Drug-target MR of metformin gene targets

Given the polygenic MR results showing an adverse relationship of
HbAlc and mvAge, we investigated whether HbAlc lowering via met-
formin target genes may improve mvAge. In line with recent work
by Zheng et al.?® proxying the impact of metformin target genes on
Alzheimer’s disease risk, we first identified five primary metformin
targets (AMPK, MCI, MG3, GSD15 and GLP1) from the literature®*". We
used the ChEMBL database’® toidentify genes related to the mechanism
ofaction for the five metformin target genes (Supplementary Table 38).
We extracted variants within 100 kb of the gene boundaries (cis-instru-
mentation) from the GWAS of circulating HbAlc levels used for the poly-
genic MR (UKB participants of European ancestry, n =361,194) (ref. 99).
We clumped extracted SNPs at the LD R? < 0.2 threshold (250 kb) using
the1000 Genomes Phase 3 EUR reference population'®®, and calculated
Fstatistics to evaluate instrument strength (Supplementary Table 39).
We then performed MRIVW (random-effects analysis performed when
there were more than three variants) and MR Egger analyses account-
ing for the correlation between our instrument variants (the requisite
correlation matrices for the analyses were generated using the 1000
Genomes Project EUR population as reference'®) to increase statistical
precision by including additional, partiallyindependent variantsin the
drug-targetinstruments'*®’. To facilitate interpretation of HbAlc-lower-
ing mechanisms of metformin, we scaled MR estimates to correspond
toaloweringeffectinthe HbAlc GWAS data. We performed additional
sensitivity analyses. First, we tested each metformin target separately.
Second, we removed variants associated with T2D at nominal statistical
significance (Pvalue < 0.05), evaluating whether T2D variants are driv-
ingthe observed metformin-mvAge relationship. Third, we performed
anadditional MR, clumping metformin targetsat LD R?of 0.001. Fourth,
we used asecond metformin instrument using variants comprising the
Zhengetal. variants. Finally, given the reported impact of metformin
on slowing epigenetic aging*®, we analyzed the PhenoAge GWAS and
otherunivariate GWAS data to determine whether there was evidence
of aunivariate GWAS signal.

Drug-target MR of cardiometabolic drug classes

Extended Data Fig. 6 presents a graphical overview of the analyses.
Given the MR findings showing that elevated HbAlc, lipid levels and
blood pressure demonstrate adverse relationships with mvAge, we
performed drug-target MR using downstream biomarkers (that is,
HbAIg, circulating lipids and SBP) proxying pharmacological modu-
lation via therapeutics lowering HbAlc, lipids and blood pressure.
Briefly, we proxied pharmacological modulation of these drug tar-
gets by extracting SNPs cis-acting loci (+100 kb of gene boundaries)
associated with their respective biomarker, that is, the primary physi-
ological response to pharmacological modulation of that target:
antidiabeticstargets were extracted from HbAlc data; PCSK9, HMGCR,
ACLY,ABCGS/8 and NPCILCSNP effect estimates were extracted from
LDL-C; ANGPTL3, ANGPTL4, ANGPTLS, APOC3, PPARA and LPL SNP
effect estimates were extracted from TG; APOAI and CETP SNPs were
extracted fromHDL-C; LPA variants were extracted from Lp(a) GWAS;
and variantsin the antihypertensive targets were extracted from the
SBP (Supplementary Tables 40-42 contain instrumentinformation).
Supplementary Methods provides more detail about selection criteria
for drug-target genes.

Drug-target MR methods

We clumped drug targets as described for the metformin analyses
(LD R?< 0.2 threshold (250 kb) using the 1000 Genomes Phase 3 EUR
reference), and performed correlated MR as detailed above toincrease
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statistical precision by including additional, partially independent
variants in the drug-target instruments'®’. To facilitate interpreta-
tion of these HbAlc-lowering, lipid-modulating and SBP-lowering
therapeutic targets, we scaled MR estimates to correspond to the
physiological impact in the respective downstream biomarkers. We
used aBonferroni-corrected threshold Pvalue = 0.002, adjusting for 25
total drug targets tests. See Supplementary Methods for more details
regarding drug-target MR.

Cis-instrument MR screen of cardiometabolic genes

Extended DataFig. 7 presents agraphical overview. Giventhe strong MR
evidence linking mvAge with both the polygenic measures of circulat-
inglipids, HbAlcand SBP, corresponding drug-target MRs with the gene
targets for metformin, and approved lipid-lowering and blood-pres-
sure-lowering therapeutics, we performed cis-instrument/drug-target
MR screens evaluating the causal impact of the lipid subfractions,
HbAlcand SBPviatheaction of protein-coding geneslocated near the
genomiclociofthese biomarkers. Results of these analyses are targets
that may impact mvAge through glycated hemoglobin, lipids or blood
pressure. This approach has recently been developed, identifying
and validating 30 gene targets exhibiting beneficial associations with
lipids that may reduce coronary artery disease risk®. The aim of these
analysesisto provide genetic evidence supporting targets that may be
important toinform future mechanisticinvestigation for therapeutics
that may improve healthy aging.

We used the same lipids, HbAlc and SBP GWAS data as used for
the drug-target MR analyses described above. First, we extracted
lead variants with Pvalues < 5 x 1078 (LD R* < 0.1) associated with their
respective GWAS biomarker (the same HbAlc, lipids and SBP GWAS
dataused for the drug-target MR analyses outlined above) and iden-
tified protein-coding genes located within 50 kb of the lead variants
(Supplementary Tables 43-47). We then performed colocalization
analyses to assess the posterior probability of ashared genetic signal
between mvAge and biomarkers at the protein-coding gene locus™.
We considered genes with posterior probabilities (PP.H4 >0.6) to
have evidence of shared causal variants between mvAge and the
respective biomarker at the gene. We took these protein-coding
genes (523 across 5 biomarkers) forward to cis-instrumentation. We
constructed cis-instruments for the protein coding using genetic
variants (LD R? < 0.2) associated with their respective biomarkers at
conventional genome-wide statistical significance (Pvalue <5 x 1078)
within gene boundaries and SNP F statistics >10 (indicating strong
instruments and evidence that MR estimates are unlikely to be subject
toweakinstrumentbias); 354 of 523 protein-coding genes identified
by colocalization had variants meeting these criteria. We performed
MR accounting for correlation between instruments to increase
estimate precision'>”, and used a Bonferroni-corrected threshold
Pvalue =1.41 x107*, adjusting for the 354 genes tested. We were able
to perform replication analyses using independent HbAlc (ref. 101)
and lipids GWAS summary data'® for 41 of the 132 protein-coding
genes identified by cis-instrument MR (an independent GWAS was
not available for SBP, and thus we were not able to replicate these
genes). Next, we assessed the potential therapeutic actionability of
these protein-coding genes in several ways, including assessing drug-
gability (Supplementary Table 48)*°, protein-chemical interactions
with the STITCH interaction database'” and drug-gene interactions
with DGIdb'**. See Supplementary Methods for more detail.

Proxying circulating proteins

To complement the drug-target MR analyses described above lever-
aging biomarker data, we next explored the causal role of circulating
proteins measured in 30,391 participants of European ancestry from
the first results provided by the SCALLOP consortium'®, which used
the Olink platform to perform a pQTL mapping of plasma proteins to
investigate additional possible anti-aging therapeutic opportunities

that may be useful for future investigation. Clumping, harmonization
and MR analysis proceeded as above, including several proteins instru-
mented by asingle variant. We used the Wald Ratio method'°® to obtain
MR estimates (Supplementary Tables 49 and 50). See Supplementary
Methods for more detail.

Statistics and reproducibility

Methods describes the statistical methods used in this study to analyze
the data. The statistical tests used in this study, except gene-set and
cell-type enrichment, were two-sided. Rv.4.0.2 was used for data pro-
cessing and analysis unless otherwise specified. Predetermination of
sample size, experiment randomization and blinding of investigators
to experiments were not applicable for this type of study.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allanalyses were based upon publicly available data. Summary-level
statistics for the mvAge GWAS generated in this study are available
at https://zenodo.org/record/7926323. Summary-level statistics
for longevity are available at https://www.longevitygenomics.org/
downloads; parental lifespan, https://datashare.ed.ac.uk/handle/
10283/3209; healthspan, https://www.gwasarchive.org/; the frailty
index, https://figshare.com/articles/dataset/Genome-Wide_Associa-
tion_Study_of the_Frailty_Index_-_Atkins_et_al_2019/9204998; and the
epigenetic clocks, https://datashare.ed.ac.uk/handle/10283/3645.
GTEx weights for FUSION analyses are available at https://gusevlab.
org/projects/fusion/.Single-cell gene expression data from the Tabula
Muris study are available at https://tabula-muris.ds.czbiohub.org/.
Summary-level statistics used for Mendelian randomization analyses
are accessible in the IEU Open GWAS Project at https://gwas.mrcieu.
ac.uk/using the IEU Open GWAS Project IDs (provided in Supplemen-
tary Table 37 accompanying the manuscript). Circulating protein
levels fromthe SCALLOP Consortium are available at https://zenodo.
org/record/2615265#.ZGEzyezMLNO. All other data supporting the
findings of this study are available from the corresponding author
uponreasonable request.

Code availability

The software usedin this study is publicly available and accessed with-
outrestriction. R package GenomicSEM v.0.0.5is available at https://
github.com/GenomicSEM/GenomicSEM. Forimplementing Mendelian
randomization analyses, R package TwoSampleMR v.0.5.6 is avail-
able at https://mrcieu.github.io/TwoSampleMR/; R package Mende-
lianRandomizationv.0.7.0: https://cran.r-project.org/web/packages/
MendelianRandomization/index.html; and R package MRlap v.0.0.3.0:
https://github.com/n-mounier/MRIlap. STITCH is available at http://
stitch.embl.de/. R FUSION Pipeline v.1.4.2 for TWAS analysis is avail-
able at http://gusevlab.org/projects/fusion/. Python package FOCUS
v.0.6.10 for FOCUS fine mapping for FUSION is available at http://
github.com/bogdanlab/focus/. R package coloc v.5.1.0.1 for colocali-
zation s available at https://cran.r-project.org/web/packages/coloc/
index.html. Pythonpackage CELLECT v.1.3.0 for single-cell enrichment
analyses is available at https://github.com/perslab/CELLECT. Python
package CELLEX v.1.2.1for single-cell processingis available at https://
github.com/perslab/CELLEX. R package echolocatoR v.2.0.3 for fine
mapping using SuSIE and FINEMAP is available at https://github.com/
RajLabMSSM/echolocatoR. MendelVar is available at https:/mendel-
var.mrcieu.ac.uk/. FUMA and MAGMA v.1.4.0 are available at https://
fuma.ctglab.nl/. Rv.4.2.1and Python v.3.8 were used to format data
for analyses. Supplementary Figs. 1-21 were generated using FUMA
v.1.4.0. Supplementary Figs. 22-33 were generated using R package
echolocatoRv.2.0.3.
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Extended Data Fig. 2| Cis-instrument Mendelian randomization assessing
theimpact of protein coding genes on mvAge through their associations with
HDL-C, LDL-C, triglycerides, and SBP. Presented is a volcano plot of the Z scores
(versus the negative log,,(P-value)) of the MR estimates (beta/se) for the inverse
variance weighted (IVW) MR method aligned to proxy the pharmacological effect
ofincreased HDL-C (N =403,943), lowered LDL-C (N = 440,546), lowered TG

(N =441,016), or lowered SBP (N = 436,419) on mvAge (N =1,958,774). The dotted

Protein-coding gene iwith effect estimate on mvAge that does not surpasses correction

lineindicates the Bonferroni corrected P-value threshold (1.92 x 107%). Labeled
genes are those with beneficial estimates on mvAge that surpass Bonferroni
corrected P-value threshold and align with increased HDL-C, lowered LDL-C,
lowered TG, or lowered SBP. HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; TG, triglycerides; SBP, systolic blood
pressure; MR, Mendelian randomization.
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Extended Data Fig. 3| Protein-protein and protein-chemical interaction

for protein coding genes located near the lead SNPs of the HDL-C, LDL-C,
triglycerides, and SBP GWASs associated with mvAgein the cis-instrument
Mendelian randomization. Analyses were performed using STITCH
(http://stitch.embl.de/). Results plotted are STITCH PPlinteraction scores. The
combined scores are computed by calculating the probabilities from the STITCH
database sources of evidence and correcting by the probabilities of randomly
observing interactions between the proteins and chemicals (see ref. 99 inthe

Reference list for additional information). Stronger associations are annotated
with thicker lines. Protein-protein interactions are represented by grey lines,
protein-chemical interactions are represented by green lines, and chemical-
chemicalinteractions are represented by red lines. Per STITCH guidelines,

‘high confidence’ interactions are considered those with combined scores > 0.90.
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; TG, triglycerides; SBP, systolic blood pressure; MR, Mendelian
randomization.
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Extended Data Fig. 4 | See next page for caption.
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Extended DataFig. 4 | Cis-instrument Mendelian randomization analysis
of 68 circulating proteins. Data presented are MR effect estimates (betas)
for the inverse variance weighted (IVW) MR method and corresponding 95%
confidence intervals (Cls). The impact of 68 circulating proteins on mvAge
(N =1,958,774) was analyzed using protein quantitative trait loci (pQTL)

data derived from 30,391 participants of European ancestry in the SCALLOP
Consortia dataset (http://www.olink-improve.com/). We used pQTLs

associated with the respective plasma protein at P-value < 5 x 10" within or
near the cis-acting locus of the target gene boundary, that is, 100 kilobases on
either side of the respective gene boundary. Extracted SNPs were clumped at
the LD R?< 0.2 threshold (250 kb) using the 1000 Genomes Phase 3 European
reference population and MR IVW (random-effects analysis when there

were more than three variants) and MR Egger implemented accounting for
correlation between the instrument variants. MR, Mendelian randomization.
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Extended Data Fig. 5| Mendelian randomization model overview (directed the instrument for the exposure only impact the outcome of interest via the
acyclicgraph). B, is the genetic association of interest, estimated by B,=B,/B;. exposure and not directly, or viaconfounders (dotted lines). MR, Mendelian
B, and B, represent the estimated MR association of the genetic variants on the randomization.

exposure and the outcomes. MR assumes that the genetic variants comprising
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Extended Data Fig. 6 | Drug-target Mendelian randomization analysis modulating targets, several lipid subfractions including LDL-C (N = 440,546),
overview of anti-diabetics, lipid-modulating targets, and antihypertensives. triglycerides (N = 441,016), and HDL-C (N = 403,943) were used; and for
Diagram depicts flow diagram and details of the drug-target MR analyses of the antihypertensives, GWAS data of SBP (N = 436,419). Independent variants (LD
cardiometabolic targets on mvAge (N =1,958,774). Prior to step 1, colocalization R?<0.2) at P-values < 5 x107®) were extracted, and cis-instruments constructed
analysis was employed to prioritize protein-coding targets for the screen. See for each target, which exposure variants were then extracted from the mvAge
Methods and Supplementary Methods for details on selection and identification =~ GWAS (outcome), harmonized, and then analyzed using multiple MR methods
ofthe individual targets in the three broad drug classes (anti-diabetics, lipid- (steps 3 and 4). See Methods and Supplementary Methods for further details.
modulating targets, and antihypertensive). In step 2, cis-instrumentation was MR, Mendelian randomization; LD, linkage disequilibrium. LDL-C, low-density
performed using genome-wide association study (GWAS) of biomarkers that lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG,
are the primary indications of pharmacological modulation of these targets. triglycerides; SBP, systolic blood pressure.

For antidiabetics, GWAS data of HbAlc (N = 344,182) was used; for lipid-
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LDL-C (N =440,546), triglycerides (N = 441,016), and HDL-C (N = 403,943); and
SBP (N = 436,419). Outcome data was mvAge (N =1,958,774). HbAlc, glycated
hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; TG, triglycerides; SBP, systolic blood pressure; MR,
Mendelian randomization.
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All analyses in this study were conducted using publicly available data. URLs for the source datasets are as follows: mvAge GWAS summary statistics: https://

doi.org/10,5281/zenodo.7926323; longevity GWAS summary statistics: https://www.longevitygenomics.org/downloads; parental lifespan GWAS summary statistics:

https://datashare.ed.ac.uk/handle/10283/3209; healthspan GWAS summary statistics: https://www.gwasarchive.org/; frailty index GWAS summary statistics:
https://figshare.com/articles/dataset/Genome-Wide_Association_Study_of_the_Frailty_Index_-_Atkins_et_al_2019/9204998; epigenetic age acceleration, GWAS
summary statistics: https://datashare.ed.ac.uk/handle/10283/3645; sCCA weights (used for transcriptomic imputation) and 1000 Genomes Project Phase 3
European genomic reference data (used for transcriptomic imputation and MR): http://gusevlab.org/projects/fusion/; biomarker and risk factor GWAS summary
statistics used for MR: https://gwas.mrcieu.ac.uk/; scRNA-seq data used for cell-type enrichment analysis: https://tabula-muris.ds.czbiohub.org/; circulating protein
levels from the SCALLOP Consortium: https://zenodo.org/record/2615265#.ZGEzyezMLNO. Any other data generated in this study upon which conclusions are
based are available in the Supplementary Tables.
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related traits incorporated in this study, i.e., longevity, lifespan, healthspan, frailty index, and epigenetic age acceleration,
were not available, so disaggregated sex and gender multivariate GWASs of the shared aging factor could not be generated.
The GWAS summary statistics for the five aging-related traits incorporated into the multivariate GWAS in this study were
generated using additive models that accounted for covariates including self-reported sex. 1,560,432 participants were
represented overall in the five aging-related GWASs, 51.8% of whom were female.

Population characteristics This study uses only genome-wide association study (GWAS) summary level data (i.e., this study does not used individual-
level data). See the GWAS links (provided in the manuscript and the Data section of this Reporting Summary) for information
regarding population characteristics for the participating cohorts in the five aging-related GWASs incorporated into the
multivariate GWAS generated in this study.

Recruitment This study uses only genome-wide association study (GWAS) summary level data (i.e., this study does not used individual-
level data). See the GWAS links (provided in the manuscript and the Data section of this Reporting Summary) for information
regarding study recruitment for the participating cohorts in five aging-related GWASs incorporated into the multivariate
GWAS generated in this study.

Ethics oversight This study uses only publicly available genome-wide association study summary level data. The original GWAS studies each
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Sample size As statistical power for multivariate GWAS, transcriptomic imputation, polygenic Mendelian randomization, and drug-target Mendelian
randomization analyses are dependent upon sample size, we maximized power of these analyses by including the largest GWAS available for
each exposure and outcome.

Data exclusions ' We used genetic variants associated with the exposures in these analyses (i.e., gene expression in the transcriptomic imputation and drug-
target Mendelian randomization analyses, etc.). For the polygenic MR analyses of biomarkers and risk factors, we excluded genetic variants
not strongly associated with their respective exposure (P-value > 5x10-8), or if they were in linkage disequilibrium with other strongly
associated variants. We also performed extensive heterogeneity testing and follow up analyses excluding variants that demonstrated
evidence for violating the MR assumptions #2 and #3. For the transcriptomic imputation and drug-target MR analyses, we used genetic
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variants located within or near the genomic loci of the genes included in the analyses. Genetic variants were conditionally independent and
associated with the gene expression at pre-specified, analysis-specific P-value thresholds (i.e., default association criteria for the FUSION
TWAS) and P-value < 5x10-8 for the MR analyses. For the other drug-target MR analyses of approved and proposed therapies as well as for
the screen of protein-coding genes, we used standard MR genetic instrument selection criteria (P-value < 5x10-8) and selected genetic
variants associated with each exposure irregardless of genomic position as is done with polygenic MR analysis.

Replication We were unable to perform replication of the multivariate GWAS because independent GWAS summary level statistics for the five aging-
related traits incorporated were not available. We performed extensive replication of the drug-target Mendelian randomization analyses
using independent data sources (discussed in the Methods and Supplementary Methods)

Randomization | GWAS assess the associations of common variants with traits of interest. Fine-mapping, transcriptomic imputation and Mendelian
randomization rely on genetic variation, which is randomized at conception for each study participant (i.e., genetic alleles are independently
allocated at this time).

Blinding This study does not used individual-level participant data (i.e., no raw data). Only publicly available summary statistics were used. Therefore,
blinding is not applicable.
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