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Human microglia show unique 
transcriptional changes in Alzheimer’s 
disease

Katherine E. Prater    1,15, Kevin J. Green1,15, Sainath Mamde1, Wei Sun2, 
Alexandra Cochoit    1, Carole L. Smith1, Kenneth L. Chiou3,4, Laura Heath    5, 
Shannon E. Rose6, Jesse Wiley5, C. Dirk Keene    6, Ronald Y. Kwon7,8, 
Noah Snyder-Mackler    3,4,9, Elizabeth E. Blue    10,11, Benjamin Logsdon5,12, 
Jessica E. Young6,7, Ali Shojaie13, Gwenn A. Garden14 & Suman Jayadev    1,7,10 

Microglia, the innate immune cells of the brain, influence Alzheimer’s 
disease (AD) progression and are potential therapeutic targets. However, 
microglia exhibit diverse functions, the regulation of which is not fully 
understood, complicating therapeutics development. To better define 
the transcriptomic phenotypes and gene regulatory networks associated 
with AD, we enriched for microglia nuclei from 12 AD and 10 control human 
dorsolateral prefrontal cortices (7 males and 15 females, all aged >60 years) 
before single-nucleus RNA sequencing. Here we describe both established 
and previously unrecognized microglial molecular phenotypes, the 
inferred gene networks driving observed transcriptomic change, and apply 
trajectory analysis to reveal the putative relationships between microglial 
phenotypes. We identify microglial phenotypes more prevalent in AD cases 
compared with controls. Further, we describe the heterogeneity in microglia 
subclusters expressing homeostatic markers. Our study demonstrates 
that deep profiling of microglia in human AD brain can provide insight into 
microglial transcriptional changes associated with AD.

Alzheimer’s disease (AD) is pathologically characterized by extracellular 
amyloid-beta (Aβ) plaques, neuronal intracellular neurofibrillary tangles 
and neuroinflammation. Interest in neuroinflammation as a modifiable 
feature of AD pathology has grown in conjunction with genetic stud-
ies identifying AD risk variants localized to coding and non-coding 

regions of genes uniquely expressed by brain myeloid cells1. Microglia 
are resident innate immune myeloid cells of the brain and contribute to 
the neuroinflammatory processes hypothesized to promote AD patho-
physiology2–10. Previous studies suggested that, in AD, microglia release 
inflammatory mediators that influence the behavior and function of 
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distinct microglia gene expression patterns (63% of the nuclei;  
Fig. 1c). The initial dataset consisted of 205,226 nuclei, with 200,948 
nuclei (98%) passing quality control and doublet removal. Gene expres-
sion of cell type marker genes demonstrates that clusters identified as 
microglia (1, 2, 3, 7, 16 and 17; Fig. 1d) in the dataset have high expres-
sion of microglia markers and do not express canonical marker genes 
of other cell types. Thus, of the 200,948 nuclei, 127,371 were identi-
fied as microglia (Fig. 1d and Extended Data Fig. 2), with an average 
of 5,790 nuclei per individual. This dataset is the largest microglia 
per sample dataset generated thus far, including compared to other 
published datasets that have used alternative enrichment techniques. 
Detailed gene expression plots of both microglia (Extended Data  
Fig. 2) and astrocyte or peripheral monocyte markers (Extended Data 
Fig. 3) demonstrate high expression of microglia genes in the microglia 
subset dataset across all subclusters and the lack of other cell type and 
peripheral markers.

Complexity of microglia states
Cluster analysis of the 127,371 nuclei with microglia-like expression 
identified 10 clusters (Fig. 2a) characterized by differentially expressed 
genes (DEGs) comparing the cluster to all other nuclei (Fig. 2b). Using 
gene set enrichment analysis (GSEA), we determined the enrichment 
of biological pathways in each cluster (Fig. 2c). There was little to no 
overlap in the DEGs defining each cluster or the biological pathways 
identified by GSEA, supporting the uniqueness of each cluster.

First, we found clusters with annotations similar to microglia 
phenotypes previously described in human brain. We identified cluster 
1, the largest cluster, as the cluster enriched for homeostatic genes, 
including high expression of CX3CR1 and P2RY12 (refs. 19,24–26). We 
abbreviated this homeostatic-marker-expressing cluster as ‘HM’. HM 
was established as the basis for comparison to assess DEGs for other 
clusters, replicating the approach in previous publications22,25,26 (Sup-
plementary Data 1). Cluster 4 was enriched for pathways involved in 
apoptosis, response to interferon-gamma (IFN-γ) and mitochondrial 
and respiratory functions (Fig. 2c), including Alzheimer, Parkinson 
and Huntington disease KEGG pathways. The most highly DEG in this 
cluster is FTL. Taken together, the profile of cluster 4 is suggestive 
of a degenerative or dystrophic phenotype12,26. Cluster 7 was char-
acterized by expression of genes involved in migration and motility  
(Fig. 2b). Pathways enriched in cluster 7 included membrane organiza-
tion and motility (Fig. 2c). Cluster 8 featured a canonical inflammatory 
phenotype with expression of classic inflammatory activation genes, 
including NFκB1, RELB and IL1β (Fig. 2b)2,31,32. GSEA revealed that this 
cluster was enriched in NFκB signaling, interferon signaling, Toll-like 
receptor (TLR) signaling and RIG-I-mediated signaling pathways, 
indicating downstream effector inflammatory responses to stimuli  
(Fig. 2c). Additional Gene Ontology (GO) terms associated with cluster 
8 included lipid synthesis and localization. Cluster 9 is defined by genes 
and pathways involved in senescence, iron homeostasis and cytokine 
production (Fig. 2b), including CDKN1A, CEBPB, ZFP36 and FTL33. This 
profile is suggestive of senescent microglia34. Cluster 10 is defined by 
expression of genes involved in cell cycle regulation and DNA repair35,36 
(Fig. 2b). The pathways enriched in cluster 10 confirm the relative 
increase of genes involved in cell cycle processes and a decrease of 
endosome and cytokine processing genes (Fig. 2c). As expected for 
microglia of varying activated and non-activated phenotypes, genes 
such as P2RY12 varied in expression, whereas microglia genes, such 
as C3 and CD74, had more similar representation across the microglia 
subclusters (Fig. 2d).

Next, we found three clusters, clusters 3, 5 and 6, not previously 
described in human brain. These clusters were distinguished by their 
endolysosomal network (ELN) gene expression and enrichment for ELN 
pathway signatures relative to HM microglia. We, therefore, annotate 
them collectively as ELN. Cluster 3 is defined by genes implicated in 
aggregate protein internalization (Fig. 2b)19,20,24–26,37 phagocytosis and 

surrounding neurons, and glia lose neuroprotective functions and ini-
tiate aberrant phagocytosis of synapses and neurons3,7,11,12. Microglia 
appear to contribute to tau spreading in model systems13,14 and are likely 
to be the primary cell type involved in Aβ removal, including the reduc-
tion in Aβ observed in response to antibody-based immunotherapy 
approaches15. As such, microglia inflammatory behaviors are relevant 
to therapeutic target design. However, large gaps remain in our under-
standing of microglia responses in AD brain.

Microglia phenotypes are differentiated by morphology, physiol-
ogy and gene or protein expression patterns. Experiments performed 
in model systems suggest that these heterogenous features are likely 
to associate with specific functional microglia phenotypes10,16–21. Less 
is known about the heterogeneity of microglia phenotypes within the 
adult human brain, especially in the setting of specific disease states, 
such as AD. Single-cell and single-nucleus RNA sequencing (snRNA-
seq) studies of fresh and frozen human cortical tissue have revealed 
multiple microglia transcriptional phenotypes in the context of AD 
and other brain pathologies22–29. Distinguishing transcriptomically 
distinct clusters enables the identification of candidate genetic and 
epigenetic factors regulating specific cellular behaviors, which might 
be leveraged in precision therapeutics approaches. However, standard 
snRNA-seq methods often include small numbers of microglia per 
individual. Low cell numbers may diminish the ability to map the full 
range of microglial transcriptional phenotypes and limit capacity to 
identify disease-associated gene expression change within a cluster 
or subcluster. We hypothesized that additional cellular processes and 
regulatory factors of microglia transcriptional phenotypes would be 
uncovered by using datasets that contain much larger numbers of 
microglia per individual sample.

We employed fluorescence-activated nuclei sorting (FANS) for 
PU.1 as a microglia enrichment technique for snRNA-seq. The myeloid 
marker PU.1 has been used to enhance the investigation of the epige-
netics of microglia using assay for transposase-accessible chromatin 
using sequencing30, and, in the present study, it was applied to RNA 
sequencing (RNA-seq). This approach facilitated the acquisition of 
single-nucleus transcriptome profiles from thousands of microglia per 
subject. We generated microglia transcriptional profiles from a cohort 
of 22 individuals with and without AD, enabling us to annotate micro-
glia clusters with plausible biological roles and identify differences in 
microglia between AD and control individuals. The large number of 
profiles in this dataset also allowed us to identify AD-specific subclusters 
within the microglia cluster typically annotated as ‘homeostatic’ based 
upon its gene expression profile22,25,26,29. In addition to homeostatic and 
inflammatory phenotypes described in previous reports, we uncovered 
microglial phenotypes with transcriptomic profiles that may give addi-
tional insight into AD pathogenesis. These findings provide new avenues 
for hypotheses testing in future studies on the roles of microglia in AD.

Results
FANS for PU.1 expression enriches microglia nuclei 20-fold
We enriched nuclei isolated from postmortem human brain for micro-
glia using FANS for expression of the myeloid-specific transcription 
factor PU.1 (Extended Data Fig. 1a,b). To confirm that PU.1 FANS was 
effective, we isolated and sequenced nuclei with and without PU.1 FANS 
(n = 4). We analyzed similar numbers of total nuclei in the unsorted 
(46,085; Extended Data Fig. 1c) and PU.1 sorted (41,488; Extended Data 
Fig. 1d) datasets. The PU.1 sorted dataset contained 20× more microglia 
nuclei defined by high expression of C3, CD74, C1QB, CX3CR1 and SPI1 
(23,310 microglia nuclei) than the unsorted dataset (1,032 microglia 
nuclei). The microglia nuclei observed in the PU.1 sorted dataset also 
demonstrate further complexity as evidenced by more microglia clus-
ters (Extended Data Fig. 1d).

We next applied PU.1 FANS to a cohort of 22 individuals (Fig. 1a). 
After PU.1 FANS, samples retain a variety of non-myeloid cell types  
(Fig. 1b) while providing clear resolution of clusters demonstrating 
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vesicle-mediated transport32. Pathways enriched in cluster 3 include 
endosome and lysosome pathways as well as catabolism and lipid bind-
ing but no inflammatory processes (Fig. 2c). Genes involved in glyco-
lysis have lower expression in cluster 3, differentiating it from the two 
other ELN clusters, suggesting that these cells have not undergone the 
metabolic switch to glycolysis observed in the microglia inflammatory 

phenotype38. Clusters 5 and 6 displayed an ELN signature, although 
they also appeared metabolically active with distinct inflammatory 
characteristics. Cluster 5 had increased expression of HSP90AA1, HIF1A 
and BAG3 in addition to other heat shock protein genes (Fig. 2b), sug-
gesting that these cells are responding to external stress. Genes driving 
glycolysis were also higher in cluster 5 when compared to HM, possibly 
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Fig. 1 | PU.1 enrichment yields a large dataset of microglia nuclei.  
a, Experimental design of 22 postmortem human dorsolateral prefrontal cortices 
(created in part with BioRender). b, UMAP of the PU.1 sorted nuclei from the 
22-subject dataset demonstrates that, although other cell types, including 
neurons, astrocytes, oligodendrocytes (Oligs) and their progenitors (OPCs) as 
well as endothelial cells, are present, six clusters, including the three largest,  
are composed of microglia nuclei. c, Representative cell type marker genes  

(x axis) with the percent of nuclei that express a gene (size of dot) in each cluster 
(distributed along the y axis) and the average expression level (color intensity) 
are shown for microglia (CX3CR1, C1QB, CD74 and C3), astrocytes (GFAP), 
neurons (MAP2), OPCs (COL20A1), Oligs (ST18) and endothelial cells (ITIH5) 
for each cluster. d, Gene expression of a wider set of cell type marker genes 
demonstrates that clusters 1, 2, 3, 7, 16 and 17 are composed of microglia. IHC, 
immunohistochemistry.
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reflecting a switch to glycolysis in these cells38. The pathways enriched 
in this cluster indicate that it is active in endocytosis, autophagy and 
mitophagy (Fig. 2c). Cluster 6 is characterized by metabolic activ-
ity genes and stress response pathways similar to cluster 5 (Fig. 2c) 
although with an additional component of interferon signaling sug-
gested by significantly higher levels of IRF3, IRF5 and IRF7. Cluster 
6 also showed increased expression of cytosolic DNA/RNA recogni-
tion and antiviral genes, including IFIT2, IFIT3 and TRIM22 (ref. 39), as 
well as the pattern recognition receptor CARD9 and mediators of the 
NLRP3 inflammasome31,32,40–43. Of note, unique to cluster 6, we found 
that the DNA repair genes ATM and RNASEH2B were lower in expres-
sion. Whereas IL1β was increased in cluster 6 compared to HM, even 
higher levels of IL1β and expression of other inflammatory effector 
molecules, such as NFkB1, were found in cluster 8, the more canonical 
‘inflammatory’ cluster. Pathways enriched in cluster 6 also support 
upstream inflammatory responses to danger-associated molecular 
pattern stimuli, such as enrichment in NOD-like receptor (NLR) signal-
ing. In addition, we used alternative methodology to identify biological 
pathways and the links between them, providing validation for the ELN 
functions of clusters 3, 5 and 6 (Extended Data Fig. 4). Supplementary 
tables containing the genes driving the presence of each node in the 
network are available on Synapse.

Despite the role of APOE in risk and progression of AD44, to date no 
studies have defined microglia states in individuals with a specific APOE 
genotype. Because most (13/22) of our samples were homozygous for 
the APOE ε3 allele, we generated a subset of our dataset that consisted 
entirely of APOE ε3/ε3 individuals (seven controls and six AD pathol-
ogy, nine females and four males; 75,018 microglia nuclei). After re-
normalizing and re-clustering, we identified nine clusters of microglia 
(Extended Data Fig. 5a). These clusters were defined by genes similar 
to those that defined the clusters in the Mixed APOE genotype dataset 
(Extended Data Fig. 5b and Supplementary Data 2). We found that, in 
most clusters, the DEGs were very similar (~60% or higher match) to 
those in the Mixed APOE dataset (Extended Data Fig. 5c). The HM, neu-
rodegenerative, inflammatory, cell cycle and endolysosomal clusters 
were similar to those of the Mixed APOE cohort. This suggests that the 
presence of multiple distinct ELN microglia clusters is common in the 
human brain even when controlling for APOE genotype.

Microglia cluster-specific transcription factor regulatory 
networks
To characterize the regulatory networks of the populations in the 
dataset, we identified the top transcription-factor-driven networks 
(regulons) controlling gene expression in each of the microglia clusters 
(Fig. 3). Each cluster is defined by a specific set of regulons (Fig. 3a), 
supporting the hypothesis that the differential gene expression charac-
terizing each cluster is determined by transcriptional regulation mecha-
nisms. To demonstrate the diversity of regulons predicted to drive gene 
expression in different clusters, we highlight cluster 3, cluster 5, cluster 
6 and cluster 8 (Fig. 3b). Each of these clusters shows a different set of 
regulons that appear as one of the top 10 for that cluster repeatedly 
across permutations of the analysis. For example, cluster 5 shares a 
glycolytic and endolysosomal phenotype with cluster 6 but does not 
share the interferon response factor regulons predicted for cluster 6. 
In addition, whereas we observed IRF1 and NFKB2 regulons in cluster 8, 
the canonical ‘inflammatory’ effector cluster, we observed additional 
(and different) interferon response factor regulons in cluster 6. The top 

regulons for other clusters also differ from each other (Extended Data 
Fig. 6). MAFB, a transcription factor associated with anti-inflammatory 
gene regulation, was top of the list in cluster 3 (ref. 16). In contrast, regu-
lons directed by transcription factors typically associated with antiviral 
responses, IRF7, and to a lesser extent IRF3, were top of the list in cluster 
6, consistent with the observation that these cells are also enriched for 
nucleic acid recognition and endolysosomal pathways (Fig. 3b). The 
top regulons for the APOE ε3/ε3 subset of individuals demonstrate 
similar unique diversity to those described in the larger dataset, again 
suggesting homology across APOE genotypes (Extended Data Fig. 7). 
Together, these inferred gene networks and their transcription factor 
regulons demonstrate the diversity of the clusters identified here and 
provide potential regulatory targets for future studies to investigate.

Microglia transcriptomic progression takes multiple paths
Experiments in model systems with defined stimuli have demonstrated 
the potential of microglia to acquire diverse phenotypes. However, 
understanding the progression and phenotypic switches acquired 
by human microglia in vivo is challenging. We employed our single-
nucleus dataset to investigate microglia transcriptomic transitions 
using the Monocle3 (ref. 45) trajectory inference method (Fig. 4). 
We asked which cluster may be end state versus transition state as a 
hypothesis-generating exercise. The resulting branching trajectories 
suggest that multiple transition states radiate out from HM, the cluster 
enriched for homeostatic gene expression, supporting the hypoth-
esis that ‘homeostatic’ microglia may transition to multiple endpoint 
phenotypes in humans as predicted by model studies10,16,17. We found 
relationships between clusters that were not immediately apparent 
when exploring DEGs and GSEA alone. Trajectory analysis revealed a 
branch point where cell progression continues to either the autophagic 
stress ELN cluster (cluster 5) or the inflammatory ELN, cluster 6 (Fig. 4). 
Cluster 5 is adjacent to the senescent-like cluster (cluster 9), consistent 
with the notion that autophagy and senescence are related biological 
pathways and endpoints. Similar to work by Nguyen et al.26, the motile 
cluster (cluster 7) is another endpoint.

Inflammatory ELN profile microglia are increased in AD cases
Both homeostatic-marker-expressing and canonical inflammatory 
clusters (HM and cluster 8, respectively) were equally represented 
by both AD and control brain. In contrast, we found that cluster 6 
had more AD nuclei than would be expected in our dataset (adjusted 
P = 0.006), suggesting that AD-relevant processes may be repre-
sented in the profile of this cluster (Fig. 5a). Multiple AD genome-
wide association studies have identified risk alleles associated with 
genes expressed in microglia or myeloid cells4. Using a list of 46 genes 
in single-nucleotide polymorphism loci associated with altered AD 
risk44,46, we used GSEA to assess enrichment of these genes in the 10 
identified microglia clusters. We observed that more AD risk genes 
are differentially expressed in cluster 6 (Fig. 5b) compared to all other 
clusters (adjusted P < 0.001). Gene expression of PICALM, SORL1 and 
PLCG2 were significantly lower in cluster 6 compared to the rest of the 
clusters, whereas other genes, including APP, APOE and BIN1, were 
significantly higher in expression (all adjusted P < 0.001; Fig. 5b). Using 
an alternative set of ELN genes, we demonstrate significant differential 
expression in cluster 6, whereas TLR-associated genes were more 
often highly expressed in cluster 8 (Extended Data Fig. 8a,b). Genes 
associated with ‘disease-associated microglia’ were enriched across 

Fig. 2 | Microglia states have diverse gene expression and biological pathway 
correlates. a, UMAP of unbiased clustering on the nuclei from the six PU.1 sorted 
clusters (1, 2, 3, 7, 16 and 17, shown in Fig. 1d) meeting criteria for microglia from 
the 22-sample dataset contains 10 microglia clusters. b, Differential expression 
analysis comparing each cluster to all other clusters demonstrates distinct 
gene expression profiles for each. The top 25 genes from each cluster are 
displayed with gene names annotated on the right. Cluster 1 is high in expression 

of canonical microglia genes (CX3CR1 and P2RY12). c, GSEA analysis of genes 
that differentiate each cluster from cluster 1 (‘homeostatic marker’) suggests 
distinct biological pathways. d, Canonical microglia marker gene expression 
in the microglia dataset versus other cell types sorted during PU.1 enrichment 
demonstrates enrichment of microglia marker gene expression in the 10 clusters. 
NES, normalized enrichment score.
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multiple clusters, in contrast to a single cluster observed in AD mouse 
models19 (Extended Data Fig. 8c). We further investigated whether a 
microglia phenotype present in healthy aging was reduced in AD brain. 
We determined that cluster 10, the cluster differentially expressing cell 

cycle regulatory genes, is larger in control brain compared to AD brain 
(Mixed APOE adjusted P < 0.001 and APOE ε3/ε3 adjusted P < 0.001; 
Fig. 5a). Cluster 10 is the smallest cluster in our dataset and, therefore, 
deserves replication; however, these data suggest that AD pathology 
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may involve a detectable reduction in a microglia cluster enriched for 
cell cycle and DNA repair genes.

Protein expression of microglial phenotype markers
The transcriptomic data predict heterogeneity in microglia endolyso-
somal phenotypes in both aged control and AD brain. Immunostain-
ing for LAMP1, a lysosomal marker, revealed a spectrum of lysosomal 
phenotypes with varying lysosomal size and number (Fig. 5c). Microglia 
expressing cluster 6 markers were identified in AD brain by immunola-
beling for the protein products of PTGDS (Fig. 5d) and P2RX7 (Fig. 5e), 
both highly expressed genes in that subcluster. Cluster 6 and cluster 8 
microglia both demonstrate differential expression of genes involved 
in the detection of DNA/RNA molecules, suggesting that microglia 
may be activated by exposure to cytosolic nucleic acids. To assess the 
presence of cytosolic nucleic acids in microglia, we immunolabeled 
microglia for double-stranded DNA (dsDNA) (Fig. 5d). We observed that 
microglia with immunoreactivity for dsDNA also contained enlarged 
lysosomes, whereas other microglia in the same tissue section had nor-
mal lysosome size and no immunoreactivity for dsDNA (Extended Data  
Fig. 9). These findings suggest that microglia heterogeneity reflected 
by gene expression patterns may represent morphological phenotypes 
that can be detected in human tissue.

An AD-specific state exists within the cluster enriched for 
homeostatic genes
We reasoned that, given the known inflammaging changes associated 
with human brain molecular profiles, it could be challenging to detect 
AD-specific signatures when studying polarized subpopulations in 
AD and aged brain tissue. We turned our attention to the complexity 
within HM. As previously reported, we observed that HM is the largest 
population and proportionally similar in AD and aged control brain 
samples22,25,26. This population has not been extensively characterized 
to understand the impact of AD on gene expression within homeostatic 
microglia. Our dataset studied over 50,000 microglia enriched for 
homeostatic markers, enabling detection of subclusters within the 
HM microglia population. Subclustering HM microglia revealed seven 
populations with differential gene expression (Fig. 6a). We found that, 
in contrast to the larger microglia dataset, there was a subcluster nearly 
unique to AD cases. This AD-specific microglia subcluster, subclus-
ter 1.5 (Fig. 6b), was almost exclusively composed of AD microglia, 
suggesting that it may be uniquely driven by AD pathology (adjusted 
P < 0.001). In contrast, subcluster 1.4 was overrepresented by con-
trol nuclei (Fig. 6b; adjusted P < 0.05). HM subclusters showed high 

expression of P2RY12, with the highest expression in subcluster 1.5 
(Fig. 6c). Other gene expression markers of HM subcluster 1.5 were 
more specific, including the DEGs WIPF3, PDE4B and KCNIP (Fig. 6c). 
To begin to characterize the putative biological processes represented 
in these subclusters, we performed GSEA as above. Subcluster 1.5 had 
a unique profile of enrichment for genes involved in cellular motility 
and calcium signaling (Fig. 6d). Using immunohistochemistry, we vali-
dated the presence of double-positive high P2RY12 and PDE4B protein 
expression in microglia in human AD brain (Fig. 6e). We additionally 
verified these results in our cohort of all APOE ε3/ε3 individuals. We 
confirmed that, again, the microglia cluster enriched for homeostatic 
gene expression could be divided into multiple populations with dis-
tinct gene expression and that one such cluster was enriched in AD 
cases (Extended Data Fig. 10).

Discussion
This study identified 10 distinct microglia clusters from aged human 
brain. These included previously described homeostatic, senescent 
and inflammatory microglia transcriptional phenotypes as well as addi-
tional clusters of transcriptional specification, which may give insight 
into AD pathogenesis, providing a platform for hypothesis generation. 
We describe the diversity of microglia clusters with endolysosomal 
gene signatures, one of which is enriched with nucleic acid recognition 
and interferon regulation genes. Inferred gene networks predict that 
individual clusters are driven by distinct transcription factors, lending 
further support for the functional diversity of clusters. Using trajectory 
inference analysis, we observed transitions in microglia phenotypes 
and predicted relationships that can be tested experimentally. AD 
cases were distinguished by the emergence of a subcluster expressing 
homeostatic genes (subcluster 1.5) that was characterized by altered 
transcription of genes involved in calcium activation, response to injury 
and motility pathways.

Endolysosomal function is critical for trafficking and degrad-
ing pathologic proteins, and dysfunction of the ELN is implicated 
in AD pathogenesis. Less is known about the implications of ELN 
dysfunction specifically in AD microglia47. This study identified three 
microglia clusters, clusters 3, 5 and 6, distinguished by expression 
of ELN components, each with a distinct pattern of endocytosis, 
vesicle trafficking, endolysosomal and autophagosome pathway gene 
expression. Impaired microglial endolysosomal function is proposed 
to contribute to AD pathogenesis through insufficient amyloid clear-
ance1,47. However, the ELN in myeloid cells also plays a critical role in 
identifying and processing foreign microbes, including initiation of 
TLR and interferon signaling31,48. Gene expression in cluster 6 (the sub-
type overrepresented in AD cases) was characterized by enrichment 
for expression of genes involved in lysosomal and vesicular function 
and concomitantly increased expression of interferon regulatory 
factor and inflammasome activation genes40,42,49,50. Although there 
is not a single ‘DAM’ phenotype in human AD, we did observe a type 1 
interferon response cluster distinct from a dystrophic or canonical 
inflammatory phenotype18,19,37,51. We hypothesize that IRF expression 
here may reflect exposure to danger-associated molecular pattern 
molecules, including nucleic acids from microglia or neighboring 
cells. This hypothesis is supported by our observation of microglia 
with immunoreactivity to cytosolic dsDNA and amoeboid morphol-
ogy (Fig. 5). These findings align with murine and in vitro studies 
demonstrating that amyloid fibrils contain nucleic acids and induce a 
type I interferon response in microglia, leading to synapse loss50. Song 
et al.49,52 reported a key role for the ELN in nucleic acid degradation 
and the interferon response to DNA damage after release of nuclear 
DNA into the cytosol, consistent with the phenotype that we describe 
here. Cluster 6 microglia not only were increased as a population in 
AD cases but also demonstrate significant differential expression 
of a number of genes associated with genetic risk for AD (Fig. 5). 
This observation supports the hypothesis that inflammatory cell 
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dysfunction is an important contributor to AD risk and suggests that 
the subtype of microglia represented by cluster 6 may be a microglia 
subtype to target for therapeutic intervention.

We leveraged our dataset to apply trajectory methods to infer 
the potential relationships between microglial transcriptional phe-
notypes. Dystrophic (cluster 4) and senescent (cluster 9) clusters 
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Fig. 5 | Cluster 6 demonstrates enrichment of AD risk genes and suggests 
the presence of dysregulated lysosomal and cytosolic DNA regulation in 
microglia in AD. a, Cluster 6 is significantly increased in AD brain (chi-square 
FDR-corrected P = 0.0064), whereas cluster 10 is increased in control (Ctrl) 
samples (chi-square FDR-corrected P = 0.0006). b, Heat map of AD-associated 
risk gene expression across microglia clusters shows stronger differential 
expression in cluster 6. c, Demonstration of lysosome morphology heterogeneity 
in microglia. Representative images from an AD case demonstrate microglia 
(Iba-1, green) with heterogeneity in morphology and Lamp-1 signal. Examples 

are of a ramified (top arrow) and greater lysosome (Lamp-1, magenta) signal 
and an ‘activated’ or less-ramified phenotype (bottom arrow). d, Representative 
microglia (Iba-1, green) with high PTGDS (red) expression, a cluster 6 marker in 
an AD case. e, Representative microglia (Iba-1, green) with high expression of 
P2RX7 (magenta) expression, a cluster 6 marker in an AD case. f, A representative 
example of activated microglia with both large numbers of lysosomes (Lamp-1, 
white) and cytosolic dsDNA (magenta) in an AD case. All representative images in 
c–f display staining replicated in multiple fields and at least three human brains. 
All scale bars represent 15 µm. **Corrected P < 0.01.

http://www.nature.com/nataging


Nature Aging | Volume 3 | July 2023 | 894–907 902

Resource https://doi.org/10.1038/s43587-023-00424-y

emerge as ‘end states’, demonstrating how computational trajectory 
inference can map microglial phenotypes consistent with predictions 
from previous empirical data10,16,17. Nevertheless, as with all bioinfor-
matic analyses, these results should be viewed as hypothesis generat-
ing. Trajectory analysis also showed that the autophagic stress and 
inflammatory ELN clusters (cluster 5 and cluster 6, respectively) 
represented a branch point from cluster 1. Alternatively, cluster 3 
appeared to be a transition phase between the homeostatic cluster 
and either the motile or dystrophic clusters. These findings are simi-
lar to a previous report by Nguyen et al.26. Our analysis nominates 
genetic regulators of each cluster, and together these data can be 
used to guide further studies to test the plasticity or reversibility of 
microglia phenotype53. Furthermore, unlike other cell types that are 
terminally differentiated, it is plausible that microglia may transition 
in and out of transcriptomic states, underscoring the ‘snapshot’ 
nature of tissue omics.

We detected an AD-specific microglia phenotype, subcluster 
1.5, within the homeostatic-marker-expressing cluster, cluster 1. The 
‘homeostatic’ moniker is often invoked to describe a cluster expressing 
genes termed homeostatic because of their decreased expression upon 
microglial activation. Whether these genes truly have an active role in 
directing an activated or injured cell to resume a less reactive state or in 
maintaining a particular state is unknown. Nevertheless, we found that 
the cluster identified as ‘homeostatic’ using the typical homeostatic 
markers belies a complexity of microglia profiles that may hold clues 
to early or subtle microglial changes in response to AD pathology.  
As an example, subcluster 1.5 shows the highest expression of P2RY12 
as well as expression of genes that suggest another layer of activity. 
Of note, P2RY12 is associated with active microglial phenotypes and is 
considered essential for the initial stages of motility during inflamma-
tion54. The most highly differentially regulated gene in subcluster 1.5 
is PDE4b, a phosphodiesterase implicated in cognitive function55 and 
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myeloid cell inflammatory activation56,57. PDE4b regulates levels of 
cAMP, which was shown to modulate microglia surveillance behavior58. 
Subcluster 1.5 also demonstrates enrichment of motility and calcium 
signaling pathways, which could suggest response to neuronal activity 
or extension of microglial processes53. Therefore, we speculate that 
subcluster 1.5 may represent early or subtle microglial phenotype 
changes in response to pathologic protein but not a fully immunologi-
cally activated phenotype.

As with all snRNA-seq studies, there are limitations to our study. 
Although PU.1 sorting provides a way to increase microglia nuclei 
for greater resolution of phenotypes at an individual subject level, it 
potentially selects for a specific population of microglia. Additionally, 
although known microglial and peripheral myeloid markers used to 
annotate cells increased confidence of a microglial designation, it is still 
possible that nuclei included may be a different brain myeloid cell type. 
DEGs that were identified using clusters defined by the same data are 
not necessarily properly controlled59; however, our dataset will allow 
others to use our clusters to mitigate this in the future. Although the 
total number of microglia from each subject is large, the total num-
ber of subjects studied is 22. Additional studies in larger cohorts are 
needed to validate these findings or perhaps give additional insight 
into microglial diversity. Gene expression is a useful molecular tool 
for cellular subtyping, but it does not always directly describe protein 
expression, localization or function60. Future studies assaying for a 
panel of proteins based upon the transcriptomic signatures reported 
here will be valuable for both validation as well as the spatial correla-
tion with pathological features. Assessment of microglial phenotypes 
across brain regions can provide further context to the understanding 
of phenotypic heterogeneity. Another significant limitation is the use of 
autopsy brain tissue. It is possible that events just before death or post-
mortem changes contribute to the expression changes measured here. 
To mitigate the variability of tissue quality, we selected only tissues with 
a pH greater than 6.0 and a postmortem interval (PMI) less than 10 h.

In this study, we identified microglia states from isolated human 
postmortem brain nuclei. Among the nuclei meeting criteria for a 
microglia transcriptomic signature, an ‘aging signature’ was observed 
in all clusters in this study23, consistent with our older age cohort. 
Inflammaging61 may not only confound interpretations of gene expres-
sion profiles attributable to AD but may also contribute to the disease 
mechanisms hypothesized to drive AD. Additional studies exploring 
differences between younger controls and early-onset AD may also 
help to explore the aging, inflammaging and AD-specific signatures. 
Our identification of multiple internalization and trafficking clusters 
with varying metabolic and inflammatory gene expression patterns 
provides a platform for further studies. Finding an AD-specific sub-
cluster within the population of microglia enriched for homeostatic 
gene expression also suggests that AD changes and, thus, molecu-
lar pathways driving AD can be identified in cells that have not yet 
been fully explored. The cluster-specific alterations in composition, 
gene expression and gene regulation in AD brain provide additional 
information to support tailored targeting of microglial physiological 
responses that will be critical moving forward in neurodegenerative 
disease therapeutics.

Methods
Human brain tissue
Our research complies with all relevant ethical regulations and was 
approved by the institutional review board at the University of Washing-
ton. Dorsolateral prefrontal cortex (dlPFC) tissue from human brains 
was obtained from the Neuropathology Core of the Alzheimer’s Disease 
Research Center at University of Washington after written informed 
consent. Patients (n = 12) were confirmed postmortem to have AD 
pathology (Alzheimer’s Disease Neuropathic Change (ADNC) score of 
2–3; Table 1). Control individuals (n = 10) had low or no neuropathology 
postmortem (ADNC score 0–1; Table 1).

Brain samples were flash frozen and stored at −80°C. Criteria for 
inclusion included PMI ≤10 h, low comorbid pathology (Lewy bodies 
and hippocampal sclerosis) and a brain pH at autopsy ≥6.

Isolation of nuclei for unsorted snRNA-seq
Nuclei from brain samples were isolated using protocols adapted 
from 10x Genomics Demonstrated Protocols and De Groot et al.62. In 
brief, four 2-mm punches of dlPFC gray matter were collected using a 
biopsy punch (Thermo Fisher Scientific) into a 1.5-ml microcentrifuge 
tube on dry ice. All buffer, solution and media recipes can be found in 
Supplementary Tables 1–7. Nuclei isolation used nuclei lysis buffer. 
The nuclei in nuclei suspension solution was layered onto 900 µl of 
percoll/myelin gradient buffer62. The gradient was centrifuged at 950g 
for 20 min at 4 °C with slow acceleration and no brake. Myelin and 
supernatant were aspirated, and the nuclei pellet was resuspended in 
resuspension buffer at a concentration of 1,000 nuclei per microliter 
and proceeded immediately to snRNA-seq.

Isolation of nuclei for FANS
In brief, 100–250 mg of dlPFC gray matter was collected into a 1.5-ml 
microcentrifuge tube on dry ice. Brain tissue was homogenized as 
above. The homogenate was incubated at 4 °C under gentle agitation 
for 10 min, pelleted at 500g for 7 min at 4 °C and resuspended in 900 µl 
of percoll/myelin gradient buffer supplemented with protease and 
phosphatase inhibitors. The suspension was gently overlaid with 300 µl 
of nuclei suspension solution supplemented with protease and phos-
phatase inhibitors. The gradient was centrifuged at 950g for 20 min at 
4 °C with slow acceleration and no brake. The myelin and supernatant 
were aspirated, and the nuclei pellet proceeded immediately to FANS.

FANS
Nuclei were washed with cold FANS media (10% FBS, 10 mM HEPES, 
100 µM ATA, 10% 10× HBSS, 0.5% Protector RNase Inhibitor, protease 
and phosphatase inhibitors and 1% saponin in nuclease-free water) and 
resuspended in FANS media at a concentration of 2–2.5 × 106 nuclei 
per milliliter. Nuclei were incubated with 1% Human Fc Block (clone 
Fc1.3216, BD Biosciences) on ice for 10 min. Nuclei were labeled with 
either anti-PU.1-PE (clone 9G7, 1:50, Cell Signaling Technology) or IgG-
PE isotype control (clone DA1E, 1:50, Cell Signaling Technology) for 4 h 
on ice, followed by three washes with cold FANS media and resuspended 
in FANS media supplemented with 10 µg ml−1 DAPI (Sigma-Aldrich). 
Nuclei were sorted using a FACSAria III (BD Biosciences) until 30,000 
PU.1-positive nuclei were collected. Sorted nuclei were centrifuged at 
1,000g for 10 min at 4 °C. The nuclei pellet was resuspended in resus-
pension buffer at a concentration of 1,000 nuclei per microliter and 
proceeded immediately to snRNA-seq.

snRNA-seq
Single-nucleus libraries were generated using the Chromium Next 
GEM Single Cell 3′ GEM, Library and Gel Bead Kit version 3 (10x Genom-
ics) according to the manufacturer’s protocol and a target capture 
of 10,000 nuclei. Gene expression libraries were sequenced on the 
NovaSeq 6000 platform (Illumina).

Alignment and quality control
Gene counts were obtained by aligning reads to the hg38 genome 
(GRCh38-1.2.0) using CellRanger 3.0.2 software (10x Genomics). Reads 
mapping to precursor mRNA were included to account for unspliced 
nuclear transcripts. Most of our analysis was performed in R (R Devel-
opment Core Team 2010). Droplets from 22 PU.1 sorted samples were 
combined using Seurat version 3.3 (ref. 63). Unsorted and PU.1 sorted 
droplets isolated from the same four subjects were combined using 
Seurat and analyzed in the same manner. Droplets containing fewer 
than 350 unique molecular identifiers, fewer than 350 genes or more 
than 1% mitochondrial genes were excluded from analysis. Ambient 
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RNA was removed from the remaining droplets using SoupX64. Droplets 
containing multiple nuclei were scored using Scrublet65 and removed. 
In total, 200,948 nuclei with an average of 1,787 genes per nucleus 
remained in the dataset for further analysis.

Normalization and cell clustering
Normalization and clustering of the nuclei were performed using  
Seurat version 3.3 (ref. 63). Data were normalized for read depth, and 
mitochondrial gene content was regressed out using Seurat’s SCTrans-
form66. Individual sample variability was removed using Seurat’s Anchor-
ing and Integration functions63. The top 5,000 variable genes were kept. 
Fifteen principal components (PCs) were used to create a shared nearest 
neighbors graph with k = 20. The modularity function was optimized 
using a resolution of 0.2 to determine clusters using the Louvain algo-
rithm with multilevel refinement to determine broad cell types. Each 
cluster met a minimum threshold of 30 defining DEGs and comprised 
nuclei from more than 10% of the cohort (more than two individuals).

Clusters were annotated for cell type using manual evaluation for a 
set of known genetic markers67. A new Seurat object was made contain-
ing only the microglia nuclei (n = 127,371). Normalization, individual 
variability removal, integration and shared nearest neighbors graph 
creation were repeated as above on the microglia nuclei. Twenty PCs 
were chosen to account for a significant amount of the variance. Clusters 
were determined using the Leiden algorithm68 with method=igraph 
and weights=true. Clusters were highly conserved across analysis by 
Louvain, Louvain with multilevel refinement and Leiden algorithms. 
Homeostatic cluster subclustering for both the 22-sample dataset and 
the APOE ε3/ε3 allele dataset occurred after normalization, individual 
variability removal and integration as before and was performed using 
10 PCs and the Louvain with multilevel refinement algorithm. Distribu-
tion of nuclei within each cluster was calculated using the ‘chisq.test’ 
function in R to compare the actual percentage of nuclei from either 
the AD or control group within the cluster to the expected proportion 
of nuclei that would be contributed based on dataset composition.  
P values from the chi-squared tests were adjusted using false discovery 
rate (FDR) and considered significant if adjusted P < 0.05.

snRNA-seq differential gene expression and GSEA
Differential gene expression analysis of the clusters was performed with 
the MAST algorithm. Genes tested had expression in at least 25% of the 
nuclei in the cluster. DEGs had an FDR-adjusted P < 0.05 and a log fold 
change > 1.25. Cluster 1 was annotated as inactivated, often referred 
to as ‘homeostatic’ in single-nucleus studies of microglia. Differential 
gene expression analysis was repeated as above comparing each other 
cluster to cluster 1. GSEA was performed in ClusterProfiler69 modified 
to use a set seed for reproducibility, using the GO, KEGG and Reactome 
pathway sets, version 7.2. Enriched pathways had an FDR-adjusted 
P < 0.05. We considered pathways to be representative if significant 
results included similar genes and biological functions in at least two 
of the three major databases (GO, KEGG and Reactome).

GO biological process clustering
A complementary approach to GSEA is to perform biological process 
ontology clustering to identify a more extensive set of terms associated 
with the gene list. To further characterize the ELN clusters (3, 5 and 6), 

we implemented this approach to get a more refined examination of the 
biologically linked process driven by each cluster. We employed several 
different approaches to perform this analysis, ultimately choosing the 
Cytoscape network clustering application ClueGO70,71, which has been 
employed extensively in recent years for this purpose72–75. This creates a 
network of genetically linked processes that goes beyond a singular GO 
term hit, providing greater confidence that a basic biological process 
is being impacted based on the differential expression of a particular 
set of genes. Clusters 3, 5 and 6 were each independently submitted for 
analysis using a one-sided positive enrichment algorithm that employs 
hypergeometric testing, with a kappa threshold of 0.4 to optimize the 
biological process connections. Each term drawn into the network was 
initially filtered for multiple testing corrections threshold of P < 0.05 
and hierarchically weighted for terms with a Benjamini–Hochberg 
correction value of P < 0.01. As this procedure is performed for valida-
tion and visualization, we trimmed networks of lesser-ranked terms to 
permit ease of visualization.

Trajectory and lineage analysis
Trajectory analysis was performed using Monocle3 (ref. 45) on multiple 
permutations of our downsampled dataset. The data were downsam-
pled to 1,000, 2,000, 3,000 or 5,000 nuclei per cluster and transferred 
to a cell dataset object, and Monocle3 ‘learn_graph’ was run. Principal 
component analysis and uniform manifold approximation and projec-
tion (UMAP) embeddings were extracted from the Seurat object. We 
applied the algorithm both with and without a defined starting point. 
The 5,000 nuclei-per-cluster downsampled data began to break down 
the ability of Monocle to form a consistent trajectory, whereas the 1,000, 
2,000 and 3,000 multiple permutations consistently formed something 
similar to the representative image in Fig. 5 (3,000 nuclei per cluster).

Gene regulatory network inference
Regulons were inferred using the SCENIC workflow in Python (pySCE-
NIC)76,77. We randomly selected 2,000, 3,000 or 5,000 nuclei in each 
cluster (or, if they have fewer than this number, all the nuclei in the 
cluster) to reduce the computational time and have proportional repre-
sentation of all the clusters. We made five subsets of each combination 
and repeated the analysis twice for each subset to assess the consist-
ency of the regulons in the analysis. First, we used normalized counts 
with highly variable genes to generate the co-expressing regulatory 
network modules using the machine learning algorithm GRNBoost2 
with function ‘grn’ and default settings76. Second, the modules were 
filtered using the ‘-ctx’ function, which uses cis-regulatory motif 
analysis (RcisTarget) to keep only modules enriched for putative target 
genes of the transcription factor. Regulons are identified by combining 
multiple modules for a single transcription factor. Third, the AUCell 
function was used to calculate the regulon activity for each nucleus. 
Regulon specificity scores were calculated for each regulon in every 
cluster. Ranking specificity scores identified the top 10 regulons for a 
specific cluster for a given subset of the dataset and the consistency 
of the findings across subsets.

Immunostaining of human tissue
Dissected tissues from the dlPFC of the 22 cases in the cohort were 
fixed with paraformaldehyde and paraffin embedded. Samples were 

Table 1 | Postmortem brain sample demographics

Group Males Females Avg. age Avg. PMI ADNC E2/3 E3/3 E3/4 E4/4

Ctrl 4 6 85.9 5.53 0–1 2 7 1

AD 3 9 86.5 4.67 2–3 6 5 1

Total 7 15 86.23 5.42 2 13 6 1

AD, Alzheimer’s disease pathology; Avg. age, average years of age at death; APOE genotypes: APOE alleles 2/3 (E2/3), APOE alleles 3/3 (E3/3), APOE alleles 3/4 (E3/4) and APOE alleles 4/4 
(E4/4); Ctrl, control; Avg. PMI, average postmortem interval in hours.
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sectioned at 15 µm and deparaffinized before immunostaining. Slides 
were boiled in citrate buffer (Sigma-Aldrich, C9999) for 20 min and 
then transferred into blocking buffer (10% donkey serum, 0.1% Trition 
X-100 and 0.05% Tween 20 in TBS) for 1 h at room temperature. Slides 
were incubated in primary antibodies (anti-LAMP1 1:100, Invitrogen, 
14-1079-80; anti-Iba-1 1:250, Abcam, ab5076; anti-dsDNA 1:250, Mil-
lipore, MAB1293; anti-PTGDS/PGD2 1:100, R&D Systems, MAB10099; 
anti-P2RX7 1:100, Santa Cruz Biotechnology, sc-514962; anti-P2RY12 
1:50, Alomone, APR-012; and anti-PDE4B 1:50, LSBio, LS-C173292-100) 
overnight at 4 °C. Slides were rinsed three times in TBS-T for 5 min 
before secondary antibody (Thermo Fisher Scientific, Alexa Fluor 488 
donkey anti-goat, A11055; Thermo Fisher Scientific, Alexa Fluor 555 
donkey anti-mouse, A31570; Alexa Fluor 555 donkey anti-rabbit 555, 
A31572; Alexa Fluor 647 donkey anti-mouse, A31571; or Alexa Fluor 647 
donkey anti-rabbit, A32795) incubation for 1 h at room temperature. 
Slides were then stained with DAPI (1:1,000, Millipore, D8417) for 5 min, 
followed by three 5-min TBS-T washes. True Black (Thermo Fisher 
Scientific, NC1125051) diluted 1:20 in 70% ethanol was added to the 
slides for 50 s, followed by two additional 5-min washes in TBS before 
being mounted with Fluoromount-G (Southern Biotech, 0100-01). 
Slides were imaged using either an Olympus FluoView-1000 confocal 
microscope or a spinning disk confocal microscope (Nikon A1R with 
Yokogawa W1 spinning disk head) with ×40 and ×100 oil objectives, 
and the maximum projection of z-stack images was generated. Images 
were despeckled using Fiji.

Statistics and reproducibility
No statistical methods were used to pre-determine sample sizes, but 
our sample sizes are similar to those reported in previous publica-
tions22,25,26. Data collection and analyses were not performed blinded 
to the conditions of the experiments. No data were excluded from 
the analyses. The main snRNA-seq dataset of PU.1 enrichment from 
dlPFC is from 22 humans (12 AD and 10 healthy aged donors), all aged 
>60 years. Because the samples were obtained from humans, and 
the study was designed to detect differences between AD cases and 
healthy aged brains, the samples were not randomized between con-
ditions. We counterbalanced sequencing batches by sex and disease 
status such that all conditions were present in each sequencing batch. 
Statistical analysis for pseudobulk RNA-seq data and snRNA-seq data 
used DESeq2 and MAST, respectively. DESeq2 is designed to model the 
RNA-seq count data by a negative binomial distribution, and MAST 
is designed to model the zero inflation observed in snRNA-seq data. 
For statistical analysis of cluster proportion, counts data were used, 
which does not rely on a normal distribution. When the dataset was 
downsampled for trajectory analysis and regulon detection, the nuclei 
were randomly downsampled to generate multiple iterations of the 
dataset that evenly represented the clusters and kept the samples in 
their original proportions. For trajectory analysis, three downsam-
pled permutations at three downsample resolutions (1,000, 2,000 or 
3,000 nuclei per cluster) were analyzed for a total of nine iterations, 
resulting in similar findings as those displayed in Fig. 4. For pySCENIC 
regulon detection, the dataset was downsampled with five permuta-
tions at 1,000 nuclei per cluster and three permutations at 2,000 and 
3,000 nuclei per cluster. Each of these permutations was run through 
the pySCENIC pipeline multiple times, resulting in 27 instances of 
regulon detection. These 27 instances were compiled into the consist-
ency scores displayed in Fig. 3 and Extended Data Fig. 6. Experiments 
involving immunohistochemistry of human tissue were replicated 
on, at minimum, samples from five humans, and images displayed 
are representative of staining observed in multiple fields of at least 
three human samples.

Reporting Summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The entire anonymous dataset generated for this resource in its raw and 
Seurat object processed forms is available via Synapse (https://www.
synapse.org/#!Synapse:syn51272688). The data are available under 
controlled use conditions set by human privacy regulations. To access 
the data, a data use agreement is needed. This registration is in place 
solely to ensure anonymity of the study participants. All other study 
data are available from the corresponding author upon reasonable 
request. This resource also used the publicly available human hg38 
genome (GRCh38-1.2.0).

Code availability
The scripts used to generate our analyses are available at https://github.
com/keprater/jayadevlab_pu.1_project. The container needed to run 
the scripts with the same Seurat and other package versions as are used 
in the code is available for download at https://hub.docker.com/r/
keprater/jayadevlab/tags or in the Synapse project with the dataset. 
Use container Tag 6.3 to replicate our analyses with the same package 
versions.
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Extended Data Fig. 1 | PU.1 enrichment increases the number of microglia 
nuclei and enhances microglia cluster resolution in snRNAseq studies.  
(A) Fluorescence-activated nuclei sorting plot of nuclei isolated from 
dorsolateral prefrontal cortex grey matter of postmortem human brain tissue 
demonstrate a DAPI-positive population from which later populations are 
drawn. (B) Isotype and PU.1 staining examples demonstrating the PU.1 positive 

population. (C) Unsorted snRNAseq data from four samples demonstrates 
multiple brain cell types and a small population of microglia (n = 1032 cells) 
that can be further subdivided into five clusters. (D) After PU.1 enrichment, a 
snRNAseq dataset from the same four individuals contains a larger number of 
microglia (n = 23,310 cells), and these microglia can be further discriminated into 
nine clusters.
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Extended Data Fig. 2 | Gene expression of microglia marker genes in the 10 identified microglia subclusters. Microglia marker genes, CX3CR1, C1Qb, SPI1 
(PU.1), and APOE all demonstrate higher expression in the 10 microglia subclusters (numbered 1–10 on the left) than in other cell type clusters (labeled by cell type 
on the right).

http://www.nature.com/nataging


Nature Aging

Resource https://doi.org/10.1038/s43587-023-00424-y

Extended Data Fig. 3 | Gene expression of astrocyte and peripheral monocyte 
marker genes in the 10 identified microglia subclusters. (A) Astrocyte marker 
genes GFAP and S100B demonstrate higher expression in the two Astrocytes-1 
and Astrocytes-2 subclusters than in the 10 defined microglia subclusters. While 

microglia cluster 6 does have expression of GFAP, it does not have expression 
of S100B. (B) Peripheral monocyte markers CCL5 and have low expression in 
our dataset but are most highly expressed by the CD163+ cluster which was not 
included in our microglia dataset.
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Extended Data Fig. 4 | Gene Ontology Network Enrichment of the 
Endolysosomal Microglia Clusters 3, 5, and 6. The genes differentially 
expressed in Clusters 3, 5, and 6 were employed to drive a network-based gene 
ontology enrichment using the Cytoscape application ClueGO. This approach 
uses a one-sided positive enrichment algorithm that employs hypergeometric 
testing, with a kappa-threshold of 0.4 to optimize the biological process 
connections. Each term drawn into the network was initially filtered for multiple 
testing corrections threshold of p < 0.05, and hierarchically weighted for 
terms with a Benjamini-Hochberg correction value of p < 0.01. The nodes are 
represented within each network based upon two factors: number of genes (size 
of circle) and statistical significance (bright red = Benjamini-Hochberg corrected 
p < 0.05; dark brown = Benjamini-Hochberg corrected p < 0.0005). (A) In Cluster 

3, three small subclusters were identified associated with endocytosis, receptor 
mediated endocytosis, and lipid binding and synthesis (far left); a second 
subcluster centers on synaptic endocytosis (middle group); and a third involves 
vesicle transport (far right). (B) In Cluster 5, a subcluster of terms was identified 
spanning autophagy, receptor mediated autophagy, and the regulation of these 
two terms (far left); a second larger cluster identifies endocytosis and receptor-
mediated endocytosis, processes linked with autophagic regulation, as well as 
vesicular transport. (C) In Cluster 6, three subnetworks were identified within the 
ELN space, demonstrating active endocytosis, lysosomal processes and transfer 
between these compartments and the trans-golgi network (left). A second 
large cluster of terms was identified associated with innate immune function, 
activation, and regulation, as well as linked inflammatory processes (right side).
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Extended Data Fig. 5 | APOE ε3/ε3 genotype does not substantially alter 
microglial clustering in human autopsy brain. (A) UMAP of unbiased 
clustering on 13 samples of only APOE ε3/ε3 individuals shows 9 clusters.  
(B) Similar to the clusters identified in the Mixed APOE genotype dataset, the 

clusters identified in the APOE ε3/ε3 genotype dataset are distinct by gene 
expression. The top 5 genes are displayed for each cluster. (C) Venn diagrams 
demonstrating overlap between clusters from the Mixed APOE and APOE ε3/ε3 
cohorts demonstrating significant overlap in gene expression profiles.
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Extended Data Fig. 6 | Top transcription factors for each cluster from the full 
cohort microglia subclusters are unique and represent biological function 
switches. These are the transcription factors that most often drove gene 
expression in clusters 4, 7, 9, and 10. Values denote the percentage of replicates 
of permutations of the dataset where that transcription factor was unique to the 

given cluster, with darker color indicating higher percentages. Note that while 
a few similar transcription factors are seen in multiple clusters, particularly the 
most prevalent transcription factors are unique, and are representative of gene 
expression driving biological functions in these clusters.
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Extended Data Fig. 7 | Transcription factor regulatory networks are specific and unique to subpopulations of microglia within the APOE ε3/ε3 genotype 
clusters. Similar to the larger dataset, transcription factors driving gene expression within clusters are distinct when the data is comprised of only APOE ε3/ε3 allele 
carriers.
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Extended Data Fig. 8 | Gene sets demonstrate differential expression by 
cluster based on predicted biological function. Heatmaps of: (A) the Gene 
Ontology (GO) set of Endolysosomal genes demonstrate significant upregulation 
in Cluster 6. (B) The Kyoto Encyclopedia of Genes and Genomes (KEGG) set of 
Toll-Like Receptor (TLR) genes demonstrates significant upregulation in Cluster 
8 as would be expected given the classical inflammatory phenotype observed 

in the gene expression. (C) The ‘Disease Associated Microglia’ (DAM) gene 
list from Keren-Shaul et al. 2017 shows upregulation of genes across multiple 
clusters in our human dataset. This replicates other human studies which have 
not identified a single DAM cluster unlike studies involving mouse models of 
Alzheimer’s disease.
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Extended Data Fig. 9 | A subset of microglia demonstrate dsDNA signal and 
greater Lamp-1 signal in AD brain. (A) A representative example of staining 
observed in multiple fields across at least three humans shows an activated 
microglia with both large numbers of lysosomes (Lamp-1, white), and cytosolic 

dsDNA (magenta) in an AD case (filled arrowhead). (B) Microglia (pointed 
arrowhead) without cytosolic dsDNA immunoreactivity (magenta) in the same 
case and tissue section appear ramified with less Lamp-1 signal. All scale bars 
represent 15 microns.
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Extended Data Fig. 10 | The APOE ε3/ε3 genotype cohort also demonstrates 
a subcluster of the homeostatic-marker-expressing cluster increased in AD 
brain. (A) The results from the full dataset were replicated in the pure APOE ε3/ε3 
allele cohort, suggesting multiple subpopulations exist within the ‘homeostatic’ 
cluster. These subpopulations are distinct by gene expression despite being 

comprised of one ‘homeostatic’ subpopulation. (B) Within the APOE ε3/ε3 
cohort ‘homeostatic’ Cluster 1, there is a Cluster 1.5 that is significantly increased 
in AD brain like we found in the full cohort (Fig. 6; Chi-squared FDR corrected 
p = 6.7673 × 10−6). **= p < 0.01.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No unique software was used for data collection.

Data analysis Scripts, and the container (Tag 6.3) needed to run them with the appropriate versions of the packages listed, are provided via GitHub and 
DockerHub at https://github.com/keprater/jayadevlab_pu.1_project and https://hub.docker.com/r/keprater/jayadevlab/tags. CellRanger 
3.0.2 with GRCh38-1.2.0, R version (v)4.0.0, Seurat v3.1.5, SoupX v1.4.5, Scrublet 0.2.1, clusterProfiler v3.16.1, Monocle3 v0.2.2, pySCENIC 
v0.11.2, ggplot2 v3.3.1, Matrix v 1.2-18, Reticulate v1.16, Leiden v0.3.3, sctransform v0.2.1, SingleCellExperiment v1.10.1, GenomeInfoDb 
v1.24.2, Numpy v1.20.0, Pandas v1.3.3, Matplotlib v3.4.3, and Python v3.8.10 were utilized.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The entire anonymous dataset generated for this resource in its raw and Seurat object processed form is available via Synapse (https://www.synapse.org/#!
Synapse:syn51272688). The data are available under controlled use conditions set by human privacy regulations. To access the data, a data use agreement is 
needed. This registration is in place solely to ensure anonymity of the study participants. All other study data are available from the corresponding author upon 
reasonable request. This resource also used the publicly available human hg38 genome (GRCh38-1.2.0).

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Our dataset contains 7 males and 15 females based on self-reported sex. We did not attempt sex-based analyses because of 
the small number of males in the study. Gender information was not collected consistently for these participants, so we do 
not report it.

Population characteristics Our dataset contains sequencing data from the post-mortem brains of 22 individuals all over the age of 60 with an average 
age of 86.2 years. 10 individuals (6 female, 4 male) are considered controls, with an Alzheimer's Disease Neuropathic Change 
(ADNC) score of 0-1, and an NIA-AA score of not-AD to Low. 12 individuals (9 female, 3 male) are considered to have 
Alzheimer's Disease pathology, with an ADNC score of 2-3, and an NIA-AA score of Intermediate to High. 13 of those 
individuals (7 control and 6 AD) were APOE e3/e3 genotype. 6 individuals (5 AD and 1 control) were APOE e3/e4 genotype. 
One AD individual was APOE e4/e4 genotype. Two controls were APOE e2/e3 genotype. Please see Supplemental Table 1 for 
additional population characteristic information.

Recruitment Participants were recruited to autopsy-based studies through either the ACT study or the UW ADRC. The participants are 
primarily white, and female. This bias is a reflection of the demographics of the Seattle area, and therefore the cohorts of the 
ACT and ADRC studies. Otherwise, selection bias is limited to those individuals willing to donate their brain.

Ethics oversight Protocols for ACT and studies within the ADRC were approved by the IRB at the University of Washington. Our study is 
considered exempt since it uses post-mortem and anonymous participant information.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Our dataset contains 22 brain samples of dorsolateral prefrontal cortex from 10 control and 12 Alzheimer's Disease pathology individuals. 
These individuals were all over the age of 60, and there were 7 male and 15 female samples. No statistical methods were used to pre-
determine sample sizes but our sample sizes are similar to those reported in previous publications.  In this study, we also enriched our dataset 
for PU.1, a myeloid marker. This allowed us to sequence and analyze the largest microglia/sample dataset to-date. While a larger sample size 
of individuals will always be more informative, this dataset provides the greatest depth of microglia sequencing so far.

Data exclusions No data was excluded from analysis due to statistical rationale. Data from cell types other than microglia were excluded from analysis and 
interpretation in this study since we enriched for PU.1 and therefore may not have a representative population of other cell types.

Replication The pySCENIC regulon detection and Monocle3 trajectory analysis were replicated multiple times (27 for regulons, 9 for trajectory) across 
multiple permutations of the downsampled dataset to generate the cosnistent findings displayed in the figures. Findings from the single-
nucleus RNAseq gene expression analyses were replicated in human brain tissue utilizing immunohistochemistry. Immunohistochemistry was 
replicated on 5-22 human samples and images are representative of staining observed in multiple fields across at least three individual 
humans. We also confirmed that the major findings of the snRNASeq dataset replicated similarly in our subset cohort of all APOE e3/e3 
individuals. While not a separate dataset replication, this finding is important for future studies.
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Randomization Samples were allocated to experimental groups based on their pathological characterization by the UW Neuropathology Core. Sex and Age 

were matched as well as possible across the experimental groups and during sequencing batches.

Blinding Investigators were not blinded to study grouping during analysis of the dataset since that variable was relevant to the statistical analysis of the 
data.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Primary antibodies: Anti-LAMP1 1:100 Invitrogen CAT#14-1079-80; anti-Iba-1 1:250 Abcam CAT#ab5076; anti-dsDNA 1:250 Millipore 

CAT#MAB1293; anti-PTDGS/PGD2 R&D Systems CAT#MAB10099 1:100; anti-P2RX7 Santa Cruz CAT#sc-514962 1:100; anti-P2RY12 
Alomone CAT#APR-012 1:50; anti-PDE4B LSBio CAT#LS-C173292-100 1:50 
 
Secondary antibodies: All secondary antibodies were used at 1:500. Thermofisher Alexa Fluor 488 Donkey anti-Goat CAT# A11055; 
Thermofisher Alexa Fluor 555 Donkey anti-Mouse CAT#A31570; Alexa Fluor 555 Donkey anti-Rabbit 555 CAT#A31572; Alexa Fluor 
647 Donkey anti-Mouse CAT#A31571; or Alexa Fluor 647 Donkey anti-Rabbit CAT#A32795

Validation All primary antibodies purchased and used for this study were validated by the manufacturer for use in human tissue for IHC-P.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Human flash frozen post-mortem brain tissue from the dorsolateral prefrontal cortex was lysed and nuclei isolated utilizing a 
percoll gradient. PU.1 or the appropriate isotype control were added to the sample for four hours on ice prior to sorting. 
DAPI was added 5 minutes prior to the sort time.

Instrument BD FACS Aria III

Software BD FACS Diva software provided with the cytometer. No custom software or code was used.

Cell population abundance The PU.1 positive population selected within the sort gate was approximately 10% of the total DAPI positive nuclei population 
for any given sample. The purity of the population was not 100% as the PU.1 staining does not generate a population that 
completely separates from the background nuclei. We later removed cell types that were not microglia from our dataset 
during analysis post-sequencing.

Gating strategy Since these are nuclei, the primary gating strategy utilized DAPI rather than the FSC/SSC to select a starting population from 
which to detect staining. The DAPI height and DAPI area were utilized to detect the different DAPI positive populations. The 
gate was centered around the smallest DAPI positive population, though did include a portion of the second DAPI population. 
The PU.1 population was identified by it's higher PE staining versus autofluorescence detected by the FITC channel. The main 
population of nuclei creates a diagonal, and while the isotype control does not demonstrate PE staining outside of that 
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diagonal, the PU.1 antibody generates a population that moves away from the main diagonal of the nuclei. These are 
illustrated in Supplemental Figure 1A/B.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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